
Ronald R Chance

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5168597/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Global evaluation of economics of microalgae-based biofuel supply chain using GIS-based framework. Korean Journal of Chemical Engineering, 2022, 39, 1524-1541.	2.7	6
2	Lifecycle greenhouse gas emissions for an ethanol production process based on genetically modified cyanobacteria: CO 2 sourcing options. Biofuels, Bioproducts and Biorefining, 2020, 14, 1324-1334.	3.7	3
3	Life cycle greenhouse gas emissions of different CO2 supply options for an algal biorefinery. Journal of CO2 Utilization, 2020, 40, 101213.	6.8	11
4	Biomass and pigment production for <i>Arthrospira platensis</i> via semi ontinuous cultivation in photobioreactors: Temperature effects. Biotechnology and Bioengineering, 2020, 117, 3081-3093.	3.3	10
5	Highly Tunable Molecular Sieving and Adsorption Properties of Mixed-Linker Zeolitic Imidazolate Frameworks. Journal of the American Chemical Society, 2015, 137, 4191-4197.	13.7	192
6	Anthropogenic <scp>CO₂</scp> as a feedstock for the production of algalâ€based biofuels. Biofuels, Bioproducts and Biorefining, 2015, 9, 72-81.	3.7	14
7	Effect of Crystal Size on Framework Defects and Water Uptake in Fluoride Mediated Silicalite-1. Chemistry of Materials, 2014, 26, 4368-4376.	6.7	16
8	Investigating the Intrinsic Ethanol/Water Separation Capability of ZIF-8: An Adsorption and Diffusion Study. Journal of Physical Chemistry C, 2013, 117, 7214-7225.	3.1	153
9	Exploring the Framework Hydrophobicity and Flexibility of ZIF-8: From Biofuel Recovery to Hydrocarbon Separations. Journal of Physical Chemistry Letters, 2013, 4, 3618-3622.	4.6	277
10	Diffusion of water and ethanol in silicalite crystals synthesized in fluoride media. Microporous and Mesoporous Materials, 2013, 170, 259-265.	4.4	24
11	Alcohol and water adsorption in zeolitic imidazolate frameworks. Chemical Communications, 2013, 49, 3245.	4.1	278
12	Membrane-Mediated Delivery of Carbon Dioxide for Consumption by Photoautotrophs: Eliminating Thermal Regeneration in Carbon Capture. Industrial & Engineering Chemistry Research, 2012, 51, 4673-4681.	3.7	12
13	CO2 sorption and desorption performance of thermally cycled hollow fiber sorbents. International Journal of Greenhouse Gas Control, 2012, 10, 285-294.	4.6	47
14	Adsorption of Water and Ethanol in MFI-Type Zeolites. Langmuir, 2012, 28, 8664-8673.	3.5	161
15	Formation of Defect-Free Latex Films on Porous Fiber Supports. ACS Applied Materials & Interfaces, 2011, 3, 3568-3582.	8.0	26
16	Ethanol and water adsorption in methanol-derived ZIF-71. Chemical Communications, 2011, 47, 8667.	4.1	97
17	Hollow fiber adsorbents for CO2 capture: Kinetic sorption performance. Chemical Engineering Journal, 2011, 171, 801-810.	12.7	56
18	Torsion Potential in Polydiacetylene: Accurate Computations on Oligomers Extrapolated to the Polymer Limit. Journal of the American Chemical Society, 2010, 132, 13313-13319.	13.7	23

RONALD R CHANCE

#	Article	IF	CITATIONS
19	Enabling Low-Cost CO ₂ Capture via Heat Integration. Industrial & Engineering Chemistry Research, 2010, 49, 7550-7562.	3.7	96
20	Life Cycle Energy and Greenhouse Gas Emissions for an Ethanol Production Process Based on Blue-Green Algae. Environmental Science & Technology, 2010, 44, 8670-8677.	10.0	111
21	Butane isomer transport properties of 6FDA–DAM and MFI–6FDA–DAM mixed matrix membranes. Journal of Membrane Science, 2009, 343, 157-163.	8.2	59
22	Hollow Fiber Adsorbents for CO ₂ Removal from Flue Gas. Industrial & Engineering Chemistry Research, 2009, 48, 7314-7324.	3.7	172
23	Global Warming and Carbon-Negative Technology: Prospects for a Lower-Cost Route to a Lower-Risk Atmosphere. Energy and Environment, 2009, 20, 973-984.	4.6	34
24	Functionalization of the Internal Surface of Pure-Silica MFI Zeolite with Aliphatic Alcohols. Journal of Physical Chemistry C, 2008, 112, 3543-3551.	3.1	56
25	A Study of the Separation Principle in Size Exclusion Chromatography. Macromolecules, 2004, 37, 4304-4312.	4.8	68
26	In situ determination of the adsorption characteristics of a zeolite membrane. Journal of Membrane Science, 2004, 230, 91-98.	8.2	26
27	Effect of Short Chain Branching on the Coil Dimensions of Polyolefins in Dilute Solution. Macromolecules, 2001, 34, 6812-6820.	4.8	107
28	Flow induced birefringence of conjugated polymer solutions. Synthetic Metals, 1989, 28, D689-D697.	3.9	6
29	Highly conducting polyparaphenylene, polypyrrole, and polythiophene chains: Anab initiostudy of the geometry and electronic-structure modifications upon doping. Physical Review B, 1984, 29, 6761-6773.	3.2	693
30	Chain-length dependence of electronic and electrochemical properties of conjugated systems: polyacetylene, polyphenylene, polythiophene, and polypyrrole. Journal of the American Chemical Society, 1983, 105, 6555-6559.	13.7	1,156
31	Comparative theoretical study of the doping of conjugated polymers: Polarons in polyacetylene and polyparaphenylene. Physical Review B, 1982, 26, 5843-5854.	3.2	568
32	Structural basis for semiconducting and metallic polymer dopant systems. Chemical Reviews, 1982, 82, 209-222.	47.7	332
33	Ab initio effective Hamiltonian study of the electronic properties of conjugated polymers. Journal of Chemical Physics, 1982, 76, 3673-3678.	3.0	207
34	Electrochemical doping of poly-(p-phenylene) with application to organic batteries. Journal of the Chemical Society Chemical Communications, 1982, , 361.	2.0	115
35	A nonempirical effective Hamiltonian technique for polymers: Application to polyacetylene and polydiacetylene. Journal of Chemical Physics, 1981, 75, 255-267.	3.0	347
36	Electrical and optical properties of highly conducting charge-transfer complexes of poly(p-phenylene). Synthetic Metals, 1980, 1, 307-320.	3.9	318

RONALD R CHANCE

#	Article	IF	CITATIONS
37	Highly conducting charge-transfer complexes of a processible polymer: poly(p-phenylene sulphide). Journal of the Chemical Society Chemical Communications, 1980, , 348.	2.0	86
38	Chromism in Polydiacetylene Solutions and Crystals. Macromolecules, 1980, 13, 396-398.	4.8	200
39	Thermal effects on the optical properties of single crystals and solutionâ€cast films of urethane substituted polydiacetylenes. Journal of Chemical Physics, 1979, 71, 206-211.	3.0	204
40	A planar–nonplanar conformational transition in conjugated polymer solutions. Journal of Chemical Physics, 1979, 70, 4387-4392.	3.0	314
41	Highly conducting chargeâ€ŧransfer complexes of poly(pâ€phenylene). Journal of Chemical Physics, 1979, 71, 1506-1507.	3.0	433
42	Thermochromism in a polydiacetylene crystal. Journal of Chemical Physics, 1977, 67, 3616-3618.	3.0	222
43	Optical Nonlinearities in One-Dimensional-Conjugated Polymer Crystals. Physical Review Letters, 1976, 36, 956-959.	7.8	623
44	Comments on the classical theory of energy transfer. Journal of Chemical Physics, 1975, 62, 2245-2253.	3.0	238
45	Fluorescence reabsorption in anthracene single crystals: Lifetime variations with emission wavelength and temperature. Chemical Physics, 1974, 4, 402-408.	1.9	17
46	Intrinsic photoconduction in anthracene single crystals: Electric field dependence of hole and electron quantum yields. Journal of Chemical Physics, 1973, 59, 2269-2272.	3.0	113