
Clarissa Gerhauser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5168357/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nuclear Factor κB Is a Molecular Target for Sulforaphane-mediated Anti-inflammatory Mechanisms. Journal of Biological Chemistry, 2001, 276, 32008-32015.	3.4	553
2	Glucosinolates in <i>Brassica</i> vegetables: The influence of the food supply chain on intake, bioavailability and human health. Molecular Nutrition and Food Research, 2009, 53, S219.	3.3	490
3	Beer constituents as potential cancer chemopreventive agents. European Journal of Cancer, 2005, 41, 1941-1954.	2.8	345
4	Cancer chemopreventive activity of Xanthohumol, a natural product derived from hop. Molecular Cancer Therapeutics, 2002, 1, 959-69.	4.1	301
5	Integrative Genomic Analyses Reveal an Androgen-Driven Somatic Alteration Landscape in Early-Onset Prostate Cancer. Cancer Cell, 2013, 23, 159-170.	16.8	292
6	Mechanism-based in vitro screening of potential cancer chemopreventive agents. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2003, 523-524, 163-172.	1.0	282
7	Genomic Deletion of PTEN Is Associated with Tumor Progression and Early PSA Recurrence in ERG Fusion-Positive and Fusion-Negative Prostate Cancer. American Journal of Pathology, 2012, 181, 401-412.	3.8	278
8	Quantitative comparison of DNA methylation assays for biomarker development and clinical applications. Nature Biotechnology, 2016, 34, 726-737.	17.5	270
9	DNMT and HDAC inhibitors induce cryptic transcription start sites encoded in long terminal repeats. Nature Genetics, 2017, 49, 1052-1060.	21.4	235
10	Cancer Chemopreventive Potential of Apples, Apple Juice, and Apple Components. Planta Medica, 2008, 74, 1608-1624.	1.3	230
11	Intratumor DNA Methylation Heterogeneity Reflects Clonal Evolution in Aggressive Prostate Cancer. Cell Reports, 2014, 8, 798-806.	6.4	219
12	Cancer chemopreventive activity of brassinin, a phytoalexin from cabbage. Carcinogenesis, 1995, 16, 399-404.	2.8	197
13	Molecular Evolution of Early-Onset Prostate Cancer Identifies Molecular Risk Markers and Clinical Trajectories. Cancer Cell, 2018, 34, 996-1011.e8.	16.8	190
14	Amide Analogues of Trichostatin A as Inhibitors of Histone Deacetylase and Inducers of Terminal Cell Differentiation. Journal of Medicinal Chemistry, 1999, 42, 4669-4679.	6.4	178
15	Inhibition of angiogenesis and endothelial cell functions are novel sulforaphane-mediated mechanisms in chemoprevention. Molecular Cancer Therapeutics, 2006, 5, 575-585.	4.1	169
16	Cancer Chemoprevention by Targeting the Epigenome. Current Drug Targets, 2011, 12, 1925-1956.	2.1	159
17	Pan-cancer patterns of DNA methylation. Genome Medicine, 2014, 6, 66.	8.2	149
18	Cancer Chemoprevention and Nutri-Epigenetics: State of the Art and Future Challenges. Topics in Current Chemistry, 2012, 329, 73-132	4.0	143

#	Article	IF	CITATIONS
19	Rotenoids mediate potent cancer chemopreventive activity through transcriptional regulation of ornithine decarboxylase. Nature Medicine, 1995, 1, 260-266.	30.7	137
20	Xanthohumol induces apoptosis in cultured 40-16 human colon cancer cells by activation of the death receptor- and mitochondrial pathway. Molecular Nutrition and Food Research, 2005, 49, 837-843.	3.3	129
21	Broad spectrum antiinfective potential of xanthohumol from hop (Humulus lupulus L.) in comparison with activities of other hop constituents and xanthohumol metabolites. Molecular Nutrition and Food Research, 2005, 49, 827-831.	3.3	126
22	Potential Cancer Chemopreventive in Vitro Activities of Monomeric Xanthone Derivatives from the Marine Algicolous FungusMonodictysputredinis#. Journal of Natural Products, 2007, 70, 353-360.	3.0	101
23	Xanthohumol metabolites in faeces of rats. Phytochemistry, 2004, 65, 561-570.	2.9	98
24	Activity-Guided Isolation of Constituents ofTephrosia purpureawith the Potential to Induce the Phase II Enzyme, Quinone Reductase. Journal of Natural Products, 1997, 60, 869-873.	3.0	96
25	Comparison of growth inhibition profiles and mechanisms of apoptosis induction in human colon cancer cell lines by isothiocyanates and indoles from Brassicaceae. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2006, 599, 76-87.	1.0	94
26	In vitro chemopreventive potential of fucophlorethols from the brown alga Fucus vesiculosus L. by anti-oxidant activity and inhibition of selected cytochrome P450 enzymes. Phytochemistry, 2010, 71, 221-229.	2.9	90
27	Random forest-based modelling to detect biomarkers for prostate cancer progression. Clinical Epigenetics, 2019, 11, 148.	4.1	89
28	Genomeâ€wide methylation screen in lowâ€grade breast cancer identifies novel epigenetically altered genes as potential biomarkers for tumor diagnosis. FASEB Journal, 2012, 26, 4937-4950.	0.5	84
29	Impact of Soy Isoflavones on the Epigenome in Cancer Prevention. Nutrients, 2014, 6, 4218-4272.	4.1	83
30	Xanthohumolâ€induced transient superoxide anion radical formation triggers cancer cells into apoptosis <i>via</i> a mitochondriaâ€mediated mechanism. FASEB Journal, 2010, 24, 2938-2950.	0.5	78
31	Cancer Chemopreventive in vitro Activities of Isoflavones Isolated from Iris germanica. Planta Medica, 2003, 69, 15-20.	1.3	68
32	Epigenetic impact of dietary isothiocyanates in cancer chemoprevention. Current Opinion in Clinical Nutrition and Metabolic Care, 2013, 16, 405-410.	2.5	68
33	Structureâ^'Activity Relationships on Phenylalanine-Containing Inhibitors of Histone Deacetylase:Â In Vitro Enzyme Inhibition, Induction of Differentiation, and Inhibition of Proliferation in Friend Leukemic Cells. Journal of Medicinal Chemistry, 2002, 45, 3296-3309.	6.4	67
34	Induction of Quinone Reductase by Withanolides Isolated fromPhysalis philadelphica(Tomatillos). Journal of Agricultural and Food Chemistry, 1997, 45, 3771-3777.	5.2	66
35	Quantitative combination effects between sulforaphane and 3,3′-diindolylmethane on proliferation of human colon cancer cells in vitro. Carcinogenesis, 2007, 28, 1471-1477.	2.8	65
36	Impact of dietary gut microbial metabolites on the epigenome. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170359.	4.0	60

#	Article	IF	CITATIONS
37	Epigenetic silencing of triple negative breast cancer hallmarks by Withaferin A. Oncotarget, 2017, 8, 40434-40453.	1.8	59
38	Anti-inflammatory Acylphloroglucinol Derivatives from Hops (Humulus lupulus). Journal of Natural Products, 2005, 68, 1545-1548.	3.0	57
39	Time-Dependent Modulation of Thioredoxin Reductase Activity Might Contribute to Sulforaphane-Mediated Inhibition of NF-κB Binding to DNA. Antioxidants and Redox Signaling, 2005, 7, 1601-1611.	5.4	54
40	Inhibition of endothelial cell functions by novel potential cancer chemopreventive agents. Biochemical and Biophysical Research Communications, 2004, 325, 287-295.	2.1	52
41	A safety study of oral xanthohumol administration and its influence on fertility in Sprague Dawley rats. Molecular Nutrition and Food Research, 2005, 49, 861-867.	3.3	52
42	Sulforaphane counteracts aggressiveness of pancreatic cancer driven by dysregulated Cx43-mediated gap junctional intercellular communication. Oncotarget, 2014, 5, 1621-1634.	1.8	50
43	Isolation and potential cancer chemopreventive activities of phenolic compounds of beer. Phytochemistry Reviews, 2002, 1, 369-377.	6.5	49
44	Intratumor heterogeneity in epigenetic patterns. Seminars in Cancer Biology, 2018, 51, 12-21.	9.6	49
45	Enhancing the anti-inflammatory activity of chalcones by tuning the Michael acceptor site. Organic and Biomolecular Chemistry, 2015, 13, 3040-3047.	2.8	46
46	HPLC-Based Activity Profiling ofSalvia miltiorrhizafor MAO A and iNOS Inhibitory Activities. Planta Medica, 2004, 70, 909-913.	1.3	43
47	Monodictyochromes A and B, Dimeric Xanthone Derivatives from the Marine Algicolous Fungus Monodictys putredinis. Journal of Natural Products, 2008, 71, 1793-1799.	3.0	42
48	Identification of differentially methylated BRCA1 and CRISP2 DNA regions as blood surrogate markers for cardiovascular disease. Scientific Reports, 2017, 7, 5120.	3.3	42
49	In vitro phase II metabolism of xanthohumol by human UDP-glucuronosyltransferases and sulfotransferases. Molecular Nutrition and Food Research, 2005, 49, 851-856.	3.3	40
50	Identification of 3â€hydroxyâ€Î²â€damascone and related carotenoidâ€derived aroma compounds as novel potent inducers of Nrf2â€mediated phase 2 response with concomitant antiâ€inflammatory activity. Molecular Nutrition and Food Research, 2009, 53, 1237-1244.	3.3	33
51	New Lanostanoids fromGanoderma lucidumthat Induce NAD(P)H:Qui-none Oxidoreductase in Cultured Hepalclc7 Murine Hepatoma Cells. Planta Medica, 2000, 66, 681-684.	1.3	32
52	Biphasic modulation of cell proliferation by sulforaphane at physiologically relevant exposure times in a human colon cancer cell line. Molecular Nutrition and Food Research, 2007, 51, 977-984.	3.3	32
53	Noduliprevenone: A Novel Heterodimeric Chromanone with Cancer Chemopreventive Potential. Chemistry - A European Journal, 2008, 14, 9860-9863.	3.3	31
54	Oneâ€Pot Synthesis of Benzopyranâ€4â€ones with Cancer Preventive and Therapeutic Potential. European Journal of Organic Chemistry, 2016, 2016, 965-975.	2.4	31

CLARISSA GERHAUSER

#	Article	IF	CITATIONS
55	A systems biology network analysis of nutri(epi)genomic changes in endothelial cells exposed to epicatechin metabolites. Scientific Reports, 2018, 8, 15487.	3.3	31
56	Doseâ€dependent effects of isoflavone exposure during early lifetime on the rat mammary gland: Studies on estrogen sensitivity, isoflavone metabolism, and DNA methylation. Molecular Nutrition and Food Research, 2015, 59, 270-283.	3.3	30
57	Suppression of indoleamine-2,3-dioxygenase 1 expression by promoter hypermethylation in ER-positive breast cancer. Oncolmmunology, 2017, 6, e1274477.	4.6	30
58	Structure of Tyrolobibenzyl D and Biological Activity of Tyrolobibenzyls from Scorzonera humilis. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2002, 57, 614-619.	1.4	28
59	Modulation of Adipocyte Differentiation and Proadipogenic Gene Expression by Sulforaphane, Genistein, and Docosahexaenoic Acid as a First Step to Counteract Obesity. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-8.	4.0	28
60	Role of IncRNAs in prostate cancer development and progression. Biological Chemistry, 2014, 395, 1275-1290.	2.5	27
61	Xanthohumol does not affect the composition of rat intestinal microbiota. Molecular Nutrition and Food Research, 2005, 49, 868-873.	3.3	26
62	Xanthohumol, a prenylated chalcone from hops, modulates hepatic expression of genes involved in thyroid hormone distribution and metabolism. Molecular Nutrition and Food Research, 2010, 54, S225-35.	3.3	24
63	Fractionation of polyphenol-enriched apple juice extracts to identify constituents with cancer chemopreventive potential. Molecular Nutrition and Food Research, 2008, 52 Suppl 1, S28-44.	3.3	23
64	Synthesis of Resveratrol Derivatives and <i>In Vitro</i> Screening for Potential Cancer Chemopreventive Activities. Archiv Der Pharmazie, 2016, 349, 414-427.	4.1	22
65	Bryodin, a single-chain ribosome-inactivating protein, selectively inhibits the growth of HIV-1-infected cells and reduces HIV-1 production. Research in Experimental Medicine, 1993, 193, 1-12.	0.7	19
66	A click chemistry approach identifies target proteins of xanthohumol. Molecular Nutrition and Food Research, 2016, 60, 737-748.	3.3	19
67	Xanthohumol, a new all-rounder?. Molecular Nutrition and Food Research, 2005, 49, 821-823.	3.3	14
68	Acute Exercise Increases the Expression of KIR2DS4 by Promoter Demethylation in NK Cells. International Journal of Sports Medicine, 2019, 40, 62-70.	1.7	13
69	Phenolic Beer Compounds to Prevent Cancer. , 2009, , 669-684.		12
70	Inhibitory effect of munetone, an isoflavonoid, on 12-O-tetradecanoylphorbol 13-acetate-induced ornithine decarboxylase activity. Cancer Letters, 1999, 136, 59-65.	7.2	11
71	Effect of inhibitors of histone deacetylase on the induction of cell differentiation in murine and human erythroleukemia cell lines. Anti-Cancer Drugs, 2005, 16, 635-643.	1.4	10
72	Cancer Chemopreventive Agents in Plants – A Continuing Challenge. Planta Medica, 2008, 74, 1523-1525.	1.3	7

#	Article	IF	CITATIONS
73	Anti-proliferative and Apoptosis-Inducing Properties of Xanthohumol, a Prenylated Chalcone from Hops (Humulus lupulus L.). , 2012, , 69-93.		7
74	Cancer Chemopreventive Potential of Humulones and Isohumulones (Hops α- and Iso-α-acids): Induction of NAD(P)H:Quinone Reductase as a Novel Mechanism. Natural Product Communications, 2008, 3, 1934578X0800301.	0.5	6
75	Flavonoide und andere pflanzliche Wirkstoffe - Was hat praktische Relevanz? Sollen wir unser Essverhalten Ä ¤ dern? Aktuelle Ernahrungsmedizin Klinik Und Praxis, 2001, 26, 137-143.	0.1	5
76	Substituted purine and 7-deazapurine compounds as modulators of epigenetic enzymes: a patent evaluation (WO2012075381). Expert Opinion on Therapeutic Patents, 2013, 23, 537-543.	5.0	4
77	Acylphloroglucinol Derivatives from Hops as Anti-inflammatory Agents. , 2009, , 753-757.		3
78	Genome-Wide DNA Methylation Profiling in Dietary Intervention Studies: a User's Perspective. Current Pharmacology Reports, 2015, 1, 31-45.	3.0	2
79	The Chemopreventive Power of Isothiocyanates. , 2020, , 271-318.		2
80	LiSIs: An Online Scientific Workflow System for Virtual Screening. Combinatorial Chemistry and High Throughput Screening, 2015, 18, 281-295.	1.1	2
81	Techniques for Assessing Anti-cancer Effects of Beer. , 2009, , 901-910.		1
82	Combination Cancer Chemoprevention by Targeting the Epigenome. , 2020, , 577-612.		1
83	Impact of soy isoflavones on the epigenome. Toxicology Letters, 2016, 258, S5.	0.8	0
84	Internationales Krebsgenomkonsortium (ICGC). Medizinische Genetik, 2017, 28, 416-423.	0.2	0
85	Cancer Risk Factors and Prevention. , 1998, , 57-88.		Ο
86	Krebsrisikofaktoren und KrebsprÄ ¤ ention. , 1998, , 57-90.		0
87	Präentive Onkologie — das Endziel der Bekänpfung bösartiger Erkrankungen. , 2007, , 57-68.		Ο
88	Methods Used to Study Alterations of Cell Signaling and Proliferation. , 0, , 277-289.		0
89	Methods for the Assessment of Antiangiogenic Activity. , 0, , 291-301.		0