List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5168227/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bcl-2 Family Members and the Mitochondrial Import Machineries: The Roads to Death. Biomolecules, 2022, 12, 162.	4.0	27
2	Acetic acid triggers cytochrome c release in yeast heterologously expressing human Bax. Apoptosis: an International Journal on Programmed Cell Death, 2022, 27, 368-381.	4.9	5
3	Keeping Cell Death Alive: An Introduction into the French Cell Death Research Network. Biomolecules, 2022, 12, 901.	4.0	2
4	Mitochondria-associated membranes in the maintenance of cell homeostasis. , 2021, , 151-169.		0
5	Lactoferrin perturbs lipid rafts and requires integrity of Pma1p-lipid rafts association to exert its antifungal activity against Saccharomyces cerevisiae. International Journal of Biological Macromolecules, 2021, 171, 343-357.	7.5	13
6	TOM20-mediated transfer of Bcl2 from ER to MAM and mitochondria upon induction of apoptosis. Cell Death and Disease, 2021, 12, 182.	6.3	22
7	Contribution of Yeast Studies to the Understanding of BCL-2 Family Intracellular Trafficking. International Journal of Molecular Sciences, 2021, 22, 4086.	4.1	3
8	Ancient and conserved functional interplay between Bcl-2 family proteins in the mitochondrial pathway of apoptosis. Science Advances, 2020, 6, .	10.3	47
9	The yeast mitophagy receptor Atg32 is ubiquitinated and degraded by the proteasome. PLoS ONE, 2020, 15, e0241576.	2.5	8
10	Mitochondria-Associated Membranes (MAMs) are involved in Bax mitochondrial localization and cytochrome c release. Microbial Cell, 2019, 6, 257-266.	3.2	16
11	Mitochondria as Signaling Platforms. , 2019, , 33-62.		0
12	Improved Electrophoretic Separation to Assist the Monitoring of Bcl-xL Post-Translational Modifications. International Journal of Molecular Sciences, 2019, 20, 5571.	4.1	11
13	Investigating BCL-2 Family Protein Interactions in Yeast. Methods in Molecular Biology, 2019, 1877, 93-109.	0.9	4
14	N-terminal acetylation modulates Bax targeting to mitochondria. International Journal of Biochemistry and Cell Biology, 2018, 95, 35-42.	2.8	15
15	Guidelines and recommendations on yeast cell death nomenclature. Microbial Cell, 2018, 5, 4-31.	3.2	158
16	A brewing understanding of the regulation of Bax function by Bcl-xL and Bcl-2. Mechanisms of Ageing and Development, 2017, 161, 201-210.	4.6	76
17	The substitution of Proline 168 favors Bax oligomerization and stimulates its interaction with LUVs and mitochondria. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1144-1155.	2.6	20
18	New Insights on the Regulation of Programmed Cell Death by Bcl-2 Family Proteins at the Mitochondria: Physiological and Pathophysiological Implications. Biological and Medical Physics Series, 2017, , 253-283.	0.4	0

#	Article	IF	CITATIONS
19	Regulation of Bax/mitochondria interaction by AKT. FEBS Letters, 2016, 590, 13-21.	2.8	37
20	A sandwich ELISA for the conformation-specific quantification of the activated form of human Bax. Analytical Biochemistry, 2016, 497, 90-94.	2.4	6
21	VDAC regulates AAC-mediated apoptosis and cytochrome c release in yeast. Microbial Cell, 2016, 3, 500-510.	3.2	20
22	Bax mitochondrial relocation is linked to its phosphorylation and its interaction with Bcl-xL. Microbial Cell, 2016, 3, 597-605.	3.2	20
23	N52 monodeamidated Bcl-xL shows impaired oncogenic properties <i>in vivo</i> and <i>in vitro</i> . Oncotarget, 2016, 7, 17129-17143.	1.8	13
24	Bcl-xL stimulates Bax relocation to mitochondria and primes cells to ABT-737. International Journal of Biochemistry and Cell Biology, 2015, 64, 136-146.	2.8	36
25	Insights into the relationship between the proteasome and autophagy in human and yeast cells. International Journal of Biochemistry and Cell Biology, 2015, 64, 167-173.	2.8	12
26	The yeast model system as a tool towards the understanding of apoptosis regulation by sphingolipids. FEMS Yeast Research, 2014, 14, 160-178.	2.3	38
27	The yeast model system as a tool towards the understanding of apoptosis regulation by sphingolipids. FEMS Yeast Research, 2014, 14, 995-995.	2.3	0
28	A Fox2-Dependent Fatty Acid ß-Oxidation Pathway Coexists Both in Peroxisomes and Mitochondria of the Ascomycete Yeast Candida lusitaniae. PLoS ONE, 2014, 9, e114531.	2.5	16
29	Increased levels of reduced cytochrome <i>b</i> and mitophagy components are required to trigger nonspecific autophagy following induced mitochondrial dysfunction. Journal of Cell Science, 2013, 126, 415-426.	2.0	29
30	Bcl-wav and the mitochondrial calcium uniporter drive gastrula morphogenesis in zebrafish. Nature Communications, 2013, 4, 2330.	12.8	64
31	Stimulation of Bax Mitochondrial Localization by Bcl-xL. Biophysical Journal, 2013, 104, 656a-657a.	0.5	Ο
32	Regulation of Bax mitochondrial localization by Bcl-2 and Bcl-xL: Keep your friends close but your enemies closer. International Journal of Biochemistry and Cell Biology, 2013, 45, 64-67.	2.8	102
33	Bcl-xL Increases Bax Mitochondrial Localization and Activation in Non-Apoptotic Cells. Biophysical Journal, 2012, 102, 437a.	0.5	Ο
34	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
35	The cytosolic domain of human Tom22 modulates human Bax mitochondrial translocation and conformation in yeast. FEBS Letters, 2012, 586, 116-121.	2.8	19
36	Bax: Addressed to bill Biochimie 2011 93 1379-1391	26	110

ed to kill. Biochimie, 2011, 93, 1379-1391.

2.6 110

#	Article	IF	CITATIONS
37	The Importance of Humanized Yeast to Better Understand the Role of Bcl-2 Family in Apoptosis: Finding of Novel Therapeutic Opportunities. Current Pharmaceutical Design, 2011, 17, 246-255.	1.9	22
38	Modulation of Bax mitochondrial insertion and induced cell death in yeast by mammalian protein kinase Cα. Experimental Cell Research, 2011, 317, 781-790.	2.6	23
39	Mitochondrial degradation in acetic acid-induced yeast apoptosis: the role of Pep4 and the ADP/ATP carrier. Molecular Microbiology, 2010, 76, 1398-1410.	2.5	75
40	Bax activation by the BH3-only protein Puma promotes cell dependence on antiapoptotic Bcl-2 family members. Journal of Cell Biology, 2009, 185, 279-290.	5.2	132
41	Glutathione Participates in the Regulation of Mitophagy in Yeast. Journal of Biological Chemistry, 2009, 284, 14828-14837.	3.4	102
42	Bax activation by the BH3-only protein Puma promotes cell dependence on antiapoptotic Bcl-2 family members. Journal of Experimental Medicine, 2009, 206, i8-i8.	8.5	0
43	Bax inserts into the mitochondrial outer membrane by different mechanisms. FEBS Letters, 2008, 582, 3045-3051.	2.8	49
44	Substitutions of Potentially Phosphorylatable Serine Residues of Bax Reveal How They May Regulate Its Interaction with Mitochondria. Journal of Biological Chemistry, 2007, 282, 35104-35112.	3.4	55
45	Selective and Non-Selective Autophagic Degradation of Mitochondria in Yeast. Autophagy, 2007, 3, 329-336.	9.1	194
46	In yeast, Ca2+ and octylguanidine interact with porin (VDAC) preventing the mitochondrial permeability transition. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 1245-1251.	1.0	35
47	ADP/ATP carrier is required for mitochondrial outer membrane permeabilization and cytochrome <i><c i=""> release in yeast apoptosis. Molecular Microbiology, 2007, 66, 571-582.</c></i>	2.5	128
48	Bax activation and mitochondrial insertion during apoptosis. Apoptosis: an International Journal on Programmed Cell Death, 2007, 12, 887-896.	4.9	278
49	Mitochondria as the target of the pro-apoptotic protein Bax. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 1301-1311.	1.0	210
50	Regulation of the mitochondrial apoptosis-induced channel, MAC, by BCL-2 family proteins. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2006, 1762, 191-201.	3.8	164
51	Lipid oxidation and autophagy in yeast. Free Radical Biology and Medicine, 2006, 41, 1655-1661.	2.9	68
52	Evaluation of the Roles of Apoptosis, Autophagy, and Mitophagy in the Loss of Plating Efficiency Induced by Bax Expression in Yeast. Journal of Biological Chemistry, 2006, 281, 36187-36197.	3.4	57
53	Distinct Domains Control the Addressing and the Insertion of Bax into Mitochondria. Journal of Biological Chemistry, 2005, 280, 10587-10598.	3.4	85
54	Studies of the Interaction of Substituted Mutants of BAX with Yeast Mitochondria Reveal That the C-terminal Hydrophobic α-Helix Is a Second ART Sequence and Plays a Role in the Interaction with Anti-apoptotic BCL-xL. Journal of Biological Chemistry, 2004, 279, 52566-52573.	3.4	56

#	Article	IF	CITATIONS
55	Organization and regulation of the cytosolic NADH metabolism in the yeast Saccharomyces cerevisiae. Molecular and Cellular Biochemistry, 2004, 256, 73-81.	3.1	116
56	Uth1p: a yeast mitochondrial protein at the crossroads of stress, degradation and cell death. FEMS Yeast Research, 2004, 5, 133-140.	2.3	75
57	Uth1p Is Involved in the Autophagic Degradation of Mitochondria. Journal of Biological Chemistry, 2004, 279, 39068-39074.	3.4	379
58	Yeast as a tool to study Bax/mitochondrial interactions in cell death. FEMS Yeast Research, 2003, 4, 15-27.	2.3	67
59	The product of the UTH1 gene, required for Bax-induced cell death in yeast, is involved in the response to rapamycin. Molecular Microbiology, 2003, 47, 495-506.	2.5	80
60	Investigation of the role of the C-terminus of Bax and of tc-Bid on Bax interaction with yeast mitochondria. Cell Death and Differentiation, 2003, 10, 1068-1077.	11.2	46
61	The N-terminal End of Bax Contains a Mitochondrial-targeting Signal. Journal of Biological Chemistry, 2003, 278, 11633-11641.	3.4	105
62	Bax expression protects yeast plasma membrane against ethanol-induced permeabilization. FEBS Letters, 2002, 521, 47-52.	2.8	40
63	Bax-induced cell death in yeast depends on mitochondrial lipid oxidation. FEBS Journal, 2002, 269, 5440-5450.	0.2	54
64	A novel, high conductance channel of mitochondria linked to apoptosis in mammalian cells and Bax expression in yeast. Journal of Cell Biology, 2001, 155, 725-732.	5.2	274
65	The substitution of the C-terminus of bax by that of bcl-xL does not affect its subcellular localization but abrogates its pro-apoptotic properties. FEBS Letters, 2000, 487, 161-165.	2.8	39
66	Investigation of bax-induced release of cytochrome c from yeast mitochondria . Permeability of mitochondrial membranes, role of VDAC and ATP requirement. FEBS Journal, 1999, 260, 684-691.	0.2	122
67	Role of the C-terminal domain of Bax and Bcl-xLin their localization and function in yeast cells. FEBS Letters, 1999, 443, 225-228.	2.8	44
68	Comparison of the effects of bax -expression in yeast under fermentative and respiratory conditions: investigation of the role of adenine nucleotides carrier and cytochrome c. FEBS Letters, 1999, 456, 232-238.	2.8	64
69	Characterization of the yeast mitochondria unselective channel: a counterpart to the mammalian permeability transition pore?. Journal of Bioenergetics and Biomembranes, 1998, 30, 419-429.	2.3	65
70	Release of cytochrome c and decrease of cytochrome c oxidase in Baxâ€expressing yeast cells, and prevention of these effects by coexpression of Bclâ€x _L . FEBS Letters, 1997, 415, 29-32.	2.8	274
71	Conditions allowing different states of ATP- and GDP-induced permeability in mitochondria from different strains of Saccharomyces cerevisiae. Biochimica Et Biophysica Acta - Biomembranes, 1997, 1324, 120-132.	2.6	30
72	[10] ATP synthase from Saccharomyces cerevisiae. Methods in Enzymology, 1995, 260, 133-163.	1.0	62