Karyn A Esser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5167748/publications.pdf Version: 2024-02-01

KADVN & FEED

#	Article	IF	CITATIONS
1	A wrinkle in time: circadian biology in pulmonary vascular health and disease. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, 322, L84-L101.	2.9	3
2	Apparent Absence of BMAL1-Dependent Skeletal Muscle–Kidney Cross Talk in Mice. Biomolecules, 2022, 12, 261.	4.0	2
3	Optimization of the Omni-ATAC protocol to chromatin accessibility profiling in snap-frozen rat adipose and muscle tissues. MethodsX, 2022, 9, 101681.	1.6	1
4	The role of the cardiomyocyte circadian clocks in ion channel regulation and cardiac electrophysiology. Journal of Physiology, 2022, 600, 2037-2048.	2.9	10
5	Timing of food intake in mice unmasks a role for the cardiomyocyte circadian clock mechanism in limiting QT-interval prolongation. Chronobiology International, 2022, 39, 525-534.	2.0	6
6	PO-646-05 FEEDING BEHAVIOR MODIFIES AUTONOMIC SIGNALING TO IMPACT THE LONG QT SYNDROME-RELATED PHENOTYPES IN MICE. Heart Rhythm, 2022, 19, S229.	0.7	0
7	A Role for Exercise to Counter Skeletal Muscle Clock Disruption. Exercise and Sport Sciences Reviews, 2021, 49, 35-41.	3.0	8
8	Time of Day and Muscle Strength: A Circadian Output?. Physiology, 2021, 36, 44-51.	3.1	21
9	Exercise mitigates sleep-loss-induced changes in glucose tolerance, mitochondrial function, sarcoplasmic protein synthesis, and diurnal rhythms. Molecular Metabolism, 2021, 43, 101110.	6.5	28
10	Likelihood-based tests for detecting circadian rhythmicity and differential circadian patterns in transcriptomic applications. Briefings in Bioinformatics, 2021, 22, .	6.5	11
11	Cardiomyocyte Deletion of Bmal1 Exacerbates QT- and RR-Interval Prolongation in Scn5a+/ΔKPQ Mice. Frontiers in Physiology, 2021, 12, 681011.	2.8	5
12	Reuniting the Body "Neck Up and Neck Down―to Understand Cognitive Aging: The Nexus of Geroscience and Neuroscience. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2021, , .	3.6	5
13	Binge alcohol disrupts skeletal muscle core molecular clock independent of glucocorticoids. American Journal of Physiology - Endocrinology and Metabolism, 2021, 321, E606-E620.	3.5	6
14	Integrated multiomics analysis identifies molecular landscape perturbations during hyperammonemia in skeletal muscle and myotubes. Journal of Biological Chemistry, 2021, 297, 101023.	3.4	10
15	Differential analysis of chromatin accessibility and gene expression profiles identifies cis-regulatory elements in rat adipose and muscle. Genomics, 2021, 113, 3827-3841.	2.9	11
16	Disrupted circadian oscillations in type 2 diabetes are linked to altered rhythmic mitochondrial metabolism in skeletal muscle. Science Advances, 2021, 7, eabi9654.	10.3	44
17	Circadian Rhythm Effects on the Molecular Regulation of Physiological Systems. , 2021, 12, 2769-2798.		5
18	Relationship Between Nicotine Intake and Reward Function in Rats With Intermittent Short Versus Long Access to Nicotine. Nicotine and Tobacco Research, 2020, 22, 213-223.	2.6	10

Karyn A Esser

#	Article	IF	CITATIONS
19	Innovations in Geroscience to enhance mobility in older adults. Experimental Gerontology, 2020, 142, 111123.	2.8	17
20	Exercise sets the muscle clock with a calcium assist. Journal of Physiology, 2020, 598, 5591-5592.	2.9	3
21	Myosteatosis in the Context of Skeletal Muscle Function Deficit: An Interdisciplinary Workshop at the National Institute on Aging. Frontiers in Physiology, 2020, 11, 963.	2.8	190
22	The GSK-3β-FBXL21 Axis Contributes to Circadian TCAP Degradation and Skeletal Muscle Function. Cell Reports, 2020, 32, 108140.	6.4	19
23	Ticking for Metabolic Health: The Skeletalâ€Muscle Clocks. Obesity, 2020, 28, S46-S54.	3.0	22
24	Timeâ€ofâ€day dependent effects of contractile activity on the phase of the skeletal muscle clock. Journal of Physiology, 2020, 598, 3631-3644.	2.9	45
25	Longitudinal Characterization and Biomarkers of Age and Sex Differences in the Decline of Spatial Memory. Frontiers in Aging Neuroscience, 2020, 12, 34.	3.4	23
26	Molecular Transducers of Physical Activity Consortium (MoTrPAC): Mapping the Dynamic Responses to Exercise. Cell, 2020, 181, 1464-1474.	28.9	147
27	Circadian clock genes and respiratory neuroplasticity genes oscillate in the phrenic motor system. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2020, 318, R1058-R1067.	1.8	15
28	Disruptions to the limb muscle core molecular clock coincide with changes in mitochondrial quality control following androgen depletion. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E631-E645.	3.5	26
29	Nobiletin fortifies mitochondrial respiration in skeletal muscle to promote healthy aging against metabolic challenge. Nature Communications, 2019, 10, 3923.	12.8	123
30	Exercise timing and circadian rhythms. Current Opinion in Physiology, 2019, 10, 64-69.	1.8	34
31	Culturing C2C12 myotubes on micromolded gelatin hydrogels accelerates myotube maturation. Skeletal Muscle, 2019, 9, 17.	4.2	80
32	Impaired Ribosomal Biogenesis by Noncanonical Degradation of <i>β</i> -Catenin during Hyperammonemia. Molecular and Cellular Biology, 2019, 39, .	2.3	18
33	MYOD1 functions as a clock amplifier as well as a critical co-factor for downstream circadian gene expression in muscle. ELife, 2019, 8, .	6.0	49
34	Chronic muscle weakness and mitochondrial dysfunction in the absence of sustained atrophy in a preclinical sepsis model. ELife, 2019, 8, .	6.0	58
35	Circadian Clock Gene Expression in Regions of Interest to Respiratory Control. FASEB Journal, 2019, 33, 844.5.	0.5	0
36	Gene Expression Profiling in Male Mice with Kidney Specific KO of the Circadian Gene Bmal1. FASEB Journal, 2019, 33, 862.30.	0.5	0

#	Article	IF	CITATIONS
37	Kidney Specific BMAL1 Knockout Exhibit Sexâ€dependent Differences in the Expression and Activity of Renal H, Kâ€ATPases. FASEB Journal, 2019, 33, 575.4.	0.5	0
38	Uncoupling of Sodium and Potassium Excretion in Kidneyâ€Specific BMAL1 Knockout Mice following Potassium Depletion. FASEB Journal, 2019, 33, 862.37.	0.5	0
39	Transcriptional profiling reveals extraordinary diversity among skeletal muscle tissues. ELife, 2018, 7, .	6.0	101
40	Lipinâ€1 regulates Bnip3–mediated mitophagy in glycolytic muscle. FASEB Journal, 2018, 32, 6796-6807.	0.5	18
41	Kidneyâ€ S pecific KO of the Circadian Clock Protein BMAL1 Lowers Blood Pressure in Male C57BL/6J Mice. FASEB Journal, 2018, 32, 905.6.	0.5	0
42	Regulation of Skeletal Muscle Sarcomere Length through Titin Changes in iMS Bmal1 Mice. FASEB Journal, 2018, 32, 852.6.	0.5	0
43	Abstract 17021: Disruption in Circadian Rhythms Triggers Arrhythmias & Sudden Death in LQT3 Mice. Circulation, 2018, 138, .	1.6	0
44	The Role of the Molecular Clock in Skeletal Muscle and What It Is Teaching Us About Muscle-Bone Crosstalk. Current Osteoporosis Reports, 2017, 15, 222-230.	3.6	25
45	Homeostatic effects of exercise and sleep on metabolic processes in mice with an overexpressed skeletal muscle clock. Biochimie, 2017, 132, 161-165.	2.6	8
46	Guidelines for Genome-Scale Analysis of Biological Rhythms. Journal of Biological Rhythms, 2017, 32, 380-393.	2.6	237
47	Natural diarylheptanoid compounds from Curcuma comosa Roxb. promote differentiation of mouse myoblasts C2C12 cells selectively via ER alpha receptors. Medicinal Chemistry Research, 2017, 26, 274-286.	2.4	2
48	Temperature as a Circadian Marker in Older Human Subjects: Relationship to Metabolic Syndrome and Diabetes. Journal of the Endocrine Society, 2017, 1, 843-851.	0.2	11
49	Bmal1 function in skeletal muscle regulates sleep. ELife, 2017, 6, .	6.0	106
50	Reply from Elizabeth Schroder, Brian Hodge, Lance Riley, Xiping Zhang and Karyn Esser. Journal of Physiology, 2016, 594, 3163-3164.	2.9	1
51	Deep RNA profiling identified clock and molecular clock genes as pathophysiological signatures in collagen VI myopathy. Journal of Cell Science, 2016, 129, 1671-84.	2.0	16
52	Muscle-specific loss of Bmal1 leads to disrupted tissue glucose metabolism and systemic glucose homeostasis. Skeletal Muscle, 2016, 6, 12.	4.2	156
53	Nonalcoholic steatohepatitis is strongly associated with sarcopenic obesity in patients with cirrhosis undergoing liver transplant evaluation. Journal of Gastroenterology and Hepatology (Australia), 2016, 31, 628-633.	2.8	111
54	Exercise protects against PCB-induced inflammation and associated cardiovascular risk factors. Environmental Science and Pollution Research, 2016, 23, 2201-2211.	5.3	22

#	Article	IF	CITATIONS
55	A prospective analysis of factors associated with decreased physical activity in patients with cirrhosis undergoing transplant evaluation. Clinical Transplantation, 2015, 29, 958-964.	1.6	2
56	The endogenous molecular clock orchestrates the temporal separation of substrate metabolism in skeletal muscle. Skeletal Muscle, 2015, 5, 17.	4.2	128
57	Intrinsic muscle clock is necessary for musculoskeletal health. Journal of Physiology, 2015, 593, 5387-5404.	2.9	100
58	Identification of a conserved set of upregulated genes in mouse skeletal muscle hypertrophy and regrowth. Journal of Applied Physiology, 2015, 118, 86-97.	2.5	26
59	The cardiomyocyte molecular clock regulates the circadian expression of Kcnh2 and contributes to ventricular repolarization. Heart Rhythm, 2015, 12, 1306-1314.	0.7	65
60	Physical activity, and not fat mass is a primary predictor of circadian parameters in young men. Chronobiology International, 2015, 32, 832-841.	2.0	16
61	Blunted hypertrophic response in aged skeletal muscle is associated with decreased ribosome biogenesis. Journal of Applied Physiology, 2015, 119, 321-327.	2.5	75
62	Lipin1 Regulates Skeletal Muscle Differentiation through Extracellular Signal-regulated Kinase (ERK) Activation and Cyclin D Complex-regulated Cell Cycle Withdrawal. Journal of Biological Chemistry, 2015, 290, 23646-23655.	3.4	27
63	Circadian Rhythms, the Molecular Clock, and Skeletal Muscle. Journal of Biological Rhythms, 2015, 30, 84-94.	2.6	144
64	Smooth-muscle BMAL1 participates in blood pressure circadian rhythm regulation. Journal of Clinical Investigation, 2015, 125, 324-336.	8.2	142
65	Targeting the Wnt/β-Catenin Signaling Pathway in Liver Cancer Stem Cells and Hepatocellular Carcinoma Cell Lines with FH535. PLoS ONE, 2014, 9, e99272.	2.5	93
66	Light phase-restricted feeding slows basal heart rate to exaggerate the type-3 long QT syndrome phenotype in mice. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H1777-H1785.	3.2	14
67	Forum on bone and skeletal muscle interactions: Summary of the proceedings of an ASBMR workshop. Journal of Bone and Mineral Research, 2013, 28, 1857-1865.	2.8	104
68	Chronic phase advance alters circadian physiological rhythms and peripheral molecular clocks. Journal of Applied Physiology, 2013, 115, 373-382.	2.5	27
69	Bone and Skeletal Muscle: Neighbors With Close Ties. Journal of Bone and Mineral Research, 2013, 28, 1509-1518.	2.8	159
70	Effect of gluteus medius muscle sample collection depth on postprandial mammalian target of rapamycin signaling in mature Thoroughbred mares. American Journal of Veterinary Research, 2013, 74, 910-917.	0.6	3
71	The cardiomyocyte molecular clock, regulation of <i>Scn5a</i> , and arrhythmia susceptibility. American Journal of Physiology - Cell Physiology, 2013, 304, C954-C965.	4.6	110
72	Circadian Rhythms, Skeletal Muscle Molecular Clocks, and Exercise. Exercise and Sport Sciences Reviews, 2013, 41, 224-229.	3.0	55

#	Article	IF	CITATIONS
73	Genomeâ€wide expression analysis and EMX2 gene expression in embryonic myoblasts committed to diverse skeletal muscle fiber type fates. Developmental Dynamics, 2013, 242, 1001-1020.	1.8	8
74	Development of dilated cardiomyopathy in <i>Bmal1</i> -deficient mice. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H475-H485.	3.2	127
75	Scheduled Exercise Phase Shifts the Circadian Clock in Skeletal Muscle. Medicine and Science in Sports and Exercise, 2012, 44, 1663-1670.	0.4	197
76	A non-canonical E-box within the MyoD core enhancer is necessary for circadian expression in skeletal muscle. Nucleic Acids Research, 2012, 40, 3419-3430.	14.5	45
77	Inducible Cre transgenic mouse strain for skeletal muscle-specific gene targeting. Skeletal Muscle, 2012, 2, 8.	4.2	146
78	Comparison of clock gene expression across skeletal muscles of different origins and functions. FASEB Journal, 2012, 26, 1081.4.	0.5	0
79	Presence of VDR and CYP27B1 in mouse C2C12 cells and skeletal muscle reveal the action of 25(OH)D3 on suppression of myoblast proliferation. FASEB Journal, 2012, 26, 1143.6.	0.5	0
80	Age-Associated Disruption of Molecular Clock Expression in Skeletal Muscle of the Spontaneously Hypertensive Rat. PLoS ONE, 2011, 6, e27168.	2.5	44
81	Leukaemia inhibitory factor is expressed in rat gastrocnemius muscle after contusion and increases proliferation of rat L6 myoblasts via c-Myc signalling. Clinical and Experimental Pharmacology and Physiology, 2011, 38, 501-509.	1.9	12
82	Early activation of mTORC1 signalling in response to mechanical overload is independent of phosphoinositide 3â€kinase/Akt signalling. Journal of Physiology, 2011, 589, 1831-1846.	2.9	157
83	Aging and microRNA expression in human skeletal muscle: a microarray and bioinformatics analysis. Physiological Genomics, 2011, 43, 595-603.	2.3	206
84	Effective fiber hypertrophy in satellite cell-depleted skeletal muscle. Development (Cambridge), 2011, 138, 3657-3666.	2.5	531
85	Circadian Rhythms, the Molecular Clock, and Skeletal Muscle. Current Topics in Developmental Biology, 2011, 96, 231-271.	2.2	58
86	Anabolic and catabolic pathways regulating skeletal muscle mass. Current Opinion in Clinical Nutrition and Metabolic Care, 2010, 13, 230-235.	2.5	115
87	Insulin like growth factorâ€1â€induced phosphorylation and altered distribution of tuberous sclerosis complex (TSC)1/TSC2 in C2C12 myotubes. FEBS Journal, 2010, 277, 2180-2191.	4.7	36
88	CLOCK and BMAL1 regulate <i>MyoD</i> and are necessary for maintenance of skeletal muscle phenotype and function. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19090-19095.	7.1	299
89	Distinct growth hormone receptor signaling modes regulate skeletal muscle development and insulin sensitivity in mice. Journal of Clinical Investigation, 2010, 120, 4007-4020.	8.2	171
90	MicroRNA Expression in Skeletal Muscle of Older Men: A MicroArray and Bioinformatics Analysis. Medicine and Science in Sports and Exercise, 2010, 42, 15.	0.4	1

#	Article	IF	CITATIONS
91	Working around the clock: circadian rhythms and skeletal muscle. Journal of Applied Physiology, 2009, 107, 1647-1654.	2.5	51
92	Evidence of MyomiR network regulation of β-myosin heavy chain gene expression during skeletal muscle atrophy. Physiological Genomics, 2009, 39, 219-226.	2.3	184
93	The role of clock genes in cardiometabolic disease. Journal of Applied Physiology, 2009, 107, 1316-1317.	2.5	5
94	Expression of growth-related genes in young and older human skeletal muscle following an acute stimulation of protein synthesis. Journal of Applied Physiology, 2009, 106, 1403-1411.	2.5	85
95	Cellular mechanisms regulating protein synthesis and skeletal muscle hypertrophy in animals. Journal of Applied Physiology, 2009, 106, 1367-1373.	2.5	155
96	Physical activity reduces prostate carcinogenesis in a transgenic model. Prostate, 2009, 69, 1372-1377.	2.3	41
97	Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3342-3347.	7.1	439
98	Identification of the circadian transcriptome in adult mouse skeletal muscle. Physiological Genomics, 2007, 31, 86-95.	2.3	300
99	Counterpoint: Satellite cell addition is not obligatory for skeletal muscle hypertrophy. Journal of Applied Physiology, 2007, 103, 1100-1102.	2.5	75
100	MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy. Journal of Applied Physiology, 2007, 102, 306-313.	2.5	364
101	Elderly Patients and High Force Resistance Exercise—A Descriptive Report. Journal of Geriatric Physical Therapy, 2007, 30, 128-134.	1.1	33
102	Voluntary wheel running ameliorates vascular smooth muscle hyper-contractility in type 2 diabetic db/db mice. Applied Physiology, Nutrition and Metabolism, 2007, 32, 711-720.	1.9	13
103	Voluntary Wheel Running Ameliorates Vascular Smooth Muscle Hyperâ€contractility in Type 2 Diabetic db/db Mice. FASEB Journal, 2007, 21, A574.	0.5	0
104	Mitochondrial Buffering of Calcium in the Heart. Circulation Research, 2006, 99, 109-110.	4.5	6
105	FoxO1 Stimulates Fatty Acid Uptake and Oxidation in Muscle Cells through CD36-dependent and -independent Mechanisms. Journal of Biological Chemistry, 2005, 280, 14222-14229.	3.4	130
106	lsoenergetic Dietary Protein Restriction Decreases Myosin Heavy Chain IIx Fraction and Myosin Heavy Chain Production in Humans. Journal of Nutrition, 2004, 134, 328-334.	2.9	25
107	Adenoviral-mediated transfer of vascular endothelial growth factor 121 cDNA enhances myocardial perfusion and exercise performance in the nonischemic state. Journal of Thoracic and Cardiovascular Surgery, 2004, 127, 535-540.	0.8	17
108	Angiogenic pretreatment improves the efficacy of cellular cardiomyoplasty performed with fetal cardiomyocyte implantation. Journal of Thoracic and Cardiovascular Surgery, 2004, 127, 1041-1050.	0.8	71

#	Article	IF	CITATIONS
109	GPx-1 modulates Akt and P70S6K phosphorylation and Gadd45 levels in MCF-7 cells. Free Radical Biology and Medicine, 2004, 37, 187-187.	2.9	2
110	Altered Activity of Signaling Pathways in Diaphragm and Tibialis Anterior Muscle of Dystrophic Mice. Experimental Biology and Medicine, 2004, 229, 503-511.	2.4	35
111	Cardiac structure and function after short-term ethanol consumption in rats. Alcohol, 2003, 29, 21-29.	1.7	20
112	Selenoprotein-Deficient Transgenic Mice Exhibit Enhanced Exercise-Induced Muscle Growth. Journal of Nutrition, 2003, 133, 3091-3097.	2.9	74
113	Selenium Influences the Turnover of Selenocysteine tRNA[Ser]Sec in Chinese Hamster Ovary Cells. Journal of Nutrition, 2002, 132, 1830-1835.	2.9	16
114	Response of rat muscle to acute resistance exercise defined by transcriptional and translational profiling. Journal of Physiology, 2002, 545, 27-41.	2.9	127
115	Intracellular signaling specificity in skeletal muscle in response to different modes of exercise. Journal of Applied Physiology, 2001, 90, 1936-1942.	2.5	305
116	Regulation of translation factors during hindlimb unloading and denervation of skeletal muscle in rats. American Journal of Physiology - Cell Physiology, 2001, 281, C179-C187.	4.6	133
117	The calcineurin-NFAT pathway and muscle fiber-type gene expression. American Journal of Physiology - Cell Physiology, 2000, 279, C915-C924.	4.6	127
118	Autocrine Phosphorylation of p70S6k in Response to Acute Stretch in Myotubes. Molecular Cell Biology Research Communications: MCBRC: Part B of Biochemical and Biophysical Research Communications, 2000, 4, 76-80.	1.6	34
119	Extraction of Nuclear Proteins from Striated Muscle Tissue. BioTechniques, 1999, 26, 202-206.	1.8	62
120	The CACC Box and Myocyte Enhancer Factor-2 Sites within the Myosin Light Chain 2 Slow Promoter Cooperate in Regulating Nerve-specific Transcription in Skeletal Muscle. Journal of Biological Chemistry, 1999, 274, 12095-12102.	3.4	45
121	REGULATION OF MUSCLE PROTEIN IN TRANSGENIC ANIMALS 164. Medicine and Science in Sports and Exercise, 1996, 28, 28.	0.4	0
122	Identification of a program of contractile protein gene expression initiated upon skeletal muscle differentiation. Developmental Dynamics, 1993, 196, 25-36.	1.8	55
123	Nerve-Dependent and -Independent Patterns of mRNA Expression in Regenerating Skeletal Muscle. Developmental Biology, 1993, 159, 173-183.	2.0	75