Maria C Florian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5167742/publications.pdf

Version: 2024-02-01

48 papers

2,849 citations

331670
21
h-index

315739 38 g-index

54 all docs

54 does citations

times ranked

54

4174 citing authors

#	Article	IF	CITATIONS
1	The ageing haematopoietic stem cell compartment. Nature Reviews Immunology, 2013, 13, 376-389.	22.7	489
2	Cdc42 Activity Regulates Hematopoietic Stem Cell Aging and Rejuvenation. Cell Stem Cell, 2012, 10, 520-530.	11.1	438
3	Vitamin A-Retinoic Acid Signaling Regulates Hematopoietic Stem Cell Dormancy. Cell, 2017, 169, 807-823.e19.	28.9	339
4	A canonical to non-canonical Wnt signalling switch in haematopoietic stem-cell ageing. Nature, 2013, 503, 392-396.	27.8	265
5	MiRâ€128 upâ€regulation inhibits Reelin and DCX expression and reduces neuroblastoma cell motility and invasiveness. FASEB Journal, 2009, 23, 4276-4287.	0.5	148
6	Osteopontin attenuates agingâ€associated phenotypes of hematopoietic stem cells. EMBO Journal, 2017, 36, 840-853.	7.8	109
7	Understanding intrinsic hematopoietic stem cell aging. Haematologica, 2020, 105, 22-37.	3.5	101
8	Aging alters the epigenetic asymmetry of HSC division. PLoS Biology, 2018, 16, e2003389.	5 . 6	95
9	HSC Aging and Senescent Immune Remodeling. Trends in Immunology, 2015, 36, 815-824.	6.8	91
10	Haematopoietic stem cells in perisinusoidal niches are protected from ageing. Nature Cell Biology, 2019, 21, 1309-1320.	10.3	88
11	Concise Review: Polarity in Stem Cells, Disease, and Aging. Stem Cells, 2010, 28, 1623-1629.	3.2	66
12	LaminA/C regulates epigenetic and chromatin architecture changes upon aging of hematopoietic stem cells. Genome Biology, 2018, 19, 189.	8.8	66
13	Stem Cell-Specific Mechanisms Ensure Genomic Fidelity within HSCs and upon Aging of HSCs. Cell Reports, 2015, 13, 2412-2424.	6.4	48
14	Rational identification of a Cdc42 inhibitor presents a new regimen for long-term hematopoietic stem cell mobilization. Leukemia, 2019, 33, 749-761.	7.2	48
15	Atypical protein kinase C (aPKCζ and aPKCλ) is dispensable for mammalian hematopoietic stem cell activity and blood formation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9957-9962.	7.1	47
16	Acute Myeloid Leukemia: Aging and Epigenetics. Cancers, 2020, 12, 103.	3.7	46
17	Retinoic acid reduces human neuroblastoma cell migration and invasiveness: effects on DCX, LIS1, neurofilaments-68 and vimentin expression. BMC Cancer, 2008, 8, 30.	2.6	43
18	Niche WNT5A regulates the actin cytoskeleton during regeneration of hematopoietic stem cells. Journal of Experimental Medicine, 2017, 214, 165-181.	8.5	41

#	Article	IF	CITATIONS
19	RhoA GTPase controls cytokinesis and programmed necrosis of hematopoietic progenitors. Journal of Experimental Medicine, 2013, 210, 2371-2385.	8.5	35
20	Inhibition of Cdc42 activity extends lifespan and decreases circulating inflammatory cytokines in aged female C57BL/6 mice. Aging Cell, 2020, 19, e13208.	6.7	31
21	Immunological history governs human stem cell memory CD4 heterogeneity via the Wnt signaling pathway. Nature Communications, 2020, 11, 821.	12.8	25
22	Aging of human hematopoietic stem cells is linked to changes in Cdc42 activity. Haematologica, 2022, 107, 393-402.	3.5	23
23	Expression and Activity of the Small RhoGTPase Cdc42 in Blood Cells of Older Adults Are Associated With Age and Cardiovascular Disease. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2017, 72, 1196-1200.	3.6	20
24	Aging of the Hematopoietic Stem Cell Niche: New Tools to Answer an Old Question. Frontiers in Immunology, 2021, 12, 738204.	4.8	20
25	Cdc42â€Borg4â€Septin7 axis regulates HSC polarity and function. EMBO Reports, 2021, 22, e52931.	4.5	14
26	Loss of epigenetic polarity is a hallmark of hematopoietic stem cell aging. Human Molecular Genetics, 2020, 29, R248-R254.	2.9	12
27	Hematopoietic Stem Cell Dynamics Are Regulated by Progenitor Demand: Lessons from a Quantitative Modeling Approach. Stem Cells, 2019, 37, 948-957.	3.2	11
28	A Wnt5a-Cdc42 axis controls aging and rejuvenation of hair-follicle stem cells. Aging, 2021, 13, 4778-4793.	3.1	11
29	Attrition of X Chromosome Inactivation in Aged Hematopoietic Stem Cells. Stem Cell Reports, 2021, 16, 708-716.	4.8	10
30	An aged bone marrow niche restrains rejuvenated hematopoietic stem cells. Stem Cells, 2021, 39, 1101-1106.	3.2	9
31	Septin 6 regulates engraftment and lymphoid differentiation potential of murine long-term hematopoietic stem cells. Experimental Hematology, 2017, 55, 45-55.	0.4	7
32	Repolarization of HSC attenuates HSCs failure in Shwachman–Diamond syndrome. Leukemia, 2021, 35, 1751-1762.	7.2	5
33	The gut-bone marrow axis: a novel player in HSC aging. Blood, 2022, 139, 3-4.	1.4	5
34	Meeting Report: Aging Research and Drug Discovery. Aging, 2022, 14, 530-543.	3.1	4
35	Fast and high-fidelity in situ 3D imaging protocol for stem cells and niche components for mouse organs and tissues. STAR Protocols, 2022, 3, 101483.	1.2	3
36	Living a longer life: unique lessons from the naked moleâ€rat blood system. EMBO Journal, 0, , .	7.8	2

#	Article	IF	Citations
37	Rejuvenation of aged hematopoietic stem cells by restoring the asymmetry of division. Experimental Hematology, 2015, 43, S62.	0.4	1
38	Hematopoietic Stem Cells in Perisinusoidal Niches are Protected From Aging. Experimental Hematology, 2018, 64, S43.	0.4	1
39	Stroma-derived osteopontin regulates HSC aging. Experimental Hematology, 2015, 43, S65.	0.4	0
40	Closing the Circle: Stem Cell Rejuvenation and Longevity. , 2015, , 343-354.		0
41	Role of septins in HSC aging. Experimental Hematology, 2015, 43, S95.	0.4	О
42	Role of Septin 6 in the lymphoid lineage and hematopoiesis. Experimental Hematology, 2016, 44, S98.	0.4	0
43	Osteopontin regulates and attenuates aging-associated phenotypes of HSCS. Experimental Hematology, 2016, 44, S51.	0.4	O
44	Mathematical modeling of aging-related changes in the symmetry of hematopoietic stem cell divisions. Experimental Hematology, 2017, 53, S89.	0.4	0
45	Hematopoietic Stem Cell Rejuvenation: Aging Alters the Epigenetic Asymmetry of Stem Cell Divisions. Clinical Lymphoma, Myeloma and Leukemia, 2018, 18, S137-S138.	0.4	O
46	Mechanisms of Aging of Hematopoietic Stem Cells. Experimental Hematology, 2018, 64, S28-S29.	0.4	0
47	RhoA GTPase controls cytokinesis and programmed necrosis of hematopoietic progenitors. Journal of Cell Biology, 2013, 203, 20310IA113.	5.2	0
48	Clonality and Mixed Mutational Signature in Aged Hematopoietic Stem Cells Via Single Cell Variant Analysis. Blood, 2016, 128, 570-570.	1.4	0