
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5166335/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Metabolism and Health Effects of Rare Sugars in a CACO-2/HepG2 Coculture Model. Nutrients, 2022, 14, 611.                                                                                                                          | 4.1  | 5         |
| 2  | Sweet Biotechnology: Enzymatic Production and Digestibility Screening of Novel Kojibiose and Nigerose Analogues. Journal of Agricultural and Food Chemistry, 2022, 70, 3502-3511.                                                  | 5.2  | 2         |
| 3  | Nucleotide sugar dehydratases: Structure, mechanism, substrate specificity, and application potential.<br>Journal of Biological Chemistry, 2022, 298, 101809.                                                                      | 3.4  | 9         |
| 4  | Identification of mercaptoacetamide-based HDAC6 inhibitors <i>via</i> a lean inhibitor strategy: screening, synthesis, and biological evaluation. Chemical Communications, 2022, 58, 6239-6242.                                    | 4.1  | 8         |
| 5  | Insertions and deletions in protein evolution and engineering. Biotechnology Advances, 2022, 60, 108010.                                                                                                                           | 11.7 | 17        |
| 6  | Expanding the Enzyme Repertoire for Sugar Nucleotide Epimerization: the CDP-Tyvelose 2-Epimerase<br>from Thermodesulfatator atlanticus for Glucose/Mannose Interconversion. Applied and<br>Environmental Microbiology, 2021, 87, . | 3.1  | 5         |
| 7  | Stereo-electronic control of reaction selectivity in short-chain dehydrogenases: Decarboxylation, epimerization, and dehydration. Current Opinion in Chemical Biology, 2021, 61, 43-52.                                            | 6.1  | 14        |
| 8  | Editorial: Biocatalytic opportunities to harness the structural diversity of carbohydrates. Current<br>Opinion in Chemical Biology, 2021, 61, A1-A3.                                                                               | 6.1  | 0         |
| 9  | β-Glucan phosphorylases in carbohydrate synthesis. Applied Microbiology and Biotechnology, 2021, 105, 4073-4087.                                                                                                                   | 3.6  | 10        |
| 10 | Evolution of Phosphorylases from <i>N</i> -Acetylglucosaminide Hydrolases in Family GH3. ACS<br>Catalysis, 2021, 11, 6225-6233.                                                                                                    | 11.2 | 7         |
| 11 | Enzymatic Synthesis of Phloretin αâ€Glucosides Using a Sucrose Phosphorylase Mutant and its Effect on<br>Solubility, Antioxidant Properties and Skin Absorption. Advanced Synthesis and Catalysis, 2021, 363,<br>3079-3089.        | 4.3  | 10        |
| 12 | Structure-function relationships in NDP-sugar active SDR enzymes: Fingerprints for functional annotation and enzyme engineering. Biotechnology Advances, 2021, 48, 107705.                                                         | 11.7 | 17        |
| 13 | Engineering of a Thermostable Biocatalyst for the Synthesis of 2â€ <i>O</i> â€Glucosylglycerol.<br>ChemBioChem, 2021, 22, 2777-2782.                                                                                               | 2.6  | 9         |
| 14 | Exploration of GH94 Sequence Space for Enzyme Discovery Reveals a Novel Glucosylgalactose<br>Phosphorylase Specificity. ChemBioChem, 2021, 22, 3319-3325.                                                                          | 2.6  | 6         |
| 15 | Discovery of a Kojibiose Hydrolase by Analysis of Specificity-Determining Correlated Positions in<br>Glycoside Hydrolase Family 65. Molecules, 2021, 26, 6321.                                                                     | 3.8  | 6         |
| 16 | GDP-Mannose 3,5-Epimerase: A View on Structure, Mechanism, and Industrial Potential. Frontiers in<br>Molecular Biosciences, 2021, 8, 784142.                                                                                       | 3.5  | 9         |
| 17 | Synthesis of Novel Nitroxoline Analogs with Potent Cathepsin B Exopeptidase Inhibitory Activity.<br>ChemMedChem, 2020, 15, 2477-2490.                                                                                              | 3.2  | 6         |
| 18 | GDP-altrose as novel product of GDP-mannose 3,5-epimerase: Revisiting its reaction mechanism.<br>International Journal of Biological Macromolecules, 2020, 165, 1862-1868.                                                         | 7.5  | 5         |

| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Uncovering a superfamily of nickel-dependent hydroxyacid racemases and epimerases. Scientific Reports, 2020, 10, 18123.                                                                                          | 3.3 | 14        |
| 20 | Determinants of the Nucleotide Specificity in the Carbohydrate Epimerase Family 1. Biotechnology Journal, 2020, 15, e2000132.                                                                                    | 3.5 | 6         |
| 21 | Engineering of cellobiose phosphorylase for the defined synthesis of cellotriose. Applied<br>Microbiology and Biotechnology, 2020, 104, 8327-8337.                                                               | 3.6 | 15        |
| 22 | Synthesis, trehalase hydrolytic resistance and inhibition properties of 4- and 6-substituted trehalose derivatives. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 1964-1989.                   | 5.2 | 5         |
| 23 | Oral Microbiota Display Profound Differential Metabolic Kinetics and Community Shifts upon<br>Incubation with Sucrose, Trehalose, Kojibiose, and Xylitol. Applied and Environmental Microbiology,<br>2020, 86, . | 3.1 | 11        |
| 24 | Fate of Thymol and Its Monoglucosides in the Gastrointestinal Tract of Piglets. ACS Omega, 2020, 5, 5241-5248.                                                                                                   | 3.5 | 5         |
| 25 | Novel Insights into the Existence of the Putative UDP-Glucuronate 5-Epimerase Specificity. Catalysts, 2020, 10, 222.                                                                                             | 3.5 | 4         |
| 26 | Effects of Thymol and Thymol α-D-Glucopyranoside on Intestinal Function and Microbiota of Weaned<br>Pigs. Animals, 2020, 10, 329.                                                                                | 2.3 | 13        |
| 27 | Sucrose Phosphorylase and Related Enzymes in Glycoside Hydrolase Family 13: Discovery, Application and Engineering. International Journal of Molecular Sciences, 2020, 21, 2526.                                 | 4.1 | 50        |
| 28 | Weaning affects the glycosidase activity towards phenolic glycosides in the gut of piglets. Journal of<br>Animal Physiology and Animal Nutrition, 2020, 104, 1432-1443.                                          | 2.2 | 1         |
| 29 | Structural Comparison of a Promiscuous and a Highly Specific Sucrose 6F-Phosphate Phosphorylase.<br>International Journal of Molecular Sciences, 2019, 20, 3906.                                                 | 4.1 | 10        |
| 30 | Characterization of the First Bacterial and Thermostable GDP-Mannose 3,5-Epimerase. International<br>Journal of Molecular Sciences, 2019, 20, 3530.                                                              | 4.1 | 14        |
| 31 | A GH13 glycoside phosphorylase with unknown substrate specificity from <i>Corallococcus coralloides</i> . Amylase, 2019, 3, 32-40.                                                                               | 1.6 | 4         |
| 32 | Synthesis of Indolineâ€Based Benzhydroxamic Acids as Potential HDAC6 Inhibitors. ChemistrySelect,<br>2019, 4, 12308-12312.                                                                                       | 1.5 | 1         |
| 33 | Rational design of an improved transglucosylase for production of the rare sugar nigerose. Chemical Communications, 2019, 55, 4531-4533.                                                                         | 4.1 | 26        |
| 34 | Synthesis of Nonâ€Symmetrical Nitrogenâ€Containing Curcuminoids in the Pursuit of New Anticancer<br>Candidates. ChemistryOpen, 2019, 8, 236-247.                                                                 | 1.9 | 12        |
| 35 | Structural Features on the Substrate-Binding Surface of Fungal Lytic Polysaccharide<br>Monooxygenases Determine Their Oxidative Regioselectivity. Biotechnology Journal, 2019, 14, 1800211.                      | 3.5 | 48        |
| 36 | Exploring the sequence diversity in glycoside hydrolase family 13_18 reveals a novel glucosylglycerol phosphorylase. Applied Microbiology and Biotechnology, 2018, 102, 3183-3191.                               | 3.6 | 17        |

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Chemoenzymatic Approach toward the Synthesis of 3- <i>O</i> -(α/β)-Glucosylated 3-Hydroxy-β-lactams. ACS<br>Omega, 2018, 3, 15235-15245.                                                                                           | 3.5 | 11        |
| 38 | Analysis of the substrate specificity of α-L-arabinofuranosidases by DNA sequencer-aided<br>fluorophore-assisted carbohydrate electrophoresis. Applied Microbiology and Biotechnology, 2018,<br>102, 10091-10102.                  | 3.6 | 3         |
| 39 | Converting Galactose into the Rare Sugar Talose with Cellobiose 2-Epimerase as Biocatalyst.<br>Molecules, 2018, 23, 2519.                                                                                                          | 3.8 | 17        |
| 40 | Assessment of the trifluoromethyl ketone functionality as an alternative zinc-binding group for selective HDAC6 inhibition. MedChemComm, 2018, 9, 1011-1016.                                                                       | 3.4 | 4         |
| 41 | Synthesis of Novel Azaâ€aromatic Curcuminoids with Improved Biological Activities towards Various<br>Cancer Cell Lines. ChemistryOpen, 2018, 7, 381-392.                                                                           | 1.9 | 22        |
| 42 | Thermostable alpha-glucan phosphorylases: characteristics and industrial applications. Applied Microbiology and Biotechnology, 2018, 102, 8187-8202.                                                                               | 3.6 | 20        |
| 43 | Sequence determinants of nucleotide binding in Sucrose Synthase: improving the affinity of a<br>bacterial Sucrose Synthase for UDP by introducing plant residues. Protein Engineering, Design and<br>Selection, 2017, 30, 141-148. | 2.1 | 8         |
| 44 | Disulfide bridges as essential elements for the thermostability of lytic polysaccharide monooxygenase LPMO10C from Streptomyces coelicolor. Protein Engineering, Design and Selection, 2017, 30, 401-408.                          | 2.1 | 29        |
| 45 | Glycosyltransferase cascades for natural product glycosylation: Use of plant instead of bacterial sucrose synthases improves the UDPâ€glucose recycling from sucrose and UDP. Biotechnology Journal, 2017, 12, 1600557.            | 3.5 | 36        |
| 46 | The "epimerring―highlights the potential of carbohydrate epimerases for rare sugar production.<br>Biocatalysis and Biotransformation, 2017, 35, 230-237.                                                                           | 2.0 | 13        |
| 47 | Glucosylglycerate Phosphorylase, an Enzyme with Novel Specificity Involved in Compatible Solute<br>Metabolism. Applied and Environmental Microbiology, 2017, 83, .                                                                 | 3.1 | 25        |
| 48 | Biocatalytic Synthesis of the Rare Sugar Kojibiose: Process Scale-Up and Application Testing. Journal of Agricultural and Food Chemistry, 2017, 65, 6030-6041.                                                                     | 5.2 | 40        |
| 49 | Correlated positions in protein evolution and engineering. Journal of Industrial Microbiology and<br>Biotechnology, 2017, 44, 687-695.                                                                                             | 3.0 | 11        |
| 50 | Microbial Enzymes for Glycoside Synthesis. , 2017, , 405-431.                                                                                                                                                                      |     | 1         |
| 51 | Synthesis of Potent and Selective HDAC6 Inhibitors Bearing a Cyclohexane―or Cycloheptaneâ€Annulated<br>1,5â€Benzothiazepine Scaffold. Chemistry - A European Journal, 2017, 23, 128-136.                                           | 3.3 | 28        |
| 52 | CorNet: Assigning function to networks of co-evolving residues by automated literature mining. PLoS ONE, 2017, 12, e0176427.                                                                                                       | 2.5 | 12        |
| 53 | A quantitative indicator diagram for lytic polysaccharide monooxygenases reveals the role of aromatic surface residues in HjLPMO9A regioselectivity. PLoS ONE, 2017, 12, e0178446.                                                 | 2.5 | 26        |
| 54 | Screening of recombinant glycosyltransferases reveals the broad acceptor specificity of stevia UGT-76G1. Journal of Biotechnology, 2016, 233, 49-55.                                                                               | 3.8 | 43        |

| #  | Article                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Collision cross section prediction of deprotonated phenolics in a travelling-wave ion mobility spectrometer using molecular descriptors and chemometrics. Analytica Chimica Acta, 2016, 924, 68-76.                                              | 5.4  | 37        |
| 56 | Synthesis and Applications of 3â€Methyleneâ€4â€(trifluoromethyl)azetidinâ€2â€ones as Building Blocks for the<br>Preparation of Mono―and Spirocyclic 4â€CF <sub>3</sub> â€Î²â€Łactams. Asian Journal of Organic Chemistry,<br>2016, 5, 1480-1491. | 2.7  | 14        |
| 57 | Diastereoselective synthesis of 3-acetoxy-4-(3-aryloxiran-2-yl)azetidin-2-ones and their transformation into 3,4-oxolane-fused bicyclic Î <sup>2</sup> -lactams. Organic and Biomolecular Chemistry, 2016, 14, 11279-11288.                      | 2.8  | 10        |
| 58 | A nitrilase-mediated entry to 4-carboxymethyl-β-lactams from chemically prepared<br>4-(cyanomethyl)azetidin-2-ones. RSC Advances, 2016, 6, 54573-54579.                                                                                          | 3.6  | 7         |
| 59 | Sucrose synthase: A unique glycosyltransferase for biocatalytic glycosylation process development.<br>Biotechnology Advances, 2016, 34, 88-111.                                                                                                  | 11.7 | 141       |
| 60 | Converting bulk sugars into prebiotics: semi-rational design of a transglucosylase with controlled selectivity. Chemical Communications, 2016, 52, 3687-3689.                                                                                    | 4.1  | 36        |
| 61 | Synthesis and SAR assessment of novel Tubathian analogs in the pursuit of potent and selective HDAC6 inhibitors. Organic and Biomolecular Chemistry, 2016, 14, 2537-2549.                                                                        | 2.8  | 21        |
| 62 | Creating Space for Large Acceptors: Rational Biocatalyst Design for Resveratrol Glycosylation in an Aqueous System. Angewandte Chemie - International Edition, 2015, 54, 9289-9292.                                                              | 13.8 | 35        |
| 63 | Chemoenzymatic Synthesis of βâ€ <scp>D</scp> â€Glucosides using Cellobiose Phosphorylase from<br><i>Clostridium thermocellum</i> . Advanced Synthesis and Catalysis, 2015, 357, 1961-1969.                                                       | 4.3  | 7         |
| 64 | Trehalose Analogues: Latest Insights in Properties and Biocatalytic Production. International Journal of Molecular Sciences, 2015, 16, 13729-13745.                                                                                              | 4.1  | 33        |
| 65 | Enzymatic Glycosylation of Phenolic Antioxidants: Phosphorylase-Mediated Synthesis and Characterization. Journal of Agricultural and Food Chemistry, 2015, 63, 10131-10139.                                                                      | 5.2  | 41        |
| 66 | Synthesis of 2-aryl-3-(2-cyanoethyl)aziridines and their chemical and enzymatic hydrolysis towards<br>γ-lactams and γ-lactones. Organic and Biomolecular Chemistry, 2015, 13, 2716-2725.                                                         | 2.8  | 13        |
| 67 | Synthesis and Antimicrobial/Cytotoxic Assessment of Ferrocenyl Oxazinanes, Oxazinan-2-ones, and<br>Tetrahydropyrimidin-2-ones. Synlett, 2015, 26, 1195-1200.                                                                                     | 1.8  | 13        |
| 68 | UDP-hexose 4-epimerases: a view on structure, mechanism andÂsubstrate specificity. Carbohydrate<br>Research, 2015, 414, 8-14.                                                                                                                    | 2.3  | 55        |
| 69 | Synthesis of benzothiophene-based hydroxamic acids as potent and selective HDAC6 inhibitors.<br>Chemical Communications, 2015, 51, 9868-9871.                                                                                                    | 4.1  | 28        |
| 70 | Identification of sucrose synthase in nonphotosynthetic bacteria and characterization of the recombinant enzymes. Applied Microbiology and Biotechnology, 2015, 99, 8465-8474.                                                                   | 3.6  | 51        |
| 71 | A structural classification of carbohydrate epimerases: From mechanistic insights to practical applications. Biotechnology Advances, 2015, 33, 1814-1828.                                                                                        | 11.7 | 42        |
| 72 | Recombinant Expression of Trichoderma reesei Cel61A in Pichia pastoris: Optimizing Yield and<br>N-terminal Processing. Molecular Biotechnology, 2015, 57, 1010-1017.                                                                             | 2.4  | 57        |

| #  | Article                                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Synthesis of functionalized 3-, 5-, 6- and 8-aminoquinolines via intermediate (3-pyrrolin-1-yl)- and<br>(2-oxopyrrolidin-1-yl)quinolines and evaluation of their antiplasmodial and antifungal activity.<br>European Journal of Medicinal Chemistry, 2015, 92, 91-102.   | 5.5 | 27        |
| 74 | Engineering the carbohydrate-binding site of Epa1p from Candida glabrata: generation of adhesin mutants with different carbohydrate specificity. Clycobiology, 2014, 24, 1312-1322.                                                                                      | 2.5 | 14        |
| 75 | Synthesis of halogenated 4-quinolones and evaluation of their antiplasmodial activity. Bioorganic<br>and Medicinal Chemistry Letters, 2014, 24, 1214-1217.                                                                                                               | 2.2 | 19        |
| 76 | Engineering the specificity of trehalose phosphorylase as a general strategy for the production of glycosyl phosphates. Chemical Communications, 2014, 50, 7834-7836.                                                                                                    | 4.1 | 10        |
| 77 | The quest for a thermostable sucrose phosphorylase reveals sucrose 6′-phosphate phosphorylase as a novel specificity. Applied Microbiology and Biotechnology, 2014, 98, 7027-7037.                                                                                       | 3.6 | 32        |
| 78 | Biphasic Catalysis with Disaccharide Phosphorylases: Chemoenzymatic Synthesis of α-d-Glucosides<br>Using Sucrose Phosphorylase. Organic Process Research and Development, 2014, 18, 781-787.                                                                             | 2.7 | 21        |
| 79 | Potent and selective HDAC6 inhibitory activity of<br>N-(4-hydroxycarbamoylbenzyl)-1,2,4,9-tetrahydro-3-thia-9-azafluorenes as novel sulfur analogues of<br>Tubastatin A. Chemical Communications, 2013, 49, 3775.                                                        | 4.1 | 27        |
| 80 | Evaluation of (4-aminobutyloxy)quinolines as a novel class of antifungal agents. Bioorganic and<br>Medicinal Chemistry Letters, 2013, 23, 4641-4643.                                                                                                                     | 2.2 | 47        |
| 81 | Synthesis of 2-aminomethyl-4-phenyl-1-azabicyclo[2.2.1]heptanes via LiAlH4-induced reductive cyclization of 2-(4-chloro-2-cyano-2-phenylbutyl)aziridines and evaluation of their antimalarial activity. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 1507-1510. | 2.2 | 8         |
| 82 | Characterization and mutational analysis of the UDP-Glc(NAc) 4-epimerase from Marinithermus hydrothermalis. Applied Microbiology and Biotechnology, 2013, 97, 7733-7740.                                                                                                 | 3.6 | 13        |
| 83 | Mapping the acceptor site of sucrose phosphorylase from Bifidobacterium adolescentis by alanine<br>scanning. Journal of Molecular Catalysis B: Enzymatic, 2013, 96, 81-88.                                                                                               | 1.8 | 26        |
| 84 | Chemoenzymatic synthesis of α-l-rhamnosides using recombinant α-l-rhamnosidase from Aspergillus<br>terreus. Bioresource Technology, 2013, 147, 640-644.                                                                                                                  | 9.6 | 31        |
| 85 | Consensus engineering of sucrose phosphorylase: The outcome reflects the sequence input.<br>Biotechnology and Bioengineering, 2013, 110, 2563-2572.                                                                                                                      | 3.3 | 24        |
| 86 | Synthesis of piperidin-4-ones starting from 2-(2-bromo-1,1-dimethylethyl)azetidines and<br>2-(2-mesyloxyethyl)azetidines through a ring expansion–oxidation protocol. Tetrahedron, 2013, 69,<br>2603-2607.                                                               | 1.9 | 6         |
| 87 | Ionic liquids as cosolvents for glycosylation by sucrose phosphorylase: balancing acceptor solubility and enzyme stability. Green Chemistry, 2013, 15, 1949.                                                                                                             | 9.0 | 39        |
| 88 | Towards a carbon-negative sustainable bio-based economy. Frontiers in Plant Science, 2013, 4, 174.                                                                                                                                                                       | 3.6 | 114       |
| 89 | Engineering the acceptor specificity of trehalose phosphorylase for the production of trehalose analogs. Biotechnology Progress, 2012, 28, 1257-1262.                                                                                                                    | 2.6 | 15        |
| 90 | Enzymatic Glycosylation of Small Molecules: Challenging Substrates Require Tailored Catalysts.<br>Chemistry - A European Journal, 2012, 18, 10786-10801.                                                                                                                 | 3.3 | 183       |

| #   | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Adsorption–desorption of trehalose analogues from a bioconversion mixture using activated carbon.<br>Separation and Purification Technology, 2012, 96, 161-167.                                                   | 7.9 | 8         |
| 92  | An Imprinted Cross-Linked Enzyme Aggregate (iCLEA) of Sucrose Phosphorylase: Combining Improved Stability with Altered Specificity. International Journal of Molecular Sciences, 2012, 13, 11333-11342.           | 4.1 | 33        |
| 93  | Enzymes for the biocatalytic production of rare sugars. Journal of Industrial Microbiology and Biotechnology, 2012, 39, 823-834.                                                                                  | 3.0 | 157       |
| 94  | Biocatalytic production of novel glycolipids with cellodextrin phosphorylase. Bioresource<br>Technology, 2012, 115, 84-87.                                                                                        | 9.6 | 21        |
| 95  | Broadening the synthetic potential of disaccharide phosphorylases through enzyme engineering.<br>Process Biochemistry, 2012, 47, 11-17.                                                                           | 3.7 | 28        |
| 96  | Engineering of cellobiose phosphorylase for glycoside synthesis. Journal of Biotechnology, 2011, 156, 253-260.                                                                                                    | 3.8 | 15        |
| 97  | Operational stability of immobilized sucrose phosphorylase: Continuous production of<br>α-glucose-1-phosphate at elevated temperatures. Process Biochemistry, 2011, 46, 2074-2078.                                | 3.7 | 33        |
| 98  | Transglucosylation potential of six sucrose phosphorylases toward different classes of acceptors.<br>Carbohydrate Research, 2011, 346, 1860-1867.                                                                 | 2.3 | 51        |
| 99  | Enzymatic glycosyl transfer: mechanisms and applications. Biocatalysis and Biotransformation, 2011, 29, 1-18.                                                                                                     | 2.0 | 67        |
| 100 | A constitutive expression system for highâ€ŧhroughput screening. Engineering in Life Sciences, 2011, 11, 10-19.                                                                                                   | 3.6 | 33        |
| 101 | Probing the active site of cellodextrin phosphorylase from <i>Clostridium stercorarium</i> : Kinetic characterization, ligand docking, and siteâ€directed mutagenesis. Biotechnology Progress, 2011, 27, 326-332. | 2.6 | 17        |
| 102 | Characterization of β-galactoside phosphorylases with diverging acceptor specificities. Enzyme and Microbial Technology, 2011, 49, 59-65.                                                                         | 3.2 | 5         |
| 103 | Increasing the thermostability of sucrose phosphorylase by a combination of sequence- and structure-based mutagenesis. Protein Engineering, Design and Selection, 2011, 24, 829-834.                              | 2.1 | 53        |
| 104 | Enzymatic Properties and Substrate Specificity of the Trehalose Phosphorylase from<br>Caldanaerobacter subterraneus. Applied and Environmental Microbiology, 2011, 77, 6939-6944.                                 | 3.1 | 20        |
| 105 | High Throughput Calorimetry for Evaluating Enzymatic Reactions Generating Phosphate.<br>Combinatorial Chemistry and High Throughput Screening, 2010, 13, 331-336.                                                 | 1.1 | 2         |
| 106 | Sucrose phosphorylase as crossâ€inked enzyme aggregate: Improved thermal stability for industrial applications. Biotechnology Journal, 2010, 5, 1192-1197.                                                        | 3.5 | 37        |
| 107 | Enzymatic production of βâ€≺scp>Dâ€glucoseâ€1â€phosphate from trehalose. Biotechnology Journal,<br>2010, 5, 986-993.                                                                                              | 3.5 | 25        |
| 108 | Construction of cellobiose phosphorylase variants with broadened acceptor specificity towards anomerically substituted glucosides. Biotechnology and Bioengineering, 2010, 107, 413-420.                          | 3.3 | 29        |

| #   | Article                                                                                                                                                                                              | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Increasing the thermostability of sucrose phosphorylase by multipoint covalent immobilization.<br>Journal of Biotechnology, 2010, 150, 125-130.                                                      | 3.8 | 41        |
| 110 | Development and application of a screening assay for glycoside phosphorylases. Analytical Biochemistry, 2010, 401, 162-167.                                                                          | 2.4 | 36        |
| 111 | Crystallization and X-ray diffraction studies of cellobiose phosphorylase from <i>Cellulomonas<br/>uda</i> . Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 346-351. | 0.7 | 22        |
| 112 | Synthesis and Evaluation of 2-Deoxy-2-amino-β-cellobiosides as Cellulase Inhibitors. Journal of<br>Carbohydrate Chemistry, 2010, 29, 164-180.                                                        | 1.1 | 1         |
| 113 | Creating lactose phosphorylase enzymes by directed evolution of cellobiose phosphorylase. Protein<br>Engineering, Design and Selection, 2009, 22, 393-399.                                           | 2.1 | 69        |
| 114 | Enzymatic production of α-d-galactose 1-phosphate by lactose phosphorolysis. Biotechnology Letters, 2009, 31, 1873-1877.                                                                             | 2.2 | 19        |
| 115 | Modulation of activity by Arg407: structure of a fungal α-1,2-mannosidase in complex with a substrate analogue. Acta Crystallographica Section D: Biological Crystallography, 2008, 64, 227-236.     | 2.5 | 4         |
| 116 | An investigation of the substrate specificity of the xyloglucanase Cel74A from Hypocrea jecorina. FEBS<br>Journal, 2007, 274, 356-363.                                                               | 4.7 | 47        |
| 117 | Itineraries of enzymatically and non-enzymatically catalyzed substitutions at O-glycopyranosidic bonds. Arkivoc, 2006, 2006, 90-116.                                                                 | 0.5 | 23        |
| 118 | Evaluation of automated nano-electrospray mass spectrometry in the determination of non-covalent protein-ligand complexes. Rapid Communications in Mass Spectrometry, 2004, 18, 3061-3067.           | 1.5 | 31        |
| 119 | Crystal Complex Structures Reveal How Substrate is Bound in the â^4 to the +2 Binding Sites of Humicola grisea Cel12A. Journal of Molecular Biology, 2004, 342, 1505-1517.                           | 4.2 | 32        |
| 120 | A hydrophobic platform as a mechanistically relevant transition state stabilising factor appears to be present in the active centre of all glycoside hydrolases. FEBS Letters, 2003, 538, 1-7.       | 2.8 | 51        |
| 121 | Novel tools for the study of class I α-mannosidases: a chromogenic substrate and a substrate-analog inhibitor. Analytical Biochemistry, 2002, 307, 361-367.                                          | 2.4 | 6         |