Thomas Pettke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5164271/publications.pdf

Version: 2024-02-01

15504 20358 14,130 171 65 116 citations h-index g-index papers 190 190 190 7644 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Deep subduction, melting, and fast cooling of metapelites from the Cima Lunga Unit, Central Alps. Journal of Metamorphic Geology, 2022, 40, 121-143.	3.4	5
2	Apatite low-temperature chronometry and microstructures across a hydrothermally active fault zone. Chemical Geology, 2022, 588, 120633.	3.3	4
3	Fluid-mediated element cycling in subducted oceanic lithosphere: The orogenic serpentinite perspective. Earth-Science Reviews, 2022, 225, 103896.	9.1	12
4	Iron isotope compositions of subduction-derived rocks: Insights from eclogites and metasediments of the Münchberg Massif (Germany). Chemical Geology, 2022, 602, 120899.	3.3	0
5	Zircon petrochronology in large igneous provinces reveals upper crustal contamination processes: new U–Pb ages, Hf and O isotopes, and trace elements from the Central Atlantic magmatic province (CAMP). Contributions To Mineralogy and Petrology, 2021, 176, 1.	3.1	25
6	U â~' Pb geochronology of epidote by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) as a tool for dating hydrothermal-vein formation. Geochronology, 2021, 3, 123-147.	2.5	8
7	Antigorite dehydration fluids boost carbonate mobilisation and crustal CO2 outgassing in collisional orogens. Geochimica Et Cosmochimica Acta, 2021, 300, 192-214.	3.9	7
8	Textural and Geochemical Evidence for Magnetite Production upon Antigorite Breakdown During Subduction. Journal of Petrology, 2021, 62, .	2.8	12
9	The Molybdenum isotope subduction recycling conundrum: A case study from the Tongan subduction zone, Western Alps and Alpine Corsica. Chemical Geology, 2021, 576, 120231.	3.3	25
10	Titanium isotopic compositions of bulk rocks and mineral separates from the Kos magmatic suite: Insights into fractional crystallization and magma mixing processes. Chemical Geology, 2021, 578, 120303.	3.3	19
11	Molybdenum isotope fractionation at upper-crustal magmatic-hydrothermal conditions. Chemical Geology, 2021, 578, 120319.	3.3	12
12	Trace element and oxygen isotope study of eclogites and associated rocks from the MÃ $\frac{1}{4}$ nchberg Massif (Germany) with implications on the protolith origin and fluid-rock interactions. Chemical Geology, 2021, 579, 120352.	3.3	4
13	Geochemical and isotopic constraints on the dynamics of the Earth: a Special Issue dedicated to Jan Dirk Kramers and his legacy to geochemistry. Chemical Geology, 2021, 583, 120462.	3.3	0
14	Fingerprinting and relocating tectonic slices along the plate interface: Evidence from the Lago Superiore unit at Monviso (Western Alps). Lithos, 2020, 352-353, 105308.	1.4	9
15	Ion microprobe dating of fissure monazite in the Western Alps: insights from the Argentera Massif and the Piemontais and Briançonnais Zones. Swiss Journal of Geosciences, 2020, 113, .	1.2	4
16	Geothermal energy and ore-forming potential of 600 °C mid-ocean-ridge hydrothermal fluids. Geology, 2020, 48, 1221-1225.	4.4	13
17	Correction to: lon microprobe dating of fissure monazite in the Western Alps: insights from the Argentera Massif and the Piemontais and Briançonnais Zones. Swiss Journal of Geosciences, 2020, 113, .	1.2	О
18	The role of brucite in water and element cycling during serpentinite subduction – Insights from Erro Tobbio (Liguria, Italy). Lithos, 2020, 360-361, 105431.	1.4	14

#	Article	IF	CITATIONS
19	Ophicarbonate evolution from seafloor to subduction and implications for deep-Earth C cycling. Chemical Geology, 2020, 546, 119626.	3.3	21
20	Composition of the Geothermal Fluid at 4500 M Depth in the Hottest Geothermal Borehole in Iceland. , 2020, , .		0
21	Fluid Pulses During Stepwise Brecciation at Intermediate Subduction Depths (Monviso Eclogites, W.) Tj ETQq1 1 5285-5318.	0.784314 2.5	rgBT /Over
22	Petrology and Geochemistry of Serpentinites Associated with the Ultra-High Pressure Lago di Cignana Unit (Italian Western Alps). Journal of Petrology, 2019, 60, 1229-1262.	2.8	20
23	Subducting serpentinites release reduced, not oxidized, aqueous fluids. Scientific Reports, 2019, 9, 19573.	3.3	73
24	Molybdenum isotope variations in calc-alkaline lavas from the Banda arc, Indonesia: Assessing the effect of crystal fractionation in creating isotopically heavy continental crust. Chemical Geology, 2018, 485, 1-13.	3.3	50
25	Experimental determination of magnesia and silica solubilities in graphite-saturated and redox-buffered high-pressure COH fluids in equilibrium with forsterite + enstatite and magnesite +倉enstatite. Contributions To Mineralogy and Petrology, 2018, 173, 1.	3.1	34
26	The Malpaisillo Formation: A sequence of explosive eruptions in the mid to late Pleistocene (Nicaragua, Central America). Journal of Volcanology and Geothermal Research, 2018, 359, 47-67.	2.1	9
27	The influence of oceanic oxidation on serpentinite dehydration during subduction. Earth and Planetary Science Letters, 2018, 499, 173-184.	4.4	34
28	From ocean to mantle: new evidence for U-cycling with implications for the HIMU source and the secular Pb isotope evolution of Earth's mantle. Lithos, 2018, 316-317, 66-76.	1.4	18
29	Relationship between cation substitution and hydrogen-bond system in hydrous pyroxenoids with three-periodic single-chain of SiO4 tetrahedra: pectolite, murakamiite, marshallsussmanite, serandite and tanohataite. European Journal of Mineralogy, 2018, 30, 451-463.	1.3	10
30	Evaluation of Major to Ultra Trace Element Bulk Rock Chemical Analysis of Nanoparticulate Pressed Powder Pellets by <scp>LA</scp> â€ <scp>ICP</scp> â€ <scp>MS</scp> . Geostandards and Geoanalytical Research, 2017, 41, 5-28.	3.1	63
31	Non-matrix-matched standardisation in LA-ICP-MS analysis: general approach, and application to allanite Th–U–Pb dating. Journal of Analytical Atomic Spectrometry, 2017, 32, 1359-1377.	3.0	34
32	Thâ€Pb ion probe dating of zoned hydrothermal monazite and its implications for repeated shear zone activity: An example from the Central Alps, Switzerland. Tectonics, 2017, 36, 671-689.	2.8	34
33	On the use of Li isotopes as a proxy for water–rock interaction in fractured crystalline rocks: A case study from the Gotthard rail base tunnel. Geochimica Et Cosmochimica Acta, 2017, 198, 396-418.	3.9	16
34	Silicate dissolution boosts the CO2 concentrations in subduction fluids. Nature Communications, 2017, 8, 616.	12.8	45
35	Linking tephrochronology and soil characteristics in the Sila and Nebrodi mountains, Italy. Catena, 2017, 158, 266-285.	5.0	22
36	Fluid-mobile elements in serpentinites: Constraints on serpentinisation environments and element cycling in subduction zones. Chemical Geology, 2017, 466, 654-666.	3.3	71

#	Article	IF	CITATIONS
37	Anisotropy of magnetic susceptibility in alkali feldspar and plagioclase. Geophysical Journal International, 2016, 205, 479-489.	2.4	20
38	Magnetic anisotropy in clinopyroxene and orthopyroxene single crystals. Journal of Geophysical Research: Solid Earth, 2015, 120, 1431-1451.	3.4	21
39	The mobility of Nb in rutile-saturated NaCl- and NaF-bearing aqueous fluids from 1–6.5 GPa and 300–800 °C. American Mineralogist, 2015, 100, 1600-1609.	1.9	34
40	Melting of metasomatized peridotite at 4–6ÂGPa and up to 1200°C: an experimental approach. Contributions To Mineralogy and Petrology, 2015, 169, 1.	3.1	26
41	Age of cleft monazites in the eastern Tauern Window: constraints on crystallization conditions of hydrothermal monazite. Swiss Journal of Geosciences, 2015, 108, 55-74.	1.2	17
42	Characterisation of a Natural Quartz Crystal as a Reference Material for Microanalytical Determination of Ti, Al, Li, Fe, Mn, Ga and Ge. Geostandards and Geoanalytical Research, 2015, 39, 171-184.	3.1	81
43	The behaviour of incompatible elements during hydrous melting of metasomatized peridotite at 4–6 GPa and 1000 °C–1200 °C. Lithos, 2015, 236-237, 141-155.	1.4	12
44	Fluid-related inclusions in Alpine high-pressure peridotite reveal trace element recycling during subduction-zone dehydration of serpentinized mantle (Cima di Gagnone, Swiss Alps). Earth and Planetary Science Letters, 2015, 429, 45-59.	4.4	90
45	Magnetic anisotropy in natural amphibole crystals. American Mineralogist, 2015, 100, 1940-1951.	1.9	22
46	Diagenesis of a light, tight-oil chert reservoir at the Ediacaran/Cambrian boundary, Sultanate of Oman. Geoarabia, 2015, 20, 147-178.	1.6	3
47	The relation between Li Na substitution and hydrogen bonding in five-periodic single-chain silicates nambulite and marsturite: A single-crystal X-ray study. American Mineralogist, 2014, 99, 1462-1470.	1.9	8
48	Magma differentiation fractionates Mo isotope ratios: Evidence from the Kos Plateau Tuff (Aegean) Tj ETQq0 0 () rgBT /Ove	erlock 10 Tf 5
49	Channelized Fluid Flow and Eclogite-facies Metasomatism along the Subduction Shear Zone. Journal of Petrology, 2014, 55, 883-916.	2.8	139
50	Anisotropy of magnetic susceptibility in natural olivine single crystals. Geochemistry, Geophysics, Geosystems, 2014, 15, 3051-3065.	2.5	21
51	Petrology and Trace Element Budgets of High-pressure Peridotites Indicate Subduction Dehydration of Serpentinized Mantle (Cima di Gagnone, Central Alps, Switzerland). Journal of Petrology, 2014, 55, 459-498.	2.8	90
52	Experimental study of trace element release during ultrahigh-pressure serpentinite dehydration. Earth and Planetary Science Letters, 2014, 391, 296-306.	4.4	45
53	Magmatic–hydrothermal molybdenum isotope fractionation and its relevance to the igneous crustal signature. Lithos, 2014, 190-191, 104-110.	1.4	71
54	Subduction zone fluxes of halogens and noble gases in seafloor and forearc serpentinites. Earth and Planetary Science Letters, 2013, 365, 86-96.	4.4	137

#	Article	IF	CITATIONS
55	Primary silica precipitate at the Precambrian/Cambrian boundary in the South Oman Salt Basin, Sultanate of Oman. Marine and Petroleum Geology, 2013, 39, 187-197.	3.3	55
56	Melt inclusion evidence for magma evolution at Mutnovsky volcano, Kamchatka. Geofluids, 2013, 13, 421-439.	0.7	5
57	Titanium-in-quartz thermometry on synkinematic quartz veins in a retrograde crustal-scale normal fault zone. Tectonophysics, 2013, 608, 468-481.	2.2	35
58	Tethyan mantle metasomatism creates subduction geochemical signatures in non-arc Cu–Au–Te mineralizing magmas, Apuseni Mountains (Romania). Earth and Planetary Science Letters, 2013, 366, 122-136.	4.4	26
59	Implications of trace element composition of syntaxial quartz cements for the geochemical conditions during quartz precipitation in sandstones. Sedimentology, 2013, 60, 1111-1127.	3.1	14
60	Constraints on fluid evolution during metamorphism from U–Th–Pb systematics in Alpine hydrothermal monazite. Chemical Geology, 2012, 326-327, 61-71.	3.3	74
61	Quantification and spatial distribution of dose rate relevant elements in silex used for luminescence dating. Quaternary Geochronology, 2012, 12, 65-73.	1.4	8
62	The impact of igneous bedrock weathering on the Mo isotopic composition of stream waters: Natural samples and laboratory experiments. Geochimica Et Cosmochimica Acta, 2012, 86, 150-165.	3.9	83
63	Depth dependent element ratios in fluid inclusion analysis by laser ablation ICP-MS. Journal of Analytical Atomic Spectrometry, 2012, 27, 505.	3.0	13
64	Source of metals in the Guocheng gold deposit, Jiaodong Peninsula, North China Craton: Link to early Cretaceous mafic magmatism originating from Paleoproterozoic metasomatized lithospheric mantle. Ore Geology Reviews, 2012, 48, 70-87.	2.7	84
65	Geochemistry of Ocean Floor and Fore-arc Serpentinites: Constraints on the Ultramafic Input to Subduction Zones. Journal of Petrology, 2012, 53, 235-270.	2.8	232
66	\hat{l}' (sup>98/95 (sup> Mo values and Molybdenum Concentration Data for NIST SRM 610, 612 and 3134: Towards a Common Protocol for Reporting Mo Data. Geostandards and Geoanalytical Research, 2012, 36, 291-300.	3.1	98
67	Carbonate assimilation during magma evolution at Nisyros (Greece), South Aegean Arc: Evidence from clinopyroxenite xenoliths. Lithos, 2012, 146-147, 18-33.	1.4	37
68	Recent developments in element concentration and isotope ratio analysis of individual fluid inclusions by laser ablation single and multiple collector ICP-MS. Ore Geology Reviews, 2012, 44, 10-38.	2.7	227
69	Quantification of transient signals in multiple collector inductively coupled plasma mass spectrometry: accurate lead isotope ratio determination by laser ablation of individual fluid inclusions. Journal of Analytical Atomic Spectrometry, 2011, 26, 475-492.	3.0	43
70	Severe structural damage in Cr- and V-rich clinozoisite: relics of an epidote-group mineral with Ca2 Al2 Cr3+ Si3 O12 (OH) composition? European Journal of Mineralogy, 2011, 23, 731-743.	1.3	5
71	Cathodoluminescence properties and trace element signature of hydrothermal quartz: A fingerprint of growth dynamics. American Mineralogist, 2011, 96, 802-813.	1.9	63
72	Significance of trace elements in syntaxial quartz cement, Haushi Group sandstones, Sultanate of Oman. Chemical Geology, 2011, 280, 47-57.	3.3	33

#	Article	IF	Citations
73	Loss of trace elements from serpentinites during fluid-assisted transformation of chrysotile to antigorite â€" An example from Guatemala. Chemical Geology, 2011, 284, 351-362.	3.3	73
74	Lead, Nd and Sr isotope records of pelagic dust: Source indication versus the effects of dust extraction procedures and authigenic mineral growth. Chemical Geology, 2011, 286, 240-240.	3.3	19
75	Gold and copper partitioning in magmatic-hydrothermal systems at 800°C and 100MPa. Geochimica Et Cosmochimica Acta, 2011, 75, 2470-2482.	3.9	74
76	Internal and External Fluid Sources for Eclogite-facies Veins in the Monviso Meta-ophiolite, Western Alps: Implications for Fluid Flow in Subduction Zones. Journal of Petrology, 2011, 52, 1207-1236.	2.8	209
77	Chromium mobility in hydrous fluids at upper mantle conditions. Lithos, 2011, 125, 122-130.	1.4	41
78	Crystal Chemistry and Stability of "Li ₇ La ₃ Zr ₂ O ₁₂ ― Garnet: A Fast Lithium-Ion Conductor. Inorganic Chemistry, 2011, 50, 1089-1097.	4.0	600
79	Fluids in the peridotite–water system up to 6ÂGPa and 800°C: new experimental constrains on dehydration reactions. Contributions To Mineralogy and Petrology, 2011, 161, 829-844.	3.1	54
80	Crystal-chemistry of mullite-type aluminoborates Al18B4O33 and Al5BO9: A stoichiometry puzzle. Journal of Solid State Chemistry, 2011, 184, 70-80.	2.9	43
81	Increasing Nd isotopic ratio of Asian dust indicates progressive uplift of the north Tibetan Plateau since the middle Miocene. Geology, 2011, 39, 199-202.	4.4	112
82	Mantle wedge peridotites: Fossil reservoirs of deep subduction zone processes. Lithos, 2010, 120, 186-201.	1.4	67
83	Brine-rock interaction in the Athabasca basement (McArthur River U deposit, Canada): consequences for fluid chemistry and uranium uptake. Terra Nova, 2010, 22, no-no.	2.1	32
84	Plagioclase Peridotites in Ocean-Continent Transitions: Refertilized Mantle Domains Generated by Melt Stagnation in the Shallow Mantle Lithosphere. Journal of Petrology, 2010, 51, 255-294.	2.8	183
85	Direct Analysis of Ore-Precipitating Fluids: Combined IR Microscopy and LA-ICP-MS Study of Fluid Inclusions in Opaque Ore Minerals. Economic Geology, 2010, 105, 351-373.	3.8	81
86	Highly Refractory Peridotites on Macquarie Island and the Case for Anciently Depleted Domains in the Earthâ \in ^M s Mantle. Journal of Petrology, 2010, 51, 469-493.	2.8	45
87	Magnetic susceptibility as a tool to study deformed calcite with variable impurity content. Geochemistry, Geophysics, Geosystems, 2010, 11 , .	2.5	15
88	The Bingham Canyon Porphyry Cu-Mo-Au Deposit. III. Zoned Copper-Gold Ore Deposition by Magmatic Vapor Expansion. Economic Geology, 2010, 105, 91-118.	3.8	187
89	The magma and metal source of giant porphyry-type ore deposits, based on lead isotope microanalysis of individual fluid inclusions. Earth and Planetary Science Letters, 2010, 296, 267-277.	4.4	172
90	Stable isotope profiles (Ca, O, C) through modern brachiopod shells of T. septentrionalis and G. vitreus: Implications for calcium isotope paleo-ocean chemistry. Chemical Geology, 2010, 269, 210-219.	3.3	27

#	Article	IF	CITATIONS
91	U–Pb dating of calcite–aragonite layers in speleothems from hominin sites in South Africa by MC-ICP-MS. Quaternary Geochronology, 2010, 5, 544-558.	1.4	56
92	Sediment-Hosted Gold Deposits in Guizhou, China: Products of Wall-Rock Sulfidation by Deep Crustal Fluids. Economic Geology, 2009, 104, 73-93.	3.8	147
93	Evolution of Magmatic Vapor to Gold-Rich Epithermal Liquid: The Porphyry to Epithermal Transition at Nevados de Famatina, Northwest Argentina. Economic Geology, 2009, 104, 449-477.	3.8	146
94	Pyroxenite xenoliths from Marsabit (Northern Kenya): evidence for different magmatic events in the lithospheric mantle and interaction between peridotite and pyroxenite. Contributions To Mineralogy and Petrology, 2009, 157, 453-472.	3.1	16
95	Construction of the granitoid crust of an island arc part I: geochronological and geochemical constraints from the plutonic Kohistan (NW Pakistan). Contributions To Mineralogy and Petrology, 2009, 158, 739-755.	3.1	167
96	A geochemical study of the Sweet Home Mine, Colorado Mineral Belt, USA: hydrothermal fluid evolution above a hypothesized granite cupola. Mineralium Deposita, 2009, 44, 415-434.	4.1	43
97	Platinum solubility and partitioning in a felsic melt–vapor–brine assemblage. Geochimica Et Cosmochimica Acta, 2009, 73, 438-454.	3.9	37
98	Fluid and source magma evolution of the Questa porphyry Mo deposit, New Mexico, USA. Mineralium Deposita, 2008, 43, 533-552.	4.1	265
99	Fluid and Halide Melt Inclusions of Magmatic Origin in the Ultramafic and Lower Banded Series, Stillwater Complex, Montana, USA. Journal of Petrology, 2008, 49, 1133-1160.	2.8	86
100	The partitioning behavior of silver in a vapor–brine–rhyolite melt assemblage. Geochimica Et Cosmochimica Acta, 2008, 72, 1638-1659.	3.9	42
101	Determination of fluid/melt partition coefficients by LA-ICPMS analysis of co-existing fluid and silicate melt inclusions: Controls on element partitioning. Geochimica Et Cosmochimica Acta, 2008, 72, 2169-2197.	3.9	368
102	Special Paper: The Composition of Magmatic-Hydrothermal Fluids in Barren and Mineralized Intrusions. Economic Geology, 2008, 103, 877-908.	3.8	327
103	Modification of gas speciation in quartz-hosted fluid inclusions by stray laser radiation during LA-ICPMS analysis. American Mineralogist, 2008, 93, 1187-1190.	1.9	4
104	Majoritic garnets monitor deep subduction fluid flow and mantle dynamics. Geology, 2008, 36, 59.	4.4	131
105	Climatic cycles during a Neoproterozoic "snowball―glacial epoch. Geology, 2007, 35, 299.	4.4	119
106	Entrained Macrocryst Minerals as a Key to the Source Region of Olivine Nephelinites: Humberg, Kaiserstuhl, Germany. Journal of Petrology, 2007, 48, 1079-1118.	2.8	8
107	Petrology and Mineral Chemistry of Lower Crustal Intrusions: the Chilas Complex, Kohistan (NW) Tj ETQq1 1 0.78	4314 rgBT 2.8	 Qverlock 150
108	Hydrothermal Evolution of the El Teniente Deposit, Chile: Porphyry Cu-Mo Ore Deposition from Low-Salinity Magmatic Fluids. Economic Geology, 2007, 102, 1021-1045.	3.8	257

#	Article	IF	CITATIONS
109	An evaluation of synthetic fluid inclusions for the purpose of trapping equilibrated, coexisting, immiscible fluid phases at magmatic conditions. American Mineralogist, 2007, 92, 124-138.	1.9	23
110	Crystallization and Breakdown of Metasomatic Phases in Graphite-bearing Peridotite Xenoliths from Marsabit (Kenya). Journal of Petrology, 2007, 48, 1725-1760.	2.8	19
111	UNUSUAL FIBROUS SODIAN TAINIOLITE EPITACTIC ON PHLOGOPITE FROM MARBLE XENOLITHS OF MONT SAINT-HILAIRE, QUEBEC, CANADA. Canadian Mineralogist, 2007, 45, 541-549.	1.0	5
112	Compositional and mineralogical variations in a Neoproterozoic glacially influenced succession, Mirbat area, south Oman: Implications for paleoweathering conditions. Precambrian Research, 2007, 154, 248-265.	2.7	56
113	Cenozoic changes in atmospheric lead recorded in central Pacific ferromanganese crusts. Earth and Planetary Science Letters, 2007, 253, 57-66.	4.4	29
114	Chemical and physical processes affecting element mobility from the slab to the surface. Chemical Geology, 2007, 239, 179-181.	3.3	0
115	The partitioning behavior of As and Au in S-free and S-bearing magmatic assemblages. Geochimica Et Cosmochimica Acta, 2007, 71, 1764-1782.	3.9	89
116	The composition of liquids coexisting with dense hydrous magnesium silicates at 11–13.5GPa and the endpoints of the solidi in the MgO–SiO2–H2O system. Geochimica Et Cosmochimica Acta, 2007, 71, 3348-3360.	3.9	35
117	Evolution of Mafic Alkaline Melts Crystallized in the Uppermost Lithospheric Mantle: a Melt Inclusion Study of Olivine-Clinopyroxenite Xenoliths, Northern Hungary. Journal of Petrology, 2007, 48, 853-883.	2.8	32
118	Crystallographic texture and microstructure of terebratulide brachiopod shell calcite: An optimized materials design with hierarchical architecture. American Mineralogist, 2007, 92, 722-734.	1.9	92
119	Laser Ablation ICPMS study of trace element partitioning between plagioclase and basaltic melts: an experimental approach. Contributions To Mineralogy and Petrology, 2007, 153, 647-667.	3.1	218
120	Gem-quality taaffeites and musgravites from Africa. Journal of Gemmology, 2007, 30, 367-382.	0.2	4
121	Copper partitioning in a melt–vapor–brine–magnetite–pyrrhotite assemblage. Geochimica Et Cosmochimica Acta, 2006, 70, 5583-5600.	3.9	146
122	Magmatic Fluids in the Breccia-Hosted Epithermal Au-Ag Deposit of Rosia Montana, Romania. Economic Geology, 2006, 101, 923-954.	3.8	63
123	Matrix Representations for Positive Noncommutative Polynomials. Positivity, 2006, 10, 145-163.	0.7	3
124	Aluminous websterite and granulite xenoliths from the Chyulu Hills volcanic field, Kenya: gabbro–troctolitic cumulates subjected to lithospheric foundering. Contributions To Mineralogy and Petrology, 2006, 152, 459-483.	3.1	13
125	Evolution of the Lithospheric Mantle beneath the Marsabit Volcanic Field (Northern Kenya): Constraints from Textural, P–T and Geochemical Studies on Xenoliths. Journal of Petrology, 2006, 47, 2149-2184.	2.8	48
126	Evolution of a Porphyry-Cu Mineralized Magma System at Santa Rita, New Mexico (USA). Journal of Petrology, 2006, 47, 2021-2046.	2.8	98

#	Article	IF	Citations
127	Hibonite, Ca(Al,Cr,Ti,Si,Mg,Fe2)12O19, in granulite xenoliths from the Chyulu Hills volcanic field, Kenya. European Journal of Mineralogy, 2005, 17, 357-366.	1.3	15
128	Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature, 2005, 437, 724-727.	27.8	1,099
129	Magma evolution and the formation of porphyry Cu?Au ore fluids: evidence from silicate and sulfide melt inclusions. Mineralium Deposita, 2005, 39, 845-863.	4.1	220
130	Ore metal redistribution by hydrocarbon–brine and hydrocarbon–halide melt phases, North Range footwall of the Sudbury Igneous Complex, Ontario, Canada. Mineralium Deposita, 2005, 40, 237-256.	4.1	79
131	Fluid and gas migration in the North German Basin: fluid inclusion and stable isotope constraints. International Journal of Earth Sciences, 2005, 94, 990-1009.	1.8	50
132	The formation of economic porphyry copper (-gold) deposits: constraints from microanalysis of fluid and melt inclusions. Geological Society Special Publication, 2005, 248, 247-263.	1.3	24
133	The solubility of platinum and gold in NaCl brines at 1.5 kbar, 600 to 800°C: A laser ablation ICP-MS pilot study of synthetic fluid inclusions. Geochimica Et Cosmochimica Acta, 2005, 69, 2593-2611.	3.9	103
134	Gold partitioning in melt-vapor-brine systems. Geochimica Et Cosmochimica Acta, 2005, 69, 3321-3335.	3.9	110
135	Magmatic-to-hydrothermal crystallization in the W–Sn mineralized Mole Granite (NSW, Australia). Chemical Geology, 2005, 220, 191-213.	3.3	215
136	Magmatic-to-hydrothermal crystallization in the W–Sn mineralized Mole Granite (NSW, Australia). Chemical Geology, 2005, 220, 215-235.	3.3	82
137	Copper deposition during quartz dissolution by cooling magmatic–hydrothermal fluids: The Bingham porphyry. Earth and Planetary Science Letters, 2005, 235, 229-243.	4.4	260
138	The water–basalt system at 4 to 6 GPa: Phase relations and second critical endpoint in a K-free eclogite at 700 to 1400 °C. Earth and Planetary Science Letters, 2005, 237, 873-892.	4.4	278
139	Relationships between SEM-cathodoluminescence response and trace-element composition of hydrothermal vein quartz. American Mineralogist, 2005, 90, 122-131.	1.9	112
140	Micro-Scale Physical and Chemical Heterogeneities in Biogenic Materials - A Combined Micro-Raman, Chemical Composition and Microhardness Investigation. Materials Research Society Symposia Proceedings, 2004, 844, 1.	0.1	5
141	A novel approach to determine high-pressure high-temperature fluid and melt compositions using diamond-trap experiments. American Mineralogist, 2004, 89, 1078-1086.	1.9	66
142	Magmatic anhydrite and calcite in the ore-forming quartz-monzodiorite magma at Santa Rita, New Mexico (USA): genetic constraints on porphyry-Cu mineralization. Lithos, 2004, 72, 147-161.	1.4	71
143	Accurate quantification of melt inclusion chemistry by LA-ICPMS: a comparison with EMP and SIMS and advantages and possible limitations of these methods. Lithos, 2004, 78, 333-361.	1.4	103
144	Serpentinite Subduction: Implications for Fluid Processes and Trace-Element Recycling. International Geology Review, 2004, 46, 595-613.	2.1	175

#	Article	IF	CITATIONS
145	Laser-ablation ICP-MS analysis of silicate and sulfide melt inclusions in an andesitic complex I: analytical approach and data evaluation. Contributions To Mineralogy and Petrology, 2004, 147, 385-396.	3.1	54
146	Laser-ablation ICP-MS analysis of silicate and sulfide melt inclusions in an andesitic complex II: evidence for magma mixing and magma chamber evolution. Contributions To Mineralogy and Petrology, 2004, 147, 397-412.	3.1	38
147	Ophiolitic Peridotites of the Alpine-Apennine System: Mantle Processes and Geodynamic Relevance. International Geology Review, 2004, 46, 1119-1159.	2.1	82
148	Fluid evolution in the W–Cu–Zn–Pb San Cristobal vein, Peru: fluid inclusion and stable isotope evidence. Chemical Geology, 2004, 210, 201-224.	3.3	61
149	Magnetite solubility and iron transport in magmatic-hydrothermal environments. Geochimica Et Cosmochimica Acta, 2004, 68, 4905-4914.	3.9	144
150	The fate of B, Cl and Li in the subducted oceanic mantle and in the antigorite breakdown fluids. Earth and Planetary Science Letters, 2004, 222, 217-234.	4.4	260
151	Refertilization of mantle peridotite in embryonic ocean basins: trace element and Nd isotopic evidence and implications for crust–mantle relationships. Earth and Planetary Science Letters, 2004, 221, 293-308.	4.4	174
152	The magmatic-hydrothermal evolution of two barren granites: a melt and fluid inclusion study of the Rito del Medio and Cañada Pinabete plutons in northern New Mexico (USA). Geochimica Et Cosmochimica Acta, 2003, 67, 97-121.	3.9	235
153	Quantitative multi-element analysis of minerals, fluid and melt inclusions by laser-ablation inductively-coupled-plasma mass-spectrometry. Geochimica Et Cosmochimica Acta, 2003, 67, 3473-3497.	3.9	484
154	Experimental determination of Au solubility in rhyolite melt and magnetite: Constraints on magmatic Au budgets. American Mineralogist, 2003, 88, 1644-1651.	1.9	35
155	The Origin of Cu/Au Ratios in Porphyry-Type Ore Deposits. Science, 2002, 296, 1844-1846.	12.6	157
156	Major to trace element analysis of melt inclusions by laser-ablation ICP-MS: methods of quantification. Chemical Geology, 2002, 183, 63-86.	3.3	190
157	Cenozoic evolution of Asian climate and sources of Pacific seawater Pb and Nd derived from eolian dust of sediment core LL44-GPC3. Paleoceanography, 2002, 17, 3-1-3-13.	3.0	85
158	Radiogenic Hf isotopic compositions of continental eolian dust from Asia, its variability and its implications for seawater Hf. Earth and Planetary Science Letters, 2002, 202, 453-464.	4.4	39
159	Dust production and deposition in Asia and the north Pacific Ocean over the past 12 Myr. Earth and Planetary Science Letters, 2000, 178, 397-413.	4.4	187
160	Quadrupole mass spectrometry and optical emission spectroscopy: detection capabilities and representative sampling of short transient signals from laser-ablation. Journal of Analytical Atomic Spectrometry, 2000, 15, 1149-1155.	3.0	62
161	Mesothermal gold lodes in the north-western Alps: A review of genetic constraints from radiogenic isotopes. European Journal of Mineralogy, 2000, 12, 213-230.	1.3	44
162	Mesothermal gold veins and metamorphic devolatilization in the northwestern Alps: The temporal link. Geology, 1999, 27, 641.	4.4	63

#	Article	IF	CITATION
163	Applications of Multiple Collector-ICPMS to Cosmochemistry, Geochemistry, and Paleoceanography. Geochimica Et Cosmochimica Acta, 1998, 62, 919-940.	3.9	256
164	Extreme Variability in Hf Isotopic Components of Aeolian Dust and its Implications for Seawater Hf. Mineralogical Magazine, 1998, 62A, 1165-1166.	1.4	2
165	Mono-sample Pb-Pb dating of pyrrhotite and tourmaline: Proterozoic vs. Archean intracratonic gold mineralization: Comment and Reply. Geology, 1997, 25, 669.	4.4	1
166	Oligocene gold quartz veins at Brusson, NW Alps; Sr isotopes trace the source of ore-bearing fluid to ore a 10-km depth. Economic Geology, 1997, 92, 389-406.	3.8	33
167	lsotope systematics in vein gold from Brusson, Val d'Ayas (NW Italy) 3. (U + Th)He and KAr in native Au and its fluid inclusions. Chemical Geology, 1997, 135, 173-187.	3.3	22
168	Isotope systematics in vein gold from Brusson, Val d'Ayas (NW Italy), 1. Pb/Pb evidence for a Piemonte metaophiolite Au source. Chemical Geology, 1996, 127, 111-124.	3.3	19
169	Mono-sample Pb-Pb dating of pyrrhotite and tourmaline: Proterozoic vs. Archean intracratonic gold mineralization in Zimbabwe. Geology, 1996, 24, 823.	4.4	28
170	Initial isotopic heterogeneity and secondary disturbance of the Smî—,Nd system in fluorites and fluid inclusions: A study on mesothermal veins from the central and western Swiss Alps. Chemical Geology, 1995, 125, 241-248.	3.3	22
171	RbSr isotopic analysis of fluid inclusions in quartz: Evaluation of bulk extraction procedures and geochronometer systematics using synthetic fluid inclusions. Geochimica Et Cosmochimica Acta, 1995, 59, 4009-4027.	3.9	46