Thomas Pettke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5164271/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature, 2005, 437, 724-727.	27.8	1,099
2	Crystal Chemistry and Stability of "Li ₇ La ₃ Zr ₂ O ₁₂ ― Garnet: A Fast Lithium-Ion Conductor. Inorganic Chemistry, 2011, 50, 1089-1097.	4.0	600
3	Quantitative multi-element analysis of minerals, fluid and melt inclusions by laser-ablation inductively-coupled-plasma mass-spectrometry. Geochimica Et Cosmochimica Acta, 2003, 67, 3473-3497.	3.9	484
4	Determination of fluid/melt partition coefficients by LA-ICPMS analysis of co-existing fluid and silicate melt inclusions: Controls on element partitioning. Geochimica Et Cosmochimica Acta, 2008, 72, 2169-2197.	3.9	368
5	Special Paper: The Composition of Magmatic-Hydrothermal Fluids in Barren and Mineralized Intrusions. Economic Geology, 2008, 103, 877-908.	3.8	327
6	The water–basalt system at 4 to 6 GPa: Phase relations and second critical endpoint in a K-free eclogite at 700 to 1400 °C. Earth and Planetary Science Letters, 2005, 237, 873-892.	4.4	278
7	Fluid and source magma evolution of the Questa porphyry Mo deposit, New Mexico, USA. Mineralium Deposita, 2008, 43, 533-552.	4.1	265
8	The fate of B, Cl and Li in the subducted oceanic mantle and in the antigorite breakdown fluids. Earth and Planetary Science Letters, 2004, 222, 217-234.	4.4	260
9	Copper deposition during quartz dissolution by cooling magmatic–hydrothermal fluids: The Bingham porphyry. Earth and Planetary Science Letters, 2005, 235, 229-243.	4.4	260
10	Hydrothermal Evolution of the El Teniente Deposit, Chile: Porphyry Cu-Mo Ore Deposition from Low-Salinity Magmatic Fluids. Economic Geology, 2007, 102, 1021-1045.	3.8	257
11	Applications of Multiple Collector-ICPMS to Cosmochemistry, Geochemistry, and Paleoceanography. Geochimica Et Cosmochimica Acta, 1998, 62, 919-940.	3.9	256
12	The magmatic-hydrothermal evolution of two barren granites: a melt and fluid inclusion study of the Rito del Medio and Cañada Pinabete plutons in northern New Mexico (USA). Geochimica Et Cosmochimica Acta, 2003, 67, 97-121.	3.9	235
13	Geochemistry of Ocean Floor and Fore-arc Serpentinites: Constraints on the Ultramafic Input to Subduction Zones. Journal of Petrology, 2012, 53, 235-270.	2.8	232
14	Recent developments in element concentration and isotope ratio analysis of individual fluid inclusions by laser ablation single and multiple collector ICP-MS. Ore Geology Reviews, 2012, 44, 10-38.	2.7	227
15	Magma evolution and the formation of porphyry Cu?Au ore fluids: evidence from silicate and sulfide melt inclusions. Mineralium Deposita, 2005, 39, 845-863.	4.1	220
16	Laser Ablation ICPMS study of trace element partitioning between plagioclase and basaltic melts: an experimental approach. Contributions To Mineralogy and Petrology, 2007, 153, 647-667.	3.1	218
17	Magmatic-to-hydrothermal crystallization in the W–Sn mineralized Mole Granite (NSW, Australia). Chemical Geology, 2005, 220, 191-213.	3.3	215
18	Internal and External Fluid Sources for Eclogite-facies Veins in the Monviso Meta-ophiolite, Western Alps: Implications for Fluid Flow in Subduction Zones. Journal of Petrology, 2011, 52, 1207-1236.	2.8	209

#	Article	IF	CITATIONS
19	Major to trace element analysis of melt inclusions by laser-ablation ICP-MS: methods of quantification. Chemical Geology, 2002, 183, 63-86.	3.3	190
20	Dust production and deposition in Asia and the north Pacific Ocean over the past 12 Myr. Earth and Planetary Science Letters, 2000, 178, 397-413.	4.4	187
21	The Bingham Canyon Porphyry Cu-Mo-Au Deposit. III. Zoned Copper-Gold Ore Deposition by Magmatic Vapor Expansion. Economic Geology, 2010, 105, 91-118.	3.8	187
22	Plagioclase Peridotites in Ocean-Continent Transitions: Refertilized Mantle Domains Generated by Melt Stagnation in the Shallow Mantle Lithosphere. Journal of Petrology, 2010, 51, 255-294.	2.8	183
23	Serpentinite Subduction: Implications for Fluid Processes and Trace-Element Recycling. International Geology Review, 2004, 46, 595-613.	2.1	175
24	Refertilization of mantle peridotite in embryonic ocean basins: trace element and Nd isotopic evidence and implications for crust–mantle relationships. Earth and Planetary Science Letters, 2004, 221, 293-308.	4.4	174
25	The magma and metal source of giant porphyry-type ore deposits, based on lead isotope microanalysis of individual fluid inclusions. Earth and Planetary Science Letters, 2010, 296, 267-277.	4.4	172
26	Construction of the granitoid crust of an island arc part I: geochronological and geochemical constraints from the plutonic Kohistan (NW Pakistan). Contributions To Mineralogy and Petrology, 2009, 158, 739-755.	3.1	167
27	The Origin of Cu/Au Ratios in Porphyry-Type Ore Deposits. Science, 2002, 296, 1844-1846.	12.6	157
28	Petrology and Mineral Chemistry of Lower Crustal Intrusions: the Chilas Complex, Kohistan (NW) Tj ETQq0 0 C) rgBT /Overl 2.8	ock 10 Tf 50 150
29	Sediment-Hosted Gold Deposits in Guizhou, China: Products of Wall-Rock Sulfidation by Deep Crustal Fluids. Economic Geology, 2009, 104, 73-93.	3.8	147
30	Copper partitioning in a melt–vapor–brine–magnetite–pyrrhotite assemblage. Geochimica Et Cosmochimica Acta, 2006, 70, 5583-5600.	3.9	146
31	Evolution of Magmatic Vapor to Gold-Rich Epithermal Liquid: The Porphyry to Epithermal Transition at Nevados de Famatina, Northwest Argentina. Economic Geology, 2009, 104, 449-477.	3.8	146
32	Magnetite solubility and iron transport in magmatic-hydrothermal environments. Geochimica Et Cosmochimica Acta, 2004, 68, 4905-4914.	3.9	144
33	Channelized Fluid Flow and Eclogite-facies Metasomatism along the Subduction Shear Zone. Journal of Petrology, 2014, 55, 883-916.	2.8	139
34	Subduction zone fluxes of halogens and noble gases in seafloor and forearc serpentinites. Earth and Planetary Science Letters, 2013, 365, 86-96.	4.4	137
35	Majoritic garnets monitor deep subduction fluid flow and mantle dynamics. Geology, 2008, 36, 59.	4.4	131
36	Magma differentiation fractionates Mo isotope ratios: Evidence from the Kos Plateau Tuff (Aegean) Tj ETQq0 () 0 rg <u>B</u> T /Ov	erlock 10 Tf 5

#	Article	IF	CITATIONS
37	Climatic cycles during a Neoproterozoic "snowball―glacial epoch. Geology, 2007, 35, 299.	4.4	119
38	Relationships between SEM-cathodoluminescence response and trace-element composition of hydrothermal vein quartz. American Mineralogist, 2005, 90, 122-131.	1.9	112
39	Increasing Nd isotopic ratio of Asian dust indicates progressive uplift of the north Tibetan Plateau since the middle Miocene. Geology, 2011, 39, 199-202.	4.4	112
40	Gold partitioning in melt-vapor-brine systems. Geochimica Et Cosmochimica Acta, 2005, 69, 3321-3335.	3.9	110
41	Accurate quantification of melt inclusion chemistry by LA-ICPMS: a comparison with EMP and SIMS and advantages and possible limitations of these methods. Lithos, 2004, 78, 333-361.	1.4	103
42	The solubility of platinum and gold in NaCl brines at 1.5 kbar, 600 to 800°C: A laser ablation ICP-MS pilot study of synthetic fluid inclusions. Geochimica Et Cosmochimica Acta, 2005, 69, 2593-2611.	3.9	103
43	Evolution of a Porphyry-Cu Mineralized Magma System at Santa Rita, New Mexico (USA). Journal of Petrology, 2006, 47, 2021-2046.	2.8	98
44	δ ^{98/95} Mo values and Molybdenum Concentration Data for NIST SRM 610, 612 and 3134: Towards a Common Protocol for Reporting Mo Data. Geostandards and Geoanalytical Research, 2012, 36, 291-300.	3.1	98
45	Crystallographic texture and microstructure of terebratulide brachiopod shell calcite: An optimized materials design with hierarchical architecture. American Mineralogist, 2007, 92, 722-734.	1.9	92
46	Petrology and Trace Element Budgets of High-pressure Peridotites Indicate Subduction Dehydration of Serpentinized Mantle (Cima di Gagnone, Central Alps, Switzerland). Journal of Petrology, 2014, 55, 459-498.	2.8	90
47	Fluid-related inclusions in Alpine high-pressure peridotite reveal trace element recycling during subduction-zone dehydration of serpentinized mantle (Cima di Gagnone, Swiss Alps). Earth and Planetary Science Letters, 2015, 429, 45-59.	4.4	90
48	The partitioning behavior of As and Au in S-free and S-bearing magmatic assemblages. Geochimica Et Cosmochimica Acta, 2007, 71, 1764-1782.	3.9	89
49	Fluid and Halide Melt Inclusions of Magmatic Origin in the Ultramafic and Lower Banded Series, Stillwater Complex, Montana, USA. Journal of Petrology, 2008, 49, 1133-1160.	2.8	86
50	Cenozoic evolution of Asian climate and sources of Pacific seawater Pb and Nd derived from eolian dust of sediment core LL44-GPC3. Paleoceanography, 2002, 17, 3-1-3-13.	3.0	85
51	Source of metals in the Guocheng gold deposit, Jiaodong Peninsula, North China Craton: Link to early Cretaceous mafic magmatism originating from Paleoproterozoic metasomatized lithospheric mantle. Ore Geology Reviews, 2012, 48, 70-87.	2.7	84
52	The impact of igneous bedrock weathering on the Mo isotopic composition of stream waters: Natural samples and laboratory experiments. Geochimica Et Cosmochimica Acta, 2012, 86, 150-165.	3.9	83
53	Ophiolitic Peridotites of the Alpine-Apennine System: Mantle Processes and Geodynamic Relevance. International Geology Review, 2004, 46, 1119-1159.	2.1	82
54	Magmatic-to-hydrothermal crystallization in the W–Sn mineralized Mole Granite (NSW, Australia). Chemical Geology, 2005, 220, 215-235.	3.3	82

#	Article	IF	CITATIONS
55	Direct Analysis of Ore-Precipitating Fluids: Combined IR Microscopy and LA-ICP-MS Study of Fluid Inclusions in Opaque Ore Minerals. Economic Geology, 2010, 105, 351-373.	3.8	81
56	Characterisation of a Natural Quartz Crystal as a Reference Material for Microanalytical Determination of Ti, Al, Li, Fe, Mn, Ga and Ge. Geostandards and Geoanalytical Research, 2015, 39, 171-184.	3.1	81
57	Ore metal redistribution by hydrocarbon–brine and hydrocarbon–halide melt phases, North Range footwall of the Sudbury Igneous Complex, Ontario, Canada. Mineralium Deposita, 2005, 40, 237-256.	4.1	79
58	Gold and copper partitioning in magmatic-hydrothermal systems at 800°C and 100MPa. Geochimica Et Cosmochimica Acta, 2011, 75, 2470-2482.	3.9	74
59	Constraints on fluid evolution during metamorphism from U–Th–Pb systematics in Alpine hydrothermal monazite. Chemical Geology, 2012, 326-327, 61-71.	3.3	74
60	Loss of trace elements from serpentinites during fluid-assisted transformation of chrysotile to antigorite — An example from Guatemala. Chemical Geology, 2011, 284, 351-362.	3.3	73
61	Subducting serpentinites release reduced, not oxidized, aqueous fluids. Scientific Reports, 2019, 9, 19573.	3.3	73
62	Magmatic anhydrite and calcite in the ore-forming quartz-monzodiorite magma at Santa Rita, New Mexico (USA): genetic constraints on porphyry-Cu mineralization. Lithos, 2004, 72, 147-161.	1.4	71
63	Magmatic–hydrothermal molybdenum isotope fractionation and its relevance to the igneous crustal signature. Lithos, 2014, 190-191, 104-110.	1.4	71
64	Fluid-mobile elements in serpentinites: Constraints on serpentinisation environments and element cycling in subduction zones. Chemical Geology, 2017, 466, 654-666.	3.3	71
65	Mantle wedge peridotites: Fossil reservoirs of deep subduction zone processes. Lithos, 2010, 120, 186-201.	1.4	67
66	A novel approach to determine high-pressure high-temperature fluid and melt compositions using diamond-trap experiments. American Mineralogist, 2004, 89, 1078-1086.	1.9	66
67	Mesothermal gold veins and metamorphic devolatilization in the northwestern Alps: The temporal link. Geology, 1999, 27, 641.	4.4	63
68	Magmatic Fluids in the Breccia-Hosted Epithermal Au-Ag Deposit of Rosia Montana, Romania. Economic Geology, 2006, 101, 923-954.	3.8	63
69	Cathodoluminescence properties and trace element signature of hydrothermal quartz: A fingerprint of growth dynamics. American Mineralogist, 2011, 96, 802-813.	1.9	63
70	Evaluation of Major to Ultra Trace Element Bulk Rock Chemical Analysis of Nanoparticulate Pressed Powder Pellets by <scp>LA</scp> â€ <scp>ICP</scp> â€ <scp>MS</scp> . Geostandards and Geoanalytical Research, 2017, 41, 5-28.	3.1	63
71	Quadrupole mass spectrometry and optical emission spectroscopy: detection capabilities and representative sampling of short transient signals from laser-ablation. Journal of Analytical Atomic Spectrometry, 2000, 15, 1149-1155.	3.0	62
72	Fluid evolution in the W–Cu–Zn–Pb San Cristobal vein, Peru: fluid inclusion and stable isotope evidence. Chemical Geology, 2004, 210, 201-224.	3.3	61

#	Article	IF	CITATIONS
73	Compositional and mineralogical variations in a Neoproterozoic glacially influenced succession, Mirbat area, south Oman: Implications for paleoweathering conditions. Precambrian Research, 2007, 154, 248-265.	2.7	56
74	U–Pb dating of calcite–aragonite layers in speleothems from hominin sites in South Africa by MC-ICP-MS. Quaternary Geochronology, 2010, 5, 544-558.	1.4	56
75	Primary silica precipitate at the Precambrian/Cambrian boundary in the South Oman Salt Basin, Sultanate of Oman. Marine and Petroleum Geology, 2013, 39, 187-197.	3.3	55
76	Laser-ablation ICP-MS analysis of silicate and sulfide melt inclusions in an andesitic complex I: analytical approach and data evaluation. Contributions To Mineralogy and Petrology, 2004, 147, 385-396.	3.1	54
77	Fluids in the peridotite–water system up to 6ÂGPa and 800°C: new experimental constrains on dehydration reactions. Contributions To Mineralogy and Petrology, 2011, 161, 829-844.	3.1	54
78	Fluid and gas migration in the North German Basin: fluid inclusion and stable isotope constraints. International Journal of Earth Sciences, 2005, 94, 990-1009.	1.8	50
79	Molybdenum isotope variations in calc-alkaline lavas from the Banda arc, Indonesia: Assessing the effect of crystal fractionation in creating isotopically heavy continental crust. Chemical Geology, 2018, 485, 1-13.	3.3	50
80	Evolution of the Lithospheric Mantle beneath the Marsabit Volcanic Field (Northern Kenya): Constraints from Textural, P–T and Geochemical Studies on Xenoliths. Journal of Petrology, 2006, 47, 2149-2184.	2.8	48
81	RbSr isotopic analysis of fluid inclusions in quartz: Evaluation of bulk extraction procedures and geochronometer systematics using synthetic fluid inclusions. Geochimica Et Cosmochimica Acta, 1995, 59, 4009-4027.	3.9	46
82	Highly Refractory Peridotites on Macquarie Island and the Case for Anciently Depleted Domains in the Earth's Mantle. Journal of Petrology, 2010, 51, 469-493.	2.8	45
83	Experimental study of trace element release during ultrahigh-pressure serpentinite dehydration. Earth and Planetary Science Letters, 2014, 391, 296-306.	4.4	45
84	Silicate dissolution boosts the CO2 concentrations in subduction fluids. Nature Communications, 2017, 8, 616.	12.8	45
85	Mesothermal gold lodes in the north-western Alps: A review of genetic constraints from radiogenic isotopes. European Journal of Mineralogy, 2000, 12, 213-230.	1.3	44
86	A geochemical study of the Sweet Home Mine, Colorado Mineral Belt, USA: hydrothermal fluid evolution above a hypothesized granite cupola. Mineralium Deposita, 2009, 44, 415-434.	4.1	43
87	Quantification of transient signals in multiple collector inductively coupled plasma mass spectrometry: accurate lead isotope ratio determination by laser ablation of individual fluid inclusions. Journal of Analytical Atomic Spectrometry, 2011, 26, 475-492.	3.0	43
88	Crystal-chemistry of mullite-type aluminoborates Al18B4O33 and Al5BO9: A stoichiometry puzzle. Journal of Solid State Chemistry, 2011, 184, 70-80.	2.9	43
89	The partitioning behavior of silver in a vapor–brine–rhyolite melt assemblage. Geochimica Et Cosmochimica Acta, 2008, 72, 1638-1659	3.9	42
90	Chromium mobility in hydrous fluids at upper mantle conditions. Lithos, 2011, 125, 122-130.	1.4	41

#	Article	IF	CITATIONS
91	Radiogenic Hf isotopic compositions of continental eolian dust from Asia, its variability and its implications for seawater Hf. Earth and Planetary Science Letters, 2002, 202, 453-464.	4.4	39
92	Laser-ablation ICP-MS analysis of silicate and sulfide melt inclusions in an andesitic complex II: evidence for magma mixing and magma chamber evolution. Contributions To Mineralogy and Petrology, 2004, 147, 397-412.	3.1	38
93	Platinum solubility and partitioning in a felsic melt–vapor–brine assemblage. Geochimica Et Cosmochimica Acta, 2009, 73, 438-454.	3.9	37
94	Carbonate assimilation during magma evolution at Nisyros (Greece), South Aegean Arc: Evidence from clinopyroxenite xenoliths. Lithos, 2012, 146-147, 18-33.	1.4	37
95	Experimental determination of Au solubility in rhyolite melt and magnetite: Constraints on magmatic Au budgets. American Mineralogist, 2003, 88, 1644-1651.	1.9	35
96	The composition of liquids coexisting with dense hydrous magnesium silicates at 11–13.5GPa and the endpoints of the solidi in the MgO–SiO2–H2O system. Geochimica Et Cosmochimica Acta, 2007, 71, 3348-3360.	3.9	35
97	Titanium-in-quartz thermometry on synkinematic quartz veins in a retrograde crustal-scale normal fault zone. Tectonophysics, 2013, 608, 468-481.	2.2	35
98	The mobility of Nb in rutile-saturated NaCl- and NaF-bearing aqueous fluids from 1–6.5 GPa and 300–800 °C. American Mineralogist, 2015, 100, 1600-1609.	1.9	34
99	Non-matrix-matched standardisation in LA-ICP-MS analysis: general approach, and application to allanite Th–U–Pb dating. Journal of Analytical Atomic Spectrometry, 2017, 32, 1359-1377.	3.0	34
100	Thâ€₽b ion probe dating of zoned hydrothermal monazite and its implications for repeated shear zone activity: An example from the Central Alps, Switzerland. Tectonics, 2017, 36, 671-689.	2.8	34
101	Experimental determination of magnesia and silica solubilities in graphite-saturated and redox-buffered high-pressure COH fluids in equilibrium with forsterite + enstatite and magnesite + enstatite. Contributions To Mineralogy and Petrology, 2018, 173, 1.	3.1	34
102	The influence of oceanic oxidation on serpentinite dehydration during subduction. Earth and Planetary Science Letters, 2018, 499, 173-184.	4.4	34
103	Oligocene gold quartz veins at Brusson, NW Alps; Sr isotopes trace the source of ore-bearing fluid to ore a 10-km depth. Economic Geology, 1997, 92, 389-406.	3.8	33
104	Significance of trace elements in syntaxial quartz cement, Haushi Group sandstones, Sultanate of Oman. Chemical Geology, 2011, 280, 47-57.	3.3	33
105	Evolution of Mafic Alkaline Melts Crystallized in the Uppermost Lithospheric Mantle: a Melt Inclusion Study of Olivine-Clinopyroxenite Xenoliths, Northern Hungary. Journal of Petrology, 2007, 48, 853-883.	2.8	32
106	Brine-rock interaction in the Athabasca basement (McArthur River U deposit, Canada): consequences for fluid chemistry and uranium uptake. Terra Nova, 2010, 22, no-no.	2.1	32
107	Cenozoic changes in atmospheric lead recorded in central Pacific ferromanganese crusts. Earth and Planetary Science Letters, 2007, 253, 57-66.	4.4	29
108	Mono-sample Pb-Pb dating of pyrrhotite and tourmaline: Proterozoic vs. Archean intracratonic gold mineralization in Zimbabwe. Geology, 1996, 24, 823.	4.4	28

#	Article	IF	CITATIONS
109	Stable isotope profiles (Ca, O, C) through modern brachiopod shells of T. septentrionalis and G. vitreus: Implications for calcium isotope paleo-ocean chemistry. Chemical Geology, 2010, 269, 210-219.	3.3	27
110	Tethyan mantle metasomatism creates subduction geochemical signatures in non-arc Cu–Au–Te mineralizing magmas, Apuseni Mountains (Romania). Earth and Planetary Science Letters, 2013, 366, 122-136.	4.4	26
111	Melting of metasomatized peridotite at 4–6ÂGPa and up to 1200°C: an experimental approach. Contributions To Mineralogy and Petrology, 2015, 169, 1.	3.1	26
112	Zircon petrochronology in large igneous provinces reveals upper crustal contamination processes: new U–Pb ages, Hf and O isotopes, and trace elements from the Central Atlantic magmatic province (CAMP). Contributions To Mineralogy and Petrology, 2021, 176, 1.	3.1	25
113	The Molybdenum isotope subduction recycling conundrum: A case study from the Tongan subduction zone, Western Alps and Alpine Corsica. Chemical Geology, 2021, 576, 120231.	3.3	25
114	The formation of economic porphyry copper (-gold) deposits: constraints from microanalysis of fluid and melt inclusions. Geological Society Special Publication, 2005, 248, 247-263.	1.3	24
115	An evaluation of synthetic fluid inclusions for the purpose of trapping equilibrated, coexisting, immiscible fluid phases at magmatic conditions. American Mineralogist, 2007, 92, 124-138.	1.9	23
116	Initial isotopic heterogeneity and secondary disturbance of the Smî—,Nd system in fluorites and fluid inclusions: A study on mesothermal veins from the central and western Swiss Alps. Chemical Geology, 1995, 125, 241-248.	3.3	22
117	Isotope systematics in vein gold from Brusson, Val d'Ayas (NW Italy) 3. (U + Th)He and KAr in native Au and its fluid inclusions. Chemical Geology, 1997, 135, 173-187.	3.3	22
118	Magnetic anisotropy in natural amphibole crystals. American Mineralogist, 2015, 100, 1940-1951.	1.9	22
119	Linking tephrochronology and soil characteristics in the Sila and Nebrodi mountains, Italy. Catena, 2017, 158, 266-285.	5.0	22
120	Anisotropy of magnetic susceptibility in natural olivine single crystals. Geochemistry, Geophysics, Geosystems, 2014, 15, 3051-3065.	2.5	21
121	Magnetic anisotropy in clinopyroxene and orthopyroxene single crystals. Journal of Geophysical Research: Solid Earth, 2015, 120, 1431-1451.	3.4	21
122	Ophicarbonate evolution from seafloor to subduction and implications for deep-Earth C cycling. Chemical Geology, 2020, 546, 119626.	3.3	21
123	Anisotropy of magnetic susceptibility in alkali feldspar and plagioclase. Geophysical Journal International, 2016, 205, 479-489.	2.4	20
124	Petrology and Geochemistry of Serpentinites Associated with the Ultra-High Pressure Lago di Cignana Unit (Italian Western Alps). Journal of Petrology, 2019, 60, 1229-1262.	2.8	20
125	lsotope systematics in vein gold from Brusson, Val d'Ayas (NW Italy), 1. Pb/Pb evidence for a Piemonte metaophiolite Au source. Chemical Geology, 1996, 127, 111-124.	3.3	19
126	Crystallization and Breakdown of Metasomatic Phases in Graphite-bearing Peridotite Xenoliths from Marsabit (Kenya). Journal of Petrology, 2007, 48, 1725-1760.	2.8	19

#	Article	IF	CITATIONS
127	Lead, Nd and Sr isotope records of pelagic dust: Source indication versus the effects of dust extraction procedures and authigenic mineral growth. Chemical Geology, 2011, 286, 240-240.	3.3	19
128	Titanium isotopic compositions of bulk rocks and mineral separates from the Kos magmatic suite: Insights into fractional crystallization and magma mixing processes. Chemical Geology, 2021, 578, 120303.	3.3	19
129	From ocean to mantle: new evidence for U-cycling with implications for the HIMU source and the secular Pb isotope evolution of Earth's mantle. Lithos, 2018, 316-317, 66-76.	1.4	18
130	Age of cleft monazites in the eastern Tauern Window: constraints on crystallization conditions of hydrothermal monazite. Swiss Journal of Geosciences, 2015, 108, 55-74.	1.2	17
131	Pyroxenite xenoliths from Marsabit (Northern Kenya): evidence for different magmatic events in the lithospheric mantle and interaction between peridotite and pyroxenite. Contributions To Mineralogy and Petrology, 2009, 157, 453-472.	3.1	16
132	On the use of Li isotopes as a proxy for water–rock interaction in fractured crystalline rocks: A case study from the Gotthard rail base tunnel. Geochimica Et Cosmochimica Acta, 2017, 198, 396-418.	3.9	16
133	Hibonite, Ca(Al,Cr,Ti,Si,Mg,Fe2)12O19, in granulite xenoliths from the Chyulu Hills volcanic field, Kenya. European Journal of Mineralogy, 2005, 17, 357-366.	1.3	15
134	Magnetic susceptibility as a tool to study deformed calcite with variable impurity content. Geochemistry, Geophysics, Geosystems, 2010, 11, .	2.5	15
135	Fluid Pulses During Stepwise Brecciation at Intermediate Subduction Depths (Monviso Eclogites, W.) Tj ETQq1 5285-5318.	1 0.784314 2.5	rgBT /Overlo 15
136	Implications of trace element composition of syntaxial quartz cements for the geochemical conditions during quartz precipitation in sandstones. Sedimentology, 2013, 60, 1111-1127.	3.1	14
137	The role of brucite in water and element cycling during serpentinite subduction – Insights from Erro Tobbio (Liguria, Italy). Lithos, 2020, 360-361, 105431.	1.4	14
138	Aluminous websterite and granulite xenoliths from the Chyulu Hills volcanic field, Kenya: gabbro–troctolitic cumulates subjected to lithospheric foundering. Contributions To Mineralogy and Petrology, 2006, 152, 459-483.	3.1	13
139	Depth dependent element ratios in fluid inclusion analysis by laser ablation ICP-MS. Journal of Analytical Atomic Spectrometry, 2012, 27, 505.	3.0	13
140	Geothermal energy and ore-forming potential of 600 °C mid-ocean-ridge hydrothermal fluids. Geology, 2020, 48, 1221-1225.	4.4	13
141	The behaviour of incompatible elements during hydrous melting of metasomatized peridotite at 4–6 GPa and 1000 °C–1200 °C. Lithos, 2015, 236-237, 141-155.	1.4	12
142	Textural and Geochemical Evidence for Magnetite Production upon Antigorite Breakdown During Subduction. Journal of Petrology, 2021, 62, .	2.8	12
143	Molybdenum isotope fractionation at upper-crustal magmatic-hydrothermal conditions. Chemical Geology, 2021, 578, 120319.	3.3	12
144	Fluid-mediated element cycling in subducted oceanic lithosphere: The orogenic serpentinite perspective. Earth-Science Reviews, 2022, 225, 103896.	9.1	12

THOMAS PETTKE

#	Article	IF	CITATIONS
145	Relationship between cation substitution and hydrogen-bond system in hydrous pyroxenoids with three-periodic single-chain of SiO4 tetrahedra: pectolite, murakamiite, marshallsussmanite, serandite and tanohataite. European Journal of Mineralogy, 2018, 30, 451-463.	1.3	10
146	The Malpaisillo Formation: A sequence of explosive eruptions in the mid to late Pleistocene (Nicaragua, Central America). Journal of Volcanology and Geothermal Research, 2018, 359, 47-67.	2.1	9
147	Fingerprinting and relocating tectonic slices along the plate interface: Evidence from the Lago Superiore unit at Monviso (Western Alps). Lithos, 2020, 352-353, 105308.	1.4	9
148	Entrained Macrocryst Minerals as a Key to the Source Region of Olivine Nephelinites: Humberg, Kaiserstuhl, Germany. Journal of Petrology, 2007, 48, 1079-1118.	2.8	8
149	Quantification and spatial distribution of dose rate relevant elements in silex used for luminescence dating. Quaternary Geochronology, 2012, 12, 65-73.	1.4	8
150	The relation between Li Na substitution and hydrogen bonding in five-periodic single-chain silicates nambulite and marsturite: A single-crystal X-ray study. American Mineralogist, 2014, 99, 1462-1470.	1.9	8
151	U â`` Pb geochronology of epidote by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) as a tool for dating hydrothermal-vein formation. Geochronology, 2021, 3, 123-147.	2.5	8
152	Antigorite dehydration fluids boost carbonate mobilisation and crustal CO2 outgassing in collisional orogens. Geochimica Et Cosmochimica Acta, 2021, 300, 192-214.	3.9	7
153	Micro-Scale Physical and Chemical Heterogeneities in Biogenic Materials - A Combined Micro-Raman, Chemical Composition and Microhardness Investigation. Materials Research Society Symposia Proceedings, 2004, 844, 1.	0.1	5
154	UNUSUAL FIBROUS SODIAN TAINIOLITE EPITACTIC ON PHLOGOPITE FROM MARBLE XENOLITHS OF MONT SAINT-HILAIRE, QUEBEC, CANADA. Canadian Mineralogist, 2007, 45, 541-549.	1.0	5
155	Severe structural damage in Cr- and V-rich clinozoisite: relics of an epidote-group mineral with Ca2 Al2 Cr3+ Si3 O12 (OH) composition?. European Journal of Mineralogy, 2011, 23, 731-743.	1.3	5
156	Melt inclusion evidence for magma evolution at Mutnovsky volcano, Kamchatka. Geofluids, 2013, 13, 421-439.	0.7	5
157	Deep subduction, melting, and fast cooling of metapelites from the Cima Lunga Unit, Central Alps. Journal of Metamorphic Geology, 2022, 40, 121-143.	3.4	5
158	Modification of gas speciation in quartz-hosted fluid inclusions by stray laser radiation during LA-ICPMS analysis. American Mineralogist, 2008, 93, 1187-1190.	1.9	4
159	Ion microprobe dating of fissure monazite in the Western Alps: insights from the Argentera Massif and the Piemontais and Briançonnais Zones. Swiss Journal of Geosciences, 2020, 113, .	1.2	4
160	Trace element and oxygen isotope study of eclogites and associated rocks from the Münchberg Massif (Germany) with implications on the protolith origin and fluid-rock interactions. Chemical Geology, 2021, 579, 120352.	3.3	4
161	Gem-quality taaffeites and musgravites from Africa. Journal of Gemmology, 2007, 30, 367-382.	0.2	4
162	Apatite low-temperature chronometry and microstructures across a hydrothermally active fault zone. Chemical Geology, 2022, 588, 120633.	3.3	4

#	Article	IF	CITATIONS
163	Matrix Representations for Positive Noncommutative Polynomials. Positivity, 2006, 10, 145-163.	0.7	3
164	Diagenesis of a light, tight-oil chert reservoir at the Ediacaran/Cambrian boundary, Sultanate of Oman. Geoarabia, 2015, 20, 147-178.	1.6	3
165	Extreme Variability in Hf Isotopic Components of Aeolian Dust and its Implications for Seawater Hf. Mineralogical Magazine, 1998, 62A, 1165-1166.	1.4	2
166	Mono-sample Pb-Pb dating of pyrrhotite and tourmaline: Proterozoic vs. Archean intracratonic gold mineralization: Comment and Reply. Geology, 1997, 25, 669.	4.4	1
167	Chemical and physical processes affecting element mobility from the slab to the surface. Chemical Geology, 2007, 239, 179-181.	3.3	0
168	Correction to: Ion microprobe dating of fissure monazite in the Western Alps: insights from the Argentera Massif and the Piemontais and Briançonnais Zones. Swiss Journal of Geosciences, 2020, 113, .	1.2	0
169	Geochemical and isotopic constraints on the dynamics of the Earth: a Special Issue dedicated to Jan Dirk Kramers and his legacy to geochemistry. Chemical Geology, 2021, 583, 120462.	3.3	0
170	Composition of the Geothermal Fluid at 4500 M Depth in the Hottest Geothermal Borehole in Iceland. , 2020, , .		0
171	Iron isotope compositions of subduction-derived rocks: Insights from eclogites and metasediments of the Münchberg Massif (Germany). Chemical Geology, 2022, 602, 120899.	3.3	Ο