Amy J Bastian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/516348/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sensory Prediction Errors Drive Cerebellum-Dependent Adaptation of Reaching. Journal of Neurophysiology, 2007, 98, 54-62.	1.8	749
2	Learning to predict the future: the cerebellum adapts feedforward movement control. Current Opinion in Neurobiology, 2006, 16, 645-649.	4.2	532
3	Cerebellar Contributions to Locomotor Adaptations during Splitbelt Treadmill Walking. Journal of Neuroscience, 2006, 26, 9107-9116.	3.6	525
4	Interlimb Coordination During Locomotion: What Can be Adapted and Stored?. Journal of Neurophysiology, 2005, 94, 2403-2415.	1.8	471
5	Cerebellar Control of Balance and Locomotion. Neuroscientist, 2004, 10, 247-259.	3.5	365
6	Understanding sensorimotor adaptation and learning for rehabilitation. Current Opinion in Neurology, 2008, 21, 628-633.	3.6	355
7	Split-Belt Treadmill Adaptation Transfers to Overground Walking in Persons Poststroke. Neurorehabilitation and Neural Repair, 2009, 23, 735-744.	2.9	259
8	Thinking About Walking: Effects of Conscious Correction Versus Distraction on Locomotor Adaptation. Journal of Neurophysiology, 2010, 103, 1954-1962.	1.8	237
9	Repeated Split-Belt Treadmill Training Improves Poststroke Step Length Asymmetry. Neurorehabilitation and Neural Repair, 2013, 27, 460-468.	2.9	236
10	Where Is Your Arm? Variations in Proprioception Across Space and Tasks. Journal of Neurophysiology, 2010, 103, 164-171.	1.8	192
11	Reach Adaptation: What Determines Whether We Learn an Internal Model of the Tool or Adapt the Model of Our Arm?. Journal of Neurophysiology, 2008, 100, 1455-1464.	1.8	183
12	Cerebellar Transcranial Direct Current Stimulation (ctDCS). Neuroscientist, 2016, 22, 83-97.	3.5	177
13	Effective reinforcement learning following cerebellar damage requires a balance between exploration and motor noise. Brain, 2016, 139, 101-114.	7.6	161
14	A Single Bout of Moderate Aerobic Exercise Improves Motor Skill Acquisition. PLoS ONE, 2015, 10, e0141393.	2.5	137
15	Moving, sensing and learning with cerebellar damage. Current Opinion in Neurobiology, 2011, 21, 596-601.	4.2	120
16	Predictive Modeling by the Cerebellum Improves Proprioception. Journal of Neuroscience, 2013, 33, 14301-14306.	3.6	111
17	Natural error patterns enable transfer of motor learning to novel contexts. Journal of Neurophysiology, 2012, 107, 346-356.	1.8	106
18	Younger Is Not Always Better: Development of Locomotor Adaptation from Childhood to Adulthood. Journal of Neuroscience, 2011, 31, 3055-3065.	3.6	105

Amy J Bastian

#	Article	IF	CITATIONS
19	Motor Learning Enhances Use-Dependent Plasticity. Journal of Neuroscience, 2017, 37, 2673-2685.	3.6	99
20	Seeing Is Believing: Effects of Visual Contextual Cues on Learning and Transfer of Locomotor Adaptation. Journal of Neuroscience, 2010, 30, 17015-17022.	3.6	93
21	Predicting and correcting ataxia using a model of cerebellar function. Brain, 2014, 137, 1931-1944.	7.6	85
22	Split-Belt Treadmill Adaptation Shows Different Functional Networks for Fast and Slow Human Walking. Journal of Neurophysiology, 2010, 103, 183-191.	1.8	84
23	Two ways to save a newly learned motor pattern. Journal of Neurophysiology, 2015, 113, 3519-3530.	1.8	79
24	A Home Balance Exercise Program Improves Walking in People With Cerebellar Ataxia. Neurorehabilitation and Neural Repair, 2014, 28, 770-778.	2.9	76
25	Motor Skills Are Strengthened through Reconsolidation. Current Biology, 2016, 26, 338-343.	3.9	66
26	Visuomotor Learning Generalizes Around the Intended Movement. ENeuro, 2016, 3, ENEURO.0005-16.2016.	1.9	66
27	Seeing the Errors You Feel Enhances Locomotor Performance but Not Learning. Current Biology, 2016, 26, 2707-2716.	3.9	65
28	Cerebellar damage impairs internal predictions for sensory and motor function. Current Opinion in Neurobiology, 2015, 33, 127-133.	4.2	60
29	Cerebellar involvement in motor but not sensory adaptation. Neuropsychologia, 2012, 50, 1766-1775.	1.6	58
30	Age-related forgetting in locomotor adaptation. Neurobiology of Learning and Memory, 2016, 128, 1-6.	1.9	57
31	The cerebellum as a movement sensor. Neuroscience Letters, 2019, 688, 37-40.	2.1	49
32	Increasing Motor Noise Impairs Reinforcement Learning in Healthy Individuals. ENeuro, 2018, 5, ENEURO.0050-18.2018.	1.9	48
33	Blocking trial-by-trial error correction does not interfere with motor learning in human walking. Journal of Neurophysiology, 2016, 115, 2341-2348.	1.8	39
34	Cerebellar damage diminishes long-latency responses to multijoint perturbations. Journal of Neurophysiology, 2013, 109, 2228-2241.	1.8	37
35	Split-belt walking adaptation recalibrates sensorimotor estimates of leg speed but not position or force. Journal of Neurophysiology, 2015, 114, 3255-3267.	1.8	37
36	Creating flexible motor memories in human walking. Scientific Reports, 2018, 8, 94.	3.3	34

Amy J Bastian

#	Article	IF	CITATIONS
37	Cerebellar patients have intact feedback control that can be leveraged to improve reaching. ELife, 2020, 9, .	6.0	31
38	Cerebellar Limb Ataxia. Abnormal Control of Self-Generated and External Forces. Annals of the New York Academy of Sciences, 2002, 978, 16-27.	3.8	28
39	Cerebellum and the deciphering of motor coding. Cerebellum, 2007, 6, 3-6.	2.5	27
40	The cerebellum contributes to proprioception during motion. Journal of Neurophysiology, 2017, 118, 693-702.	1.8	22
41	Learning and generalization in an isometric visuomotor task. Journal of Neurophysiology, 2015, 113, 1873-1884.	1.8	21
42	A dual-learning paradigm can simultaneously train multiple characteristics of walking. Journal of Neurophysiology, 2016, 115, 2692-2700.	1.8	20
43	Proprioceptive Localization Deficits in People With Cerebellar Damage. Cerebellum, 2017, 16, 427-437.	2.5	17
44	A marching-walking hybrid induces step length adaptation and transfers to natural walking. Journal of Neurophysiology, 2015, 113, 3905-3914.	1.8	16
45	A Dual-Learning Paradigm Simultaneously Improves Multiple Features of Gait Post-Stroke. Neurorehabilitation and Neural Repair, 2018, 32, 810-820.	2.9	16
46	Prior Experience but Not Size of Error Improves Motor Learning on the Split-Belt Treadmill in Young Children. PLoS ONE, 2014, 9, e93349.	2.5	15
47	Reinforcement Signaling Can Be Used to Reduce Elements of Cerebellar Reaching Ataxia. Cerebellum, 2021, 20, 62-73.	2.5	14
48	Motor learning in childhood reveals distinct mechanisms for memory retention and re-learning. Learning and Memory, 2016, 23, 229-237.	1.3	10
49	Novel automated morphometric and kinematic handwriting assessment: A validity study in children with ASD and ADHD. Journal of Occupational Therapy, Schools, and Early Intervention, 2017, 10, 185-201.	0.7	9
50	Patients with Cerebellar Ataxia Do Not Benefit from Limb Weights. Cerebellum, 2019, 18, 128-136.	2.5	9
51	Individualized feedback to change multiple gait deficits in chronic stroke. Journal of NeuroEngineering and Rehabilitation, 2019, 16, 158.	4.6	7
52	Training at asymptote stabilizes motor memories by reducing intracortical excitation. Cortex, 2021, 143, 47-56.	2.4	7
53	Is the dynamic gait index a useful outcome to measure balance and ambulation in patients with cerebellar ataxia?. Gait and Posture, 2021, 89, 200-205.	1.4	5
54	Can the ARAT Be Used to Measure Arm Function in People With Cerebellar Ataxia?. Physical Therapy, 2021, 101, .	2.4	5

#	Article	IF	CITATIONS
55	Context-specificity of locomotor learning is developed during childhood. ENeuro, 2022, , ENEURO.0369-21.2022.	1.9	0