Haidong D Dong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5163454/publications.pdf

Version: 2024-02-01

139 papers 24,302 citations

61 h-index 130 g-index

144 all docs 144 docs citations

times ranked

144

25467 citing authors

#	Article	IF	CITATIONS
1	Understanding Suboptimal Response to Immune Checkpoint Inhibitors. Advanced Biology, 2023, 7, e2101319.	2.5	5
2	ICAM-1-mediated adhesion is a prerequisite for exosome-induced TÂcell suppression. Developmental Cell, 2022, 57, 329-343.e7.	7.0	42
3	PD-L1 promotes myofibroblastic activation of hepatic stellate cells by distinct mechanisms selective for TGF- \hat{l}^2 receptor I versus II. Cell Reports, 2022, 38, 110349.	6.4	15
4	Cutting Edge: Enhanced Antitumor Immunity in ST8Sia6 Knockout Mice. Journal of Immunology, 2022, 208, 1845-1850.	0.8	4
5	Overcoming Immunotherapy Resistance With Radiation Therapy and Dual Immune Checkpoint Blockade. Advances in Radiation Oncology, 2022, 7, 100931.	1.2	4
6	NKG7 Is a T-cell–Intrinsic Therapeutic Target for Improving Antitumor Cytotoxicity and Cancer Immunotherapy. Cancer Immunology Research, 2022, 10, 162-181.	3.4	26
7	Pembrolizumab in Combination with Neoadjuvant Chemoradiotherapy for Patients with Resectable Adenocarcinoma of the Gastroesophageal Junction. Clinical Cancer Research, 2022, 28, 3021-3031.	7.0	32
8	Rescuing Cancer Immunity by Plasma Exchange in Metastatic Melanoma (ReCIPE-M1): protocol for a single-institution, open-label safety trial of plasma exchange to clear sPD-L1 for immunotherapy. BMJ Open, 2022, 12, e050112.	1.9	6
9	Evaluation of PD-L1 and B7-H3 expression as a predictor of response to adjuvant chemotherapy in bladder cancer. BMC Urology, 2022, 22, .	1.4	8
10	Creation of a primary tumor tissue expression biomarker-augmented prognostic model for patients with metastatic renal cell carcinoma. Urologic Oncology: Seminars and Original Investigations, 2021, 39, 135.e1-135.e8.	1.6	2
11	Inflation of tumor mutation burden by tumor-only sequencing in under-represented groups. Npj Precision Oncology, 2021, 5, 22.	5.4	17
12	Outcomes on <scp>antiâ€VEGFR</scp> â€2/paclitaxel treatment after progression on immune checkpoint inhibition in patients with metastatic gastroesophageal adenocarcinoma. International Journal of Cancer, 2021, 149, 378-386.	5.1	14
13	PD-L1 tumor-intrinsic signaling and its therapeutic implication in triple-negative breast cancer. JCI Insight, 2021, 6, .	5.0	40
14	Distinct immune signatures in chronic lymphocytic leukemia and Richter syndrome. Blood Cancer Journal, 2021, 11, 86.	6.2	14
15	ST8Sia6 Promotes Tumor Growth in Mice by Inhibiting Immune Responses. Cancer Immunology Research, 2021, 9, 952-966.	3.4	19
16	FOXA1 overexpression suppresses interferon signaling and immune response in cancer. Journal of Clinical Investigation, 2021, 131, .	8.2	48
17	Bim Expression in Peritumoral Lymphocytes is Associated with Survival in Patients with Metastatic Clear Cell Renal Cell Carcinoma. Kidney Cancer, 2021, 5, 129-135.	0.4	О
18	Phase II Evaluation of Stereotactic Ablative Radiotherapy (SABR) and Immunity in 11C-Choline-PET/CT–Identified Oligometastatic Castration-Resistant Prostate Cancer. Clinical Cancer Research, 2021, 27, 6376-6383.	7.0	21

#	Article	IF	Citations
19	Immune signatures underlying post-acute COVID-19 lung sequelae. Science Immunology, 2021, 6, eabk1741.	11.9	99
20	Surfaceome Profiling of Rhabdomyosarcoma Reveals B7-H3 as a Mediator of Immune Evasion. Cancers, 2021, 13, 4528.	3.7	14
21	Non-invasive immunoPET imaging of PD-L1 using anti-PD-L1-B11 in breast cancer and melanoma tumor model. Nuclear Medicine and Biology, 2021, 100-101, 4-11.	0.6	6
22	Concordance of PDâ€1 and PDâ€1 (B7â€H1) in paired primary and metastatic clear cell renal cell carcinoma. Cancer Medicine, 2020, 9, 1152-1160.	2.8	17
23	Solid pavestones are needed to pave a solid way to success. Cancer Immunology, Immunotherapy, 2020, 69, 1-1.	4.2	4
24	Immune resilience in response to cancer therapy. Cancer Immunology, Immunotherapy, 2020, 69, 2165-2167.	4.2	8
25	Chemo-immunotherapy combination after PD-1 inhibitor failure improves clinical outcomes in metastatic melanoma patients. Melanoma Research, 2020, 30, 364-375.	1.2	42
26	Therapeutic plasma exchange clears circulating soluble PD-L1 and PD-L1-positive extracellular vesicles. , 2020, 8, e001113.		32
27	Radiation and immunotherapy: emerging mechanisms of synergy. Journal of Thoracic Disease, 2020, 12, 7011-7023.	1.4	28
28	Carrying the torch & facing new challenges. Cancer Immunology, Immunotherapy, 2020, 69, 2411-2412.	4.2	0
29	ADAM10 and ADAM17 cleave PD-L1 to mediate PD-(L)1 inhibitor resistance. Oncolmmunology, 2020, 9, 1744980.	4.6	77
30	Regulation of sister chromatid cohesion by nuclear PD-L1. Cell Research, 2020, 30, 590-601.	12.0	58
31	Bidirectional signals of PD-L1 in T cells that fraternize with cancer cells. Nature Immunology, 2020, 21, 365-366.	14.5	14
32	The role of extracellular vesicles and PD-L1 in glioblastoma-mediated immunosuppressive monocyte induction. Neuro-Oncology, 2020, 22, 967-978.	1.2	62
33	Tumor Mutational Burden From Tumor-Only Sequencing Compared With Germline Subtraction From Paired Tumor and Normal Specimens. JAMA Network Open, 2020, 3, e200202.	5.9	40
34	Seeking and destroying the evils from the inside-translating cancer immunity to fight COVID-19. Cancer Immunology, Immunotherapy, 2020, 69, 911-912.	4.2	2
35	Case Report: Simultaneous Hyperprogression and Fulminant Myocarditis in a Patient With Advanced Melanoma Following Treatment With Immune Checkpoint Inhibitor Therapy. Frontiers in Immunology, 2020, 11, 561083.	4.8	12
36	Targeting tumor-associated macrophages and granulocytic myeloid-derived suppressor cells augments PD-1 blockade in cholangiocarcinoma. Journal of Clinical Investigation, 2020, 130, 5380-5396.	8.2	185

3

#	Article	IF	Citations
37	BRAFV600E-induced, tumor intrinsic PD-L1 can regulate chemotherapy-induced apoptosis in human colon cancer cells and in tumor xenografts. Oncogene, 2019, 38, 6752-6766.	5.9	52
38	Biomarkers of hyperprogression and pseudoprogression with immune checkpoint inhibitor therapy. Future Oncology, 2019, 15, 2645-2656.	2.4	10
39	Circulating levels of PD-L1 and Galectin-9 are associated with patient survival in surgically treated Hepatocellular Carcinoma independent of their intra-tumoral expression levels. Scientific Reports, 2019, 9, 10677.	3.3	37
40	The Transcription Factor Bhlhe40 Programs Mitochondrial Regulation of Resident CD8+ T Cell Fitness and Functionality. Immunity, 2019, 51, 491-507.e7.	14.3	148
41	Paradox-driven adventures in the development of cancer immunology and immunotherapy. Genes and Diseases, 2019, 6, 224-231.	3.4	3
42	PD-L1 (B7-H1) Competes with the RNA Exosome to Regulate the DNA Damage Response and Can Be Targeted to Sensitize to Radiation or Chemotherapy. Molecular Cell, 2019, 74, 1215-1226.e4.	9.7	144
43	Reverse signaling via PD-L1 supports malignant cell growth and survival in classical Hodgkin lymphoma. Blood Cancer Journal, 2019, 9, 22.	6.2	54
44	Sex Differences in Tolerability to Anti-Programmed Cell Death Protein 1 Therapy in Patients with Metastatic Melanoma and Non-Small Cell Lung Cancer: Are We All Equal?. Oncologist, 2019, 24, e1148-e1155.	3.7	81
45	Prospective Immunophenotyping of CD8+ T Cells and Associated Clinical Outcomes of Patients With Oligometastatic Prostate Cancer Treated With Metastasis-Directed SBRT. International Journal of Radiation Oncology Biology Physics, 2019, 103, 229-240.	0.8	24
46	Neoantigenic Potential of Complex Chromosomal Rearrangements in Mesothelioma. Journal of Thoracic Oncology, 2019, 14, 276-287.	1.1	92
47	Phosphorylated RB Promotes Cancer Immunity by Inhibiting NF-Î ^o B Activation and PD-L1 Expression. Molecular Cell, 2019, 73, 22-35.e6.	9.7	174
48	First Report of Dramatic Tumor Responses with Ramucirumab and Paclitaxel After Progression on Pembrolizumab in Two Cases of Metastatic Gastroesophageal Adenocarcinoma. Oncologist, 2018, 23, 840-843.	3.7	11
49	Prevalent Homozygous Deletions of Type I Interferon and Defensin Genes in Human Cancers Associate with Immunotherapy Resistance. Clinical Cancer Research, 2018, 24, 3299-3308.	7.0	37
50	Contraction of T cell richness in lung cancer brain metastases. Scientific Reports, 2018, 8, 2171.	3.3	74
51	The Basic Concepts in Cancer Immunology and Immunotherapy. , 2018, , 1-19.		3
52	Bim is an independent prognostic marker in intrahepatic cholangiocarcinoma. Human Pathology, 2018, 78, 97-105.	2.0	7
53	Positive Pelvic Lymph Nodes in Prostate Cancer Harbor Immune Suppressor Cells To Impair Tumor-reactive T Cells. European Urology Focus, 2018, 4, 75-79.	3.1	18
54	Immune checkpoint molecules soluble program death ligand 1 and galectinâ€9 are increased in pregnancy. American Journal of Reproductive Immunology, 2018, 79, e12795.	1.2	89

#	Article	IF	CITATIONS
55	Targeting B7-H1 (PD-L1) sensitizes cancer cells to chemotherapy. Heliyon, 2018, 4, e01039.	3.2	37
56	Targeting IFN $\hat{l}\pm$ to tumor by anti-PD-L1 creates feedforward antitumor responses to overcome checkpoint blockade resistance. Nature Communications, 2018, 9, 4586.	12.8	60
57	PD-L1 on host cells is essential for PD-L1 blockade–mediated tumor regression. Journal of Clinical Investigation, 2018, 128, 580-588.	8.2	388
58	Combining Immune Checkpoint Inhibitors With Conventional Cancer Therapy. Frontiers in Immunology, 2018, 9, 1739.	4.8	174
59	Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature, 2018, 560, 382-386.	27.8	1,836
60	CX3CR1 identifies PD-1 therapy–responsive CD8+ T cells that withstand chemotherapy during cancer chemoimmunotherapy. JCI Insight, 2018, 3, .	5.0	106
61	Pembrolizumab in patients with CLL and Richter transformation or with relapsed CLL. Blood, 2017, 129, 3419-3427.	1.4	335
62	Antibodies Against Immune Checkpoint Molecules RestoreÂFunctions of Tumor-Infiltrating T Cells in HepatocellularÂCarcinomas. Gastroenterology, 2017, 153, 1107-1119.e10.	1.3	309
63	Undifferentiated Pancreatic Carcinomas Display Enrichment for Frequency and Extent of PD-L1 Expression by Tumor Cells. American Journal of Clinical Pathology, 2017, 148, 441-449.	0.7	19
64	Temporal and spatial heterogeneity of programmed cell death 1-Ligand 1 expression in malignant mesothelioma. Oncolmmunology, 2017, 6, e1356146.	4.6	27
65	Functional Expression of Programmed Death-Ligand 1 (B7-H1) by Immune Cells and Tumor Cells. Frontiers in Immunology, 2017, 8, 961.	4.8	93
66	B7-H1 Influences the Accumulation of Virus-Specific Tissue Resident Memory T Cells in the Central Nervous System. Frontiers in Immunology, 2017, 8, 1532.	4.8	18
67	Type $\hat{\mathbb{I}}^3$ phosphatidylinositol phosphate kinase regulates PD-L1 expression by activating NF- $\hat{\mathbb{I}}^8$ B. Oncotarget, 2017, 8, 42414-42427.	1.8	26
68	PD-L1 interacts with CD80 to regulate graft-versus-leukemia activity of donor CD8+ T cells. Journal of Clinical Investigation, 2017, 127, 1960-1977.	8.2	88
69	Bim and soluble PD-L1 (sPD-L1) as predictive biomarkers of response to anti-PD-1 therapy in patients with melanoma and lung carcinoma Journal of Clinical Oncology, 2017, 35, 11534-11534.	1.6	12
70	A T cell equation as a conceptual model of T cell responses for maximizing the efficacy of cancer immunotherapy. SOJ Immunology, 2017, 5, 1-5.	0.2	0
71	T cell Bim levels reflect responses to anti–PD-1 cancer therapy. JCI Insight, 2016, 1, .	5.0	68
72	B7-H1 antibodies lose antitumor activity due to activation of p38 MAPK that leads to apoptosis of tumor-reactive CD8+ T cells. Scientific Reports, 2016, 6, 36722.	3.3	36

#	Article	IF	CITATIONS
73	BCL-2-interacting mediator of cell death (Bim) is a novel biomarker for response to anti-PD-1 therapy in patients with advanced melanoma. Immunotherapy, 2016, 8, 1351-1353.	2.0	6
74	PD-1 Blunts the Function of Ovarian Tumor–Infiltrating Dendritic Cells by Inactivating NF-κB. Cancer Research, 2016, 76, 239-250.	0.9	84
75	PD-1 Blockade with Pembrolizumab in Relapsed CLL Including Richter's Transformation: An Updated Report from a Phase 2 Trial (MC1485). Blood, 2016, 128, 4392-4392.	1.4	8
76	CpG-induced antitumor immunity requires IL-12 in expansion of effector cells and down-regulation of PD-1. Oncotarget, 2016, 7, 70223-70231.	1.8	33
77	A Gender Factor in Shaping T-Cell Immunity to Melanoma. Frontiers in Oncology, 2015, 5, 8.	2.8	13
78	PD-1 Restrains Radiotherapy-Induced Abscopal Effect. Cancer Immunology Research, 2015, 3, 610-619.	3.4	327
79	Immunomodulatory Antibody Therapy of Cancer: The Closer, the Better. Clinical Cancer Research, 2015, 21, 944-946.	7.0	13
80	Immunotherapy in Prostate Cancer. Current Urology Reports, 2015, 16, 34.	2.2	8
81	Stem Cells for Murine Interstitial Cells of Cajal Suppress Cellular Immunity and Colitis Via Prostaglandin E2 Secretion. Gastroenterology, 2015, 148, 978-990.	1.3	33
82	PD-1 Blockade with Pembrolizumab (MK-3475) in Relapsed/Refractory CLL Including Richter Transformation: An Early Efficacy Report from a Phase 2 Trial (MC1485). Blood, 2015, 126, 834-834.	1.4	17
83	Synergy of cancer immunotherapy and radiotherapy. Aging, 2015, 7, 144-145.	3.1	9
84	B7-H1 Expression in Malignant Pleural Mesothelioma is Associated with Sarcomatoid Histology and Poor Prognosis. Journal of Thoracic Oncology, 2014, 9, 1036-1040.	1.1	208
85	B7-H1 signaling is integrated during CD8+ T cell priming and restrains effector differentiation. Cancer Immunology, Immunotherapy, 2014, 63, 859-867.	4.2	13
86	A novel method for identifying downstream signals in tumor-reactive T cells following PD-1 engagement and monitoring endogenous tumor immunity and immunotherapy Journal of Clinical Oncology, 2014, 32, 3049-3049.	1.6	0
87	Endogenous tumor-reactive CD8 ⁺ T cells are differentiated effector cells expressing high levels of CD11a and PD-1 but are unable to control tumor growth. Oncolmmunology, 2013, 2, e23972.	4.6	45
88	A novel method to identify and monitor endogenous tumor-reactive T cells by high expression of CD11a (LFA-1) and PD-1 (CD279) as immunologic readout for evaluating the efficacy of PD-1 blockade Journal of Clinical Oncology, 2013, 31, 3037-3037.	1.6	0
89	B7-H1 limits the entry of effector CD8 ⁺ T cells to the memory pool by upregulating Bim. Oncolmmunology, 2012, 1, 1061-1073.	4.6	38
90	Immunotherapeutic Approaches to Hepatocellular Carcinoma Treatment. Liver Cancer, 2012, 1, 226-237.	7.7	50

#	Article	IF	Citations
91	Soluble B7-H1: Differences in production between dendritic cells and T cells. Immunology Letters, 2012, 142, 78-82.	2.5	110
92	B7-H1 Expressed by Activated CD8 T Cells Is Essential for Their Survival. Journal of Immunology, 2011, 187, 5606-5614.	0.8	74
93	Identification of a Soluble Form of B7-H1 That Retains Immunosuppressive Activity and Is Associated with Aggressive Renal Cell Carcinoma. Clinical Cancer Research, 2011, 17, 1915-1923.	7.0	313
94	Tumor-Infiltrating Programmed Death Receptor-1+ Dendritic Cells Mediate Immune Suppression in Ovarian Cancer. Journal of Immunology, 2011, 186, 6905-6913.	0.8	209
95	B7-H1 Expression in Vestibular Schwannomas. Otology and Neurotology, 2010, 31, 991-997.	1.3	26
96	<i>Cryptosporidium parvum</i> Induces B7â€H1 Expression in Cholangiocytes by Downâ€Regulating MicroRNAâ€513. Journal of Infectious Diseases, 2010, 201, 160-169.	4.0	62
97	B7-H1 Expression on Old CD8+ T Cells Negatively Regulates the Activation of Immune Responses in Aged Animals. Journal of Immunology, 2010, 184, 5466-5474.	0.8	44
98	TLR3-Stimulated Dendritic Cells Up-regulate B7-H1 Expression and Influence the Magnitude of CD8 T Cell Responses to Tumor Vaccination. Journal of Immunology, 2009, 183, 3634-3641.	0.8	110
99	MicroRNA-513 Regulates B7-H1 Translation and Is Involved in IFN- \hat{l}^3 -Induced B7-H1 Expression in Cholangiocytes. Journal of Immunology, 2009, 182, 1325-1333.	0.8	190
100	B7-H1 (PD-L1, CD274) suppresses host immunity in T-cell lymphoproliferative disorders. Blood, 2009, 114, 2149-2158.	1.4	202
101	Restoring Host Antitumoral Immunity: How Coregulatory Molecules Are Changing the Approach to the Management of Renal Cell Carcinoma. , 2009, , 367-403.		0
102	New Strategies to Improve Tumor Cell Vaccine Therapy. , 2009, , 117-131.		0
103	Tumor Cell and Tumor Vasculature Expression of B7-H3 Predict Survival in Clear Cell Renal Cell Carcinoma. Clinical Cancer Research, 2008, 14, 5150-5157.	7.0	228
104	The reverse signals of costimulatory molecule B7â€H1 negatively regulate memory CD8 T cell function in tumor immunity. FASEB Journal, 2008, 22, 523-523.	0.5	0
105	Targeting Molecular and Cellular Inhibitory Mechanisms for Improvement of Antitumor Memory Responses Reactivated by Tumor Cell Vaccine. Journal of Immunology, 2007, 179, 2860-2869.	0.8	65
106	Tumor-Infiltrating Foxp3â^CD4+CD25+ T Cells Predict Poor Survival in Renal Cell Carcinoma. Clinical Cancer Research, 2007, 13, 2075-2081.	7.0	188
107	Costimulation, Coinhibition and Cancer. Current Cancer Drug Targets, 2007, 7, 15-30.	1.6	86
108	PD-1 Is Expressed by Tumor-Infiltrating Immune Cells and Is Associated with Poor Outcome for Patients with Renal Cell Carcinoma. Clinical Cancer Research, 2007, 13, 1757-1761.	7.0	481

#	Article	IF	CITATIONS
109	Survivin and B7-H1 Are Collaborative Predictors of Survival and Represent Potential Therapeutic Targets for Patients with Renal Cell Carcinoma. Clinical Cancer Research, 2007, 13, 1749-1756.	7.0	99
110	Implications of B7-H1 Expression in Clear Cell Carcinoma of the Kidney for Prognostication and Therapy. Clinical Cancer Research, 2007, 13, 709s-715s.	7.0	191
111	PD-L1 (B7-H1) expression by urothelial carcinoma of the bladder and BCG-induced granulomata. Cancer, 2007, 109, 1499-1505.	4.1	392
112	Mononuclear cell infiltration in clear-cell renal cell carcinoma independently predicts patient survival. Cancer, 2006, 107, 46-53.	4.1	69
113	Tumor B7-H1 Is Associated with Poor Prognosis in Renal Cell Carcinoma Patients with Long-term Follow-up. Cancer Research, 2006, 66, 3381-3385.	0.9	788
114	B7-H4 expression in renal cell carcinoma and tumor vasculature: Associations with cancer progression and survival. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10391-10396.	7.1	280
115	Human Bone Marrow: A Reservoir for "Enhanced Effector Memory―CD8+ T Cells with Potent Recall Function. Journal of Immunology, 2006, 177, 6730-6737.	0.8	45
116	Immunoregulatory role of B7-H1 in chronicity of inflammatory responses. Cellular and Molecular Immunology, 2006, 3, 179-87.	10.5	65
117	Costimulatory molecule B7-H1 in primary and metastatic clear cell renal cell carcinoma. Cancer, 2005, 104, 2084-2091.	4.1	166
118	Expression of Functional B7-H2 and B7.2 Costimulatory Molecules and Their Prognostic Implications in De novo Acute Myeloid Leukemia. Clinical Cancer Research, 2005, 11, 5708-5717.	7.0	111
119	B7-H1 glycoprotein blockade: A novel strategy to enhance immunotherapy in patients with renal cell carcinoma. Urology, 2005, 66, 10-14.	1.0	48
120	Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Research, 2005, 65, 1089-96.	0.9	687
121	Costimulatory B7-H1 in renal cell carcinoma patients: Indicator of tumor aggressiveness and potential therapeutic target. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17174-17179.	7.1	723
122	B7-H3 Enhances Tumor Immunity In Vivo by Costimulating Rapid Clonal Expansion of Antigen-Specific CD8+ Cytolytic T Cells. Journal of Immunology, 2004, 173, 5445-5450.	0.8	163
123	Augmentation of T Cell Levels and Responses Induced by Androgen Deprivation. Journal of Immunology, 2004, 173, 6098-6108.	0.8	234
124	B7-H1 Determines Accumulation and Deletion of Intrahepatic CD8+ T Lymphocytes. Immunity, 2004, 20, 327-336.	14.3	352
125	Immunology of B7-H1 and Its Roles in Human Diseases. International Journal of Hematology, 2003, 78, 321-328.	1.6	34
126	B7-H1 pathway and its role in the evasion of tumor immunity. Journal of Molecular Medicine, 2003, 81, 281-287.	3.9	249

#	Article	IF	CITATIONS
127	Blockade of B7-H1 improves myeloid dendritic cell–mediated antitumor immunity. Nature Medicine, 2003, 9, 562-567.	30.7	1,157
128	Molecular Modeling and Functional Mapping of B7-H1 and B7-DC Uncouple Costimulatory Function from PD-1 Interaction. Journal of Experimental Medicine, 2003, 197, 1083-1091.	8.5	259
129	B7-H1 is up-regulated in HIV infection and is a novel surrogate marker of disease progression. Blood, 2003, 101, 2514-2520.	1.4	157
130	Costimulating aberrant T cell responses by B7-H1 autoantibodies in rheumatoid arthritis. Journal of Clinical Investigation, 2003, 111, 363-370.	8.2	164
131	B7-H1 blockade augments adoptive T-cell immunotherapy for squamous cell carcinoma. Cancer Research, 2003, 63, 6501-5.	0.9	401
132	Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion. Nature Medicine, 2002, 8, 793-800.	30.7	4,217
133	B7-H1 costimulation preferentially enhances CD28-independent T-helper cell function. Blood, 2001, 97, 1809-1816.	1.4	201
134	B7-H3: A costimulatory molecule for T cell activation and IFN- \hat{l}^3 production. Nature Immunology, 2001, 2, 269-274.	14.5	856
135	Costimulation of  T cells by B7-H2, a B7-like molecule that binds ICOS. Blood, 2000, 96, 2808-2813.	1.4	236
136	Costimulation of  T cells by B7-H2, a B7-like molecule that binds ICOS. Blood, 2000, 96, 2808-2813.	1.4	14
137	B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nature Medicine, 1999, 5, 1365-1369.	30.7	2,200
138	Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion., 0, .		1
139	Impact of PD-1 Blockade in Nonresponders: Pitfalls and Promise. Clinical Cancer Research, 0, , OF1-OF3.	7.0	2