
Tania Lam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5163432/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A systematic review of functional ambulation outcome measures in spinal cord injury. Spinal Cord, 2008, 46, 246-254.	1.9	224
2	Gait speed using powered robotic exoskeletons after spinal cord injury: a systematic review and correlational study. Journal of NeuroEngineering and Rehabilitation, 2015, 12, 82.	4.6	169
3	Contribution of Feedback and Feedforward Strategies to Locomotor Adaptations. Journal of Neurophysiology, 2006, 95, 766-773.	1.8	168
4	Proprioceptive Modulation of Hip Flexor Activity During the Swing Phase of Locomotion in Decerebrate Cats. Journal of Neurophysiology, 2001, 86, 1321-1332.	1.8	88
5	Swing Phase Resistance Enhances Flexor Muscle Activity During Treadmill Locomotion in Incomplete Spinal Cord Injury. Neurorehabilitation and Neural Repair, 2008, 22, 438-446.	2.9	79
6	The Role of Proprioceptive Feedback in the Regulation and Adaptation of Locomotor Activity. Advances in Experimental Medicine and Biology, 2002, 508, 343-355.	1.6	78
7	The mechanical relationship between the rearfoot, pelvis and low-back. Gait and Posture, 2010, 32, 637-640.	1.4	68
8	Infant stepping: a window to the behaviour of the human pattern generator for walking. Canadian Journal of Physiology and Pharmacology, 2004, 82, 662-674.	1.4	65
9	Association of Epidural Stimulation With Cardiovascular Function in an Individual With Spinal Cord Injury. JAMA Neurology, 2018, 75, 630.	9.0	65
10	Locomotor adaptations and aftereffects to resistance during walking in individuals with spinal cord injury. Journal of Neurophysiology, 2011, 106, 247-258.	1.8	62
11	A Systematic Review of the Effects of Pharmacological Agents on Walking Function in People with Spinal Cord Injury. Journal of Neurotrauma, 2012, 29, 865-879.	3.4	56
12	A Systematic Review of the Efficacy of Gait Rehabilitation Strategies for Spinal Cord Injury. Topics in Spinal Cord Injury Rehabilitation, 2007, 13, 32-57.	1.8	51
13	Turning Capacity in Ambulatory Individuals Poststroke. American Journal of Physical Medicine and Rehabilitation, 2009, 88, 873-883.	1.4	48
14	Spinal Cord Injury Functional Ambulation Profile. Neurorehabilitation and Neural Repair, 2011, 25, 285-293.	2.9	48
15	Infants Adapt Their Stepping to Repeated Trip-Inducing Stimuli. Journal of Neurophysiology, 2003, 90, 2731-2740.	1.8	48
16	Stumbling Corrective Responses During Treadmillâ€Elicited Stepping in Human Infants. Journal of Physiology, 2003, 553, 319-331.	2.9	45
17	Using Robot-Applied Resistance to Augment Body-Weight–Supported Treadmill Training in an Individual With Incomplete Spinal Cord Injury. Physical Therapy, 2011, 91, 143-151.	2.4	45
18	Reliability and validity of using the Lokomat to assess lower limb joint position sense in people with incomplete spinal cord injury. Journal of NeuroEngineering and Rehabilitation, 2014, 11, 167.	4.6	45

Tania Lam

#	Article	IF	CITATIONS
19	How Do Infants Adapt to Loading of the Limb During the Swing Phase of Stepping?. Journal of Neurophysiology, 2003, 89, 1920-1928.	1.8	44
20	Training with robot-applied resistance in people with motor-incomplete spinal cord injury: Pilot study. Journal of Rehabilitation Research and Development, 2015, 52, 113-130.	1.6	43
21	Treadmill-Based Locomotor Training with Leg Weights to Enhance Functional Ambulation in People with Chronic Stroke: A Pilot Study. Journal of Neurologic Physical Therapy, 2009, 33, 129-135.	1.4	39
22	Overground walking with a robotic exoskeleton elicits trunk muscle activity in people with high-thoracic motor-complete spinal cord injury. Journal of NeuroEngineering and Rehabilitation, 2018, 15, 109.	4.6	35
23	Overground vs. treadmill-based robotic gait training to improve seated balance in people with motor-complete spinal cord injury: a case report. Journal of NeuroEngineering and Rehabilitation, 2017, 14, 27.	4.6	34
24	Patterns of muscle coordination vary with stride frequency during weight assisted treadmill walking. Gait and Posture, 2010, 31, 360-365.	1.4	33
25	Cortical and vestibular stimulation reveal preserved descending motor pathways in individuals with motor-complete spinal cord injury. Journal of Rehabilitation Medicine, 2016, 48, 589-596.	1.1	31
26	Transfer of Motor Performance in an Obstacle Avoidance Task to Different Walking Conditions. Journal of Neurophysiology, 2004, 92, 2010-2016.	1.8	28
27	A systematic review of the effectiveness of task-specific rehabilitation interventions for improving independent sitting and standing function in spinal cord injury. Journal of Spinal Cord Medicine, 2018, 41, 254-266.	1.4	28
28	Sartorius muscle afferents influence the amplitude and timing of flexor activity in walking decerebrate cats. Experimental Brain Research, 2002, 147, 175-185.	1.5	26
29	Neuromuscular strategies in the paretic leg during curved walking in individuals post-stroke. Journal of Neurophysiology, 2011, 106, 280-290.	1.8	26
30	Potential role of oxidative stress on the prescription of rehabilitation interventions in spinal cord injury. Spinal Cord, 2013, 51, 656-662.	1.9	21
31	Feasibility of sensory tongue stimulation combined with task-specific therapy in people with spinal cord injury: a case study. Journal of NeuroEngineering and Rehabilitation, 2014, 11, 96.	4.6	20
32	Quantification of Lower Extremity Kinesthesia Deficits Using a Robotic Exoskeleton in People With a Spinal Cord Injury. Neurorehabilitation and Neural Repair, 2016, 30, 199-208.	2.9	17
33	Sensorimotor integration of vision and proprioception for obstacle crossing in ambulatory individuals with spinal cord injury. Journal of Neurophysiology, 2017, 117, 36-46.	1.8	17
34	Ergogenic effects of an epidural neuroprosthesis in one individual with spinal cord injury. Neurology, 2019, 92, 338-340.	1.1	16
35	Arm crank ergometer "spin―training improves seated balance and aerobic capacity in people with spinal cord injury. Scandinavian Journal of Medicine and Science in Sports, 2020, 30, 361-369.	2.9	16
36	Assessment of abdominal muscle function in individuals with motor-complete spinal cord injury above T6 in response to transcranial magnetic stimulation. Journal of Rehabilitation Medicine, 2015, 47, 138-146.	1.1	15

Τανία Lam

#	Article	IF	CITATIONS
37	Short-term Cortical Plasticity Associated With Feedback-Error Learning After Locomotor Training in a Patient With Incomplete Spinal Cord Injury. Physical Therapy, 2015, 95, 257-266.	2.4	14
38	Limited interlimb transfer of locomotor adaptations to a velocity-dependent force field during unipedal walking. Journal of Neurophysiology, 2012, 108, 943-952.	1.8	13
39	The relationship between lower limb proprioceptive sense and locomotor skill acquisition. Experimental Brain Research, 2016, 234, 3185-3192.	1.5	13
40	Quantifying lower limb joint position sense using a robotic exoskeleton: A pilot study. , 2011, 2011, 5975455.		12
41	The sensorimotor effects of a lower limb proprioception training intervention in individuals with a spinal cord injury. Journal of Neurophysiology, 2019, 122, 2364-2371.	1.8	11
42	Contributions to enhanced activity in rectus femoris in response to Lokomat-applied resistance. Experimental Brain Research, 2013, 225, 1-10.	1.5	10
43	Residual Innervation of the Pelvic Floor Muscles in People with Motor-Complete Spinal Cord Injury. Journal of Neurotrauma, 2020, 37, 2320-2331.	3.4	10
44	Walking Phase Modulates H-Reflex Amplitude in Flexor Carpi Radialis. Journal of Motor Behavior, 2014, 46, 49-57.	0.9	9
45	Acquisition of a precision walking skill and the impact of proprioceptive deficits in people with motor-incomplete spinal cord injury. Journal of Neurophysiology, 2019, 121, 1078-1084.	1.8	8
46	Improvements in skilled walking associated with kinematic adaptations in people with spinal cord injury. Journal of NeuroEngineering and Rehabilitation, 2019, 16, 107.	4.6	7
47	Quantifying muscle coactivation in individuals with incomplete spinal cord injury using wavelets. Clinical Biomechanics, 2020, 73, 101-107.	1.2	7
48	Breathing Frequency Changes at the Onset of Stepping in Human Infants. Journal of Neurophysiology, 2008, 99, 1224-1234.	1.8	6
49	Exoskeleton gait training to improve lower urinary tract function in people with motor-complete spinal cord injury: A randomized pilot trial. Journal of Rehabilitation Medicine, 2021, 53, jrm00222.	1.1	6
50	Neuromuscular control of curved walking in people with stroke: Case report. Journal of Rehabilitation Research and Development, 2015, 52, 775-784.	1.6	5
51	Trunk muscle activity and kinematics during boxing and battle rope exercise in people with motor-complete spinal cord injury. Journal of Spinal Cord Medicine, 2024, 47, 135-142.	1.4	4
52	Knowledge, Attitudes, and Practice of Pelvic Floor Muscle Training in People With Spinal Cord Injury: A Cross-Sectional Survey. Frontiers in Rehabilitation Sciences, 0, 3, .	1.2	4
53	Development of a rehabilitation goal menu for inpatients with neurological disorders: application in a Saudi Arabian context. Clinical Rehabilitation, 2015, 29, 1002-1012.	2.2	3
54	Accidental boosting in an individual with tetraplegia – considerations for the interpretation of cardiopulmonary exercise testing. Journal of Spinal Cord Medicine, 2022, 45, 969-974.	1.4	3

Τανιά Lam

#	Article	IF	CITATIONS
55	Effects of Exercise-Based Interventions on Urogenital Outcomes in Persons with Spinal Cord Injury: A Systematic Review and Meta-Analysis. Journal of Neurotrauma, 2021, 38, 1225-1241.	3.4	2
56	Prior experience does not alter modulation of cutaneous reflexes during manual wheeling and symmetrical arm cycling. Journal of Neurophysiology, 2013, 109, 2345-2353.	1.8	1
57	PD64-03 DEMONSTRATION OF LEVATOR ANI EMG ACTIVITY BELOW THE LEVEL OF INJURY IN COMPLETE SPINAL CORD INJURY (SCI) USING OVER GROUND ROBOTIC EXOSKELETON WALKING. Journal of Urology, 2017, 197,	0.4	1
58	Exploring the ecological validity and variability of a 10-min bout of wheeling. Disability and Rehabilitation: Assistive Technology, 2018, 13, 287-292.	2.2	0
59	2019 Champion of Change Award. Journal of Spinal Cord Medicine, 2019, 42, 8-9.	1.4	0