
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5160492/publications.pdf Version: 2024-02-01

KANG-YIN DONG

#	Article	IF	CITATIONS
1	The role of green finance in eradicating energy poverty: ways to realize green economic recovery in the post-COVID-19 era. Economic Change and Restructuring, 2023, 56, 3757-3785.	5.0	19
2	How does the internet economy affect CO ₂ emissions? Evidence from China. Applied Economics, 2023, 55, 447-466.	2.2	8
3	How will natural gas market reforms affect carbon marginal abatement costs? Evidence from China. Economic Systems Research, 2022, 34, 129-150.	2.7	22
4	Do pollutant discharge fees affect labor demand? evidence from china's industrial enterprises. Applied Economics, 2022, 54, 170-188.	2.2	12
5	How do pollution fees affect environmental quality in China?. Energy Policy, 2022, 160, 112695.	8.8	47
6	ls smart transportation associated with reduced carbon emissions? The case of China. Energy Economics, 2022, 105, 105715.	12.1	105
7	Dynamic linkages between economic policy uncertainty and the carbon futures market: Does Covid-19 pandemic matter?. Resources Policy, 2022, 75, 102455.	9.6	63
8	Moving toward carbon neutrality: Assessing natural gas import security and its impact on <scp>CO₂</scp> emissions. Sustainable Development, 2022, 30, 751-770.	12.5	7
9	How does industrial structure adjustment reduce CO2 emissions? Spatial and mediation effects analysis for China. Energy Economics, 2022, 105, 105704.	12.1	212
10	How does energy poverty eradication promote green growth in China? The role of technological innovation. Technological Forecasting and Social Change, 2022, 175, 121384.	11.6	68
11	Climate risk and corporate environmental performance: Empirical evidence from China. Sustainable Production and Consumption, 2022, 30, 467-477.	11.0	83
12	How renewable energy alleviate energy poverty? A global analysis. Renewable Energy, 2022, 186, 299-311.	8.9	129
13	Exploring provincial eco-efficiency and its coupling relationship with natural gas consumption in China. Ecological Indicators, 2022, 134, 108485.	6.3	1
14	Information spillover and market connectedness: multi-scale quantile-on-quantile analysis of the crude oil and carbon markets. Applied Economics, 2022, 54, 4465-4485.	2.2	42
15	How financial inclusion affects the collaborative reduction of pollutant and carbon emissions: The case of China. Energy Economics, 2022, 107, 105847.	12.1	129
16	How digital industries affect China's carbon emissions? Analysis of the direct and indirect structural effects. Technology in Society, 2022, 68, 101911.	9.4	87
17	Fiscal decentralization as new determinant of renewable energy demand in China: The role of income inequality and urbanization. Renewable Energy, 2022, 187, 68-80.	8.9	52
18	Urban natural gas demand and factors analysis in China: Perspectives of price and income elasticities. Petroleum Science, 2022, 19, 429-440.	4.9	16

#	Article	IF	CITATIONS
19	How will sectoral coverage in the carbon trading system affect the total oil consumption in China? A CGE-based analysis. Energy Economics, 2022, 110, 105996.	12.1	33
20	ls China's green growth possible? The roles of green trade and green energy. Economic Research-Ekonomska Istrazivanja, 2022, 35, 7084-7108.	4.7	8
21	How inclusive financial development eradicates energy poverty in China? The role of technological innovation. Energy Economics, 2022, 109, 106007.	12.1	72
22	The cost-benefit comparisons of China's and India's NDCs based on carbon marginal abatement cost curves. Energy Economics, 2022, 109, 105946.	12.1	41
23	Income inequality, energy poverty, and energy efficiency: Who cause who and how?. Technological Forecasting and Social Change, 2022, 179, 121622.	11.6	58
24	Green efficiency of natural gas and driving factors analysis: the role of the natural gas price in China. Energy Efficiency, 2022, 15, .	2.8	3
25	How natural disasters affect carbon emissions: the global case. Natural Hazards, 2022, 113, 1875-1901.	3.4	6
26	Is Financial Risk A Stumbling Block to the Development of Digital Economy? A Global Case. Emerging Markets Finance and Trade, 2022, 58, 4261-4270.	3.1	6
27	High-quality energy development in China: Comprehensive assessment and its impact on CO2 emissions. Energy Economics, 2022, 110, 106027.	12.1	33
28	Mitigating carbon emissions by accelerating green growth in China. Economic Analysis and Policy, 2022, 75, 226-243.	6.6	18
29	How does ICT agglomeration affect carbon emissions? The case of Yangtze River Delta urban agglomeration in China. Energy Economics, 2022, 111, 106107.	12.1	84
30	The impact of digital economy on energy transition across the globe: The mediating role of government governance. Renewable and Sustainable Energy Reviews, 2022, 166, 112620.	16.4	182
31	How do <scp>FDI</scp> inflows curvilinearly affect carbon emissions? Threshold effects of energy service availability and cleanliness. Australian Economic Papers, 2022, 61, 798-824.	2.2	3
32	Nexus between green technology innovation, green financing, and <scp>CO₂</scp> emissions in the <scp>G7</scp> countries: The moderating role of social globalisation. Sustainable Development, 2022, 30, 1934-1946.	12.5	150
33	What influences natural gas consumption in China: A closer look at their marginal and lag effects. Journal of Cleaner Production, 2022, 363, 132580.	9.3	3
34	Does electric vehicle promotion in the public sector contribute to urban transport carbon emissions reduction?. Transport Policy, 2022, 125, 151-163.	6.6	21
35	Is Natural Gas Consumption Mitigating Air Pollution? Fresh Evidence from National and Regional Analysis in China. Sustainable Production and Consumption, 2021, 27, 325-336.	11.0	42
36	How does fiscal decentralization affect CO2 emissions? The roles of institutions and human capital. Energy Economics, 2021, 94, 105060.	12.1	408

#	Article	IF	CITATIONS
37	How does technological innovation mitigate CO2 emissions in OECD countries? Heterogeneous analysis using panel quantile regression. Journal of Environmental Management, 2021, 280, 111818.	7.8	256
38	Analytical Approach to Quantitative Country Risk Assessment for the Belt and Road Initiative. Sustainability, 2021, 13, 423.	3.2	6
39	Valuing the greenhouse effect of political risks: the global case. Applied Economics, 2021, 53, 3604-3618.	2.2	25
40	How renewable energy reduces CO ₂ emissions? Decoupling and decomposition analysis for 25 countries along the Belt and Road. Applied Economics, 2021, 53, 4597-4613.	2.2	70
41	Can agglomeration of producer services reduce urban–rural income inequality? The case of China. Australian Economic Papers, 2021, 60, 736-762.	2.2	22
42	The roles of export diversification and composite country risks in carbon emissions abatement: evidence from the signatories of the regional comprehensive economic partnership agreement. Applied Economics, 2021, 53, 4769-4787.	2.2	114
43	Assessing energy poverty and its effect on CO2 emissions: The case of China. Energy Economics, 2021, 97, 105191.	12.1	210
44	Policy analysis for high-speed rail in China: Evolution, evaluation, and expectation. Transport Policy, 2021, 106, 37-53.	6.6	17
45	Natural gas trade network of countries and regions along the belt and road: Where to go in the future?. Resources Policy, 2021, 71, 101981.	9.6	36
46	Does low-carbon energy transition mitigate energy poverty? The case of natural gas for China. Energy Economics, 2021, 99, 105324.	12.1	135
47	Have electric vehicles effectively addressed CO2 emissions? Analysis of eight leading countries using quantile-on-quantile regression approach. Sustainable Production and Consumption, 2021, 27, 1205-1214.	11.0	72
48	How does financial risk affect global CO2 emissions? The role of technological innovation. Technological Forecasting and Social Change, 2021, 168, 120751.	11.6	230
49	Time-varying impact of financial development on carbon emissions in G-7 countries: Evidence from the long history. Technological Forecasting and Social Change, 2021, 171, 120966.	11.6	62
50	Quantifying the impacts of energy inequality on carbon emissions in China: A household-level analysis. Energy Economics, 2021, 102, 105502.	12.1	54
51	Assessing the impact of trade openness on CO2 emissions: Evidence from China-Japan-ROK FTA countries. Journal of Environmental Management, 2021, 296, 113241.	7.8	110
52	Does national air quality monitoring reduce local air pollution? The case of PM2.5 for China. Journal of Environmental Management, 2021, 296, 113232.	7.8	53
53	Research on the carbon emission effect of the seven regions along the Belt and Road—based on the spillover and feedback effects model. Journal of Cleaner Production, 2021, 319, 128758.	9.3	35
54	Decoupling and decomposition analysis of investments and CO2 emissions in information and communication technology sector. Applied Energy, 2021, 302, 117618.	10.1	64

#	Article	IF	CITATIONS
55	How does producer services' agglomeration promote carbon reduction?: The case of China. Economic Modelling, 2021, 104, 105624.	3.8	38
56	Income inequality and natural gas consumption in China: Do heterogeneous and threshold effects exist?. Australian Economic Papers, 2021, 60, 630-650.	2.2	12
57	How does low-carbon energy transition alleviate energy poverty in China? A nonparametric panel causality analysis. Energy Economics, 2021, 103, 105620.	12.1	124
58	Assessing energy resilience and its greenhouse effect: A global perspective. Energy Economics, 2021, 104, 105659.	12.1	64
59	A comparative analysis of the life cycle environmental emissions from wind and coal power: Evidence from China. Journal of Cleaner Production, 2020, 248, 119192.	9.3	69
60	How renewable energy consumption lower global CO ₂ emissions? Evidence from countries with different income levels. World Economy, 2020, 43, 1665-1698.	2.5	293
61	Characteristics and determinants of asymmetric phase shifts in China's manufacturing industrial production cycles. Applied Economics, 2020, 52, 2366-2376.	2.2	3
62	The hotspots, reference routes, and research trends of marginal abatement costs: A systematic review. Journal of Cleaner Production, 2020, 252, 119809.	9.3	15
63	Decomposition of the US CO2 emissions and its mitigation potential: An aggregate and sectoral analysis. Energy Policy, 2020, 147, 111925.	8.8	27
64	Can expanding natural gas infrastructure mitigate CO2 emissions? Analysis of heterogeneous and mediation effects for China. Energy Economics, 2020, 90, 104830.	12.1	80
65	Impact assessment of agriculture, energy and water on CO ₂ emissions in China: untangling the differences between major and non-major grain-producing areas. Applied Economics, 2020, 52, 6482-6497.	2.2	16
66	What drives China's natural gas consumption? Analysis of national and regional estimates. Energy Economics, 2020, 87, 104744.	12.1	51
67	Would environmental regulation improve the greenhouse gas benefits of natural gas use? A Chinese case study. Energy Economics, 2020, 87, 104712.	12.1	152
68	Do drivers of CO2 emission growth alter overtime and by the stage of economic development?. Energy Policy, 2020, 140, 111420.	8.8	115
69	How Does Trade Openness Affect Carbon Emission? New International Evidence. Journal of Environmental Assessment Policy and Management, 2020, 22, .	7.9	9
70	How did the price and income elasticities of natural gas demand in China evolve from 1999 to 2015? The role of natural gas price reform. Petroleum Science, 2019, 16, 685-700.	4.9	17
71	Has China's coal consumption actually reached its peak? National and regional analysis considering cross-sectional dependence and heterogeneity. Energy Economics, 2019, 84, 104509.	12.1	65
72	Research on marginal abatement cost: A bibliometric analysis. Energy Procedia, 2019, 158, 4073-4078.	1.8	3

#	Article	IF	CITATIONS
73	Increasing stringent regional environmental regulations impact gasoline demand in China. Energy Procedia, 2019, 158, 3572-3575.	1.8	2
74	Determinants of the global and regional CO ₂ emissions: What causes what and where?. Applied Economics, 2019, 51, 5031-5044.	2.2	127
75	The environmental consequences of fossil fuels in China: National and regional perspectives. Sustainable Development, 2019, 27, 826-837.	12.5	36
76	The greenhouse effect of the agriculture-economic growth-renewable energy nexus: Evidence from G20 countries. Science of the Total Environment, 2019, 671, 722-731.	8.0	225
77	Spatial econometric analysis of China's PM10 pollution and its influential factors: Evidence from the provincial level. Ecological Indicators, 2019, 96, 317-328.	6.3	45
78	Driving forces and mitigation potential of global CO2 emissions from 1980 through 2030: Evidence from countries with different income levels. Science of the Total Environment, 2019, 649, 335-343.	8.0	100
79	What drives environmental degradation? Evidence from 14 Sub-Saharan African countries. Science of the Total Environment, 2019, 656, 165-173.	8.0	323
80	What is the probability of achieving the carbon dioxide emission targets of the Paris Agreement? Evidence from the top ten emitters. Science of the Total Environment, 2018, 622-623, 1294-1303.	8.0	105
81	Public willingness to pay for urban smog mitigation and its determinants: A case study of Beijing, China. Atmospheric Environment, 2018, 173, 355-363.	4.1	39
82	Environmental Kuznets curve for PM2.5 emissions in Beijing, China: What role can natural gas consumption play?. Ecological Indicators, 2018, 93, 591-601.	6.3	73
83	Energy intensity and energy conservation potential in China: A regional comparison perspective. Energy, 2018, 155, 782-795.	8.8	123
84	Does natural gas consumption mitigate CO2 emissions: Testing the environmental Kuznets curve hypothesis for 14 Asia-Pacific countries. Renewable and Sustainable Energy Reviews, 2018, 94, 419-429.	16.4	222
85	CO2 emissions, economic and population growth, and renewable energy: Empirical evidence across regions. Energy Economics, 2018, 75, 180-192.	12.1	446
86	The growth and development of natural gas supply chains: The case of China and the US. Energy Policy, 2018, 123, 64-71.	8.8	21
87	CO2 emissions, natural gas and renewables, economic growth: Assessing the evidence from China. Science of the Total Environment, 2018, 640-641, 293-302.	8.0	276
88	CO2 emissions, economic growth, and the environmental Kuznets curve in China: What roles can nuclear energy and renewable energy play?. Journal of Cleaner Production, 2018, 196, 51-63.	9.3	328
89	Are Driving Forces of CO2 Emissions Different across Countries? Insights from Identity and Econometric Analyses. , 2018, , .		7
90	Impact of natural gas consumption on CO2 emissions: Panel data evidence from China's provinces. Journal of Cleaner Production, 2017, 162, 400-410.	9.3	145

#	Article	IF	CITATIONS
91	Selecting China's strategic petroleum reserve sites by multi-objective programming model. Petroleum Science, 2017, 14, 622-635.	4.9	15
92	Do natural gas and renewable energy consumption lead to less CO2 emission? Empirical evidence from a panel of BRICS countries. Energy, 2017, 141, 1466-1478.	8.8	412
93	A review of China's energy consumption structure and outlook based on a long-range energy alternatives modeling tool. Petroleum Science, 2017, 14, 214-227.	4.9	96
94	Sustainability Assessment of Refining Enterprises Using a DEA-Based Model. Sustainability, 2017, 9, 620.	3.2	13
95	Risk Assessment of China's Overseas Oil Refining Investment Using a Fuzzy-Grey Comprehensive Evaluation Method. Sustainability, 2017, 9, 696.	3.2	23
96	Assessing Risk in Chinese Shale Gas Investments Abroad: Modelling and Policy Recommendations. Sustainability, 2016, 8, 708.	3.2	12
97	Refining Operations: Energy Consumption and Emission. Journal of Computational and Theoretical Nanoscience, 2016, 13, 1497-1502.	0.4	1
98	Inclusive Financial Development, Energy Poverty, and Technological Innovation in China: What Causes What and How?. SSRN Electronic Journal, 0, , .	0.4	0
99	HOW DO NATURAL DISASTERS AFFECT ENERGY POVERTY? EVIDENCE FROM A GLOBAL PERSPECTIVE. Singapore Economic Review, 0, , 1-32.	1.7	5
100	Does the local electricity price affect labor demand? Evidence from China's industrial enterprises. Environment, Development and Sustainability, 0, , 1.	5.0	3