Isabelle Grillo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5159796/publications.pdf Version: 2024-02-01

ISABELLE COLLO

#	Article	IF	CITATIONS
1	Ionic Liquid-in-Oil Microemulsions. Journal of the American Chemical Society, 2005, 127, 7302-7303.	13.7	371
2	Insight into Asphaltene Nanoaggregate Structure Inferred by Small Angle Neutron and X-ray Scattering. Journal of Physical Chemistry B, 2011, 115, 6827-6837.	2.6	245
3	Structural modifications in the swelling of inhomogeneous microgels by light and neutron scattering. Physical Review E, 2002, 66, 051803.	2.1	205
4	What Is So Special about Aerosol-OT? 2. Microemulsion Systemsâ€. Langmuir, 2000, 16, 8741-8748.	3.5	189
5	Anionic Surfactant Ionic Liquids with 1-Butyl-3-methyl-imidazolium Cations: Characterization and Application. Langmuir, 2012, 28, 2502-2509.	3.5	189
6	Magnetic Control over Liquid Surface Properties with Responsive Surfactants. Angewandte Chemie - International Edition, 2012, 51, 2414-2416.	13.8	181
7	Surfactant (Bi)Layers on Gold Nanorods. Langmuir, 2012, 28, 1453-1459.	3.5	176
8	Neutron-Mapping Polymer Flow: Scattering, Flow Visualization, and Molecular Theory. Science, 2003, 301, 1691-1695.	12.6	164
9	Anionic Surfactants and Surfactant Ionic Liquids with Quaternary Ammonium Counterions. Langmuir, 2011, 27, 4563-4571.	3.5	145
10	Self-assembled nanostructures in ionic liquids facilitate charge storage at electrified interfaces. Nature Materials, 2019, 18, 1350-1357.	27.5	144
11	Structure of Micelles of a Nonionic Block Copolymer Determined by SANS and SAXS. Journal of Physical Chemistry B, 2011, 115, 11318-11329.	2.6	122
12	Effect of amphiphilic block copolymers on the structure and phase behavior of oil–water-surfactant mixtures. Journal of Chemical Physics, 2001, 115, 580-600.	3.0	108
13	Electrostatic Self-Assembly of Oppositely Charged Copolymers and Surfactants:Â A Light, Neutron, and X-ray Scattering Study. Macromolecules, 2004, 37, 4922-4930.	4.8	107
14	The small-angle neutron scattering instrument D33 at the Institut Laue–Langevin. Journal of Applied Crystallography, 2016, 49, 1-14.	4.5	97
15	Solution Self-Assembly and Adsorption at the Airâ~'Water Interface of the Monorhamnose and Dirhamnose Rhamnolipids and Their Mixtures. Langmuir, 2010, 26, 18281-18292.	3.5	96
16	Directed assembly of optoelectronically active alkyl–Ĩ€-conjugated molecules by adding n-alkanes or Ï€-conjugated species. Nature Chemistry, 2014, 6, 690-696.	13.6	92
17	Structure of colloidal complexes obtained from neutral/poly- electrolyte copolymers and oppositely charged surfactants. European Physical Journal E, 2002, 9, 301-311.	1.6	90
18	Nanosegregation and Structuring in the Bulk and at the Surface of Ionic-Liquid Mixtures. Journal of Physical Chemistry B, 2017, 121, 6002-6020.	2.6	82

#	Article	IF	CITATIONS
19	Mixtures of Cationic Polyelectrolyte and Anionic Surfactant Studied with Small-Angle Neutron Scattering. Journal of Physical Chemistry B, 2000, 104, 11689-11694.	2.6	80
20	Equilibrium Surface Adsorption Behavior in Complex Anionic/Nonionic Surfactant Mixtures. Langmuir, 2007, 23, 10140-10149.	3.5	80
21	Octanol-rich and water-rich domains in dynamic equilibrium in the pre-ouzo region of ternary systems containing a hydrotrope. Journal of Applied Crystallography, 2013, 46, 1665-1669.	4.5	76
22	Initial stages of SBA-15 synthesis: An overview. Advances in Colloid and Interface Science, 2008, 142, 67-74.	14.7	75
23	Properties of New Magnetic Surfactants. Langmuir, 2013, 29, 3246-3251.	3.5	75
24	Polymerization of Cationic Surfactant Phases. Langmuir, 2001, 17, 5388-5397.	3.5	68
25	Small-Angle Neutron Scattering and Applications in Soft Condensed Matter. , 2008, , 723-782.		67
26	Small Angle X-ray and Neutron Scattering: Powerful Tools for Studying the Structure of Drug-Loaded Liposomes. Pharmaceutics, 2016, 8, 10.	4.5	67
27	Mixing Behavior of the Biosurfactant, Rhamnolipid, with a Conventional Anionic Surfactant, Sodium Dodecyl Benzene Sulfonate. Langmuir, 2010, 26, 17958-17968.	3.5	65
28	New catanionic surfactants with ionic liquid properties. Journal of Colloid and Interface Science, 2013, 395, 185-189.	9.4	65
29	Kinetics of the Formation of 2D-Hexagonal Silica Nanostructured Materials by Nonionic Block Copolymer Templating in Solution. Journal of Physical Chemistry B, 2011, 115, 11330-11344.	2.6	64
30	Novel core-shell structure for colloids made of neutral/polyelectrolyte diblock copolymers and oppositely charged surfactants. Europhysics Letters, 2002, 58, 912-918.	2.0	63
31	Design principles for supercritical CO2 viscosifiers. Soft Matter, 2012, 8, 7044.	2.7	63
32	Equilibrium Chain Exchange Kinetics of Diblock Copolymer Micelles: Effect of Morphology. Macromolecules, 2011, 44, 6145-6154.	4.8	62
33	Neutron Scattering Studies of the Structure of a Polyelectrolyte Globule in a Waterâ~'Acetone Mixture. Macromolecules, 2001, 34, 3706-3709.	4.8	61
34	Spontaneous Formation of Nanovesicles in Mixtures of Nonionic and Dialkyl Chain Cationic Surfactants Studied by Surface Tension and SANS. Langmuir, 2009, 25, 3932-3943.	3.5	61
35	lonic Liquids in Microemulsions—A Concept To Extend the Conventional Thermal Stability Range of Microemulsions. Chemistry - A European Journal, 2010, 16, 783-786. 	3.3	61
36	Understanding the Mechanism of Action of Poly(amidoamine)s as Endosomolytic Polymers:Â Correlation of Physicochemical and Biological Properties. Biomacromolecules, 2004, 5, 1422-1427.	5.4	59

#	Article	IF	CITATIONS
37	Effect of Solvent Quality on Aggregate Structures of Common Surfactants. Langmuir, 2008, 24, 12235-12240.	3.5	59
38	Formation and structure of slightly anionically charged nanoemulsions obtained by the phase inversion concentration (PIC) method. Soft Matter, 2011, 7, 5697.	2.7	59
39	Structure of Hybrid Materials Based on Halloysite Nanotubes Filled with Anionic Surfactants. Journal of Physical Chemistry C, 2016, 120, 13492-13502.	3.1	59
40	Formation and Growth of Anionic Vesicles Followed by Small-Angle Neutron Scattering. Langmuir, 2003, 19, 4573-4581.	3.5	58
41	Side chain variations radically alter the diffusion of poly(2-alkyl-2-oxazoline) functionalised nanoparticles through a mucosal barrier. Biomaterials Science, 2016, 4, 1318-1327.	5.4	58
42	Applications of stopped-flow in SAXS and SANS. Current Opinion in Colloid and Interface Science, 2009, 14, 402-408.	7.4	57
43	Solution Self-Assembly of the Sophorolipid Biosurfactant and Its Mixture with Anionic Surfactant Sodium Dodecyl Benzene Sulfonate. Langmuir, 2011, 27, 8867-8877.	3.5	57
44	Rodlike Complexes of a Polyelectrolyte (Hyaluronan) and a Protein (Lysozyme) Observed by SANS. Biomacromolecules, 2011, 12, 859-870.	5.4	54
45	Structural Characterization of Cationic Liposomes Loaded with Sugar-Based Carboranes. Biophysical Journal, 2005, 88, 535-547.	O.5	53
46	Growth of Mesoporous Silica Nanoparticles Monitored by Time-Resolved Small-Angle Neutron Scattering. Langmuir, 2012, 28, 4425-4433.	3.5	53
47	The impact of the structuring of hydrotropes in water on the mesoscale solubilisation of a third hydrophobic component. Physical Chemistry Chemical Physics, 2017, 19, 1806-1816.	2.8	53
48	Small Angle Neutron Scattering Study of Lysozymeâ^'Sodium Dodecyl Sulfate Aggregates. Journal of Physical Chemistry B, 2003, 107, 12331-12338.	2.6	52
49	Rheology of aqueous carbon black dispersions. Journal of Colloid and Interface Science, 2004, 272, 210-217.	9.4	52
50	Exploring the Kinetics of Gelation and Final Architecture of Enzymatically Cross-Linked Chitosan/Gelatin Gels. Biomacromolecules, 2015, 16, 1401-1409.	5.4	52
51	Structure of surfactant and phospholipid monolayers at the air/water interface modeled from neutron reflectivity data. Journal of Colloid and Interface Science, 2018, 531, 98-108.	9.4	52
52	Formulation of ascorbic acid microemulsions with alkyl polyglycosides. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 72, 444-452.	4.3	51
53	Measuring and Predicting the Dynamics of Linear Monodisperse Entangled Polymers in Rapid Flow through an Abrupt Contraction. A Small Angle Neutron Scattering Study. Macromolecules, 2006, 39, 2700-2709.	4.8	50
54	Small-angle neutron scattering study of a world-wide known emulsion: Le Pastis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 225, 153-160.	4.7	49

#	Article	IF	CITATIONS
55	Self-Assembly of Short Chain Poly- <i>N</i> -isopropylacrylamid Induced by Superchaotropic Keggin Polyoxometalates: From Globules to Sheets. Journal of the American Chemical Society, 2019, 141, 6890-6899.	13.7	49
56	Ethylammonium nitrate in high temperature stable microemulsions. Journal of Colloid and Interface Science, 2010, 347, 227-232.	9.4	48
57	Reversible light-induced critical separation. Soft Matter, 2009, 5, 78-80.	2.7	47
58	Kinetics of Collapse Transition and Cluster Formation in a Thermoresponsive Micellar Solution of P(Sâ€ <i>b</i> â€NIPAMâ€ <i>b</i> â€S) Induced by a Temperature Jump. Macromolecular Rapid Communications, 2012, 33, 254-259.	3.9	47
59	"Schizophrenic―Micelles from Doubly Thermoresponsive Polysulfobetaine- <i>b</i> -poly(<i>N</i> -isopropylmethacrylamide) Diblock Copolymers. Macromolecules, 2017, 50, 3985-3999.	4.8	47
60	Competitive and Synergistic Interactions between Polymer Micelles, Drugs, and Cyclodextrins: The Importance of Drug Solubilization Locus. Langmuir, 2016, 32, 13174-13186.	3.5	46
61	Aggregation Behavior of Doubly Thermoresponsive Polysulfobetaine- <i>b</i> -poly(<i>N</i> -isopropylacrylamide) Diblock Copolymers. Macromolecules, 2016, 49, 6655-6668.	4.8	46
62	Structure and spacing of cellulose microfibrils in woody cell walls of dicots. Cellulose, 2014, 21, 3887-3895.	4.9	45
63	Highly stretchable hydrogels from complex coacervation of natural polyelectrolytes. Soft Matter, 2017, 13, 6594-6605.	2.7	44
64	Compositions of Mixed Surfactant Layers in Microemulsions Determined by Small-Angle Neutron Scattering. Langmuir, 2003, 19, 2560-2567.	3.5	43
65	The Surface and Solution Properties of Dihexadecyl Dimethylammonium Bromide. Langmuir, 2008, 24, 6509-6520.	3.5	43
66	The Impact of Multivalent Counterions, Al ³⁺ , on the Surface Adsorption and Self-Assembly of the Anionic Surfactant Alkyloxyethylene Sulfate and Anionic/Nonionic Surfactant Mixtures. Langmuir, 2010, 26, 16699-16709.	3.5	43
67	Chitosan/Alkylethoxy Carboxylates: A Surprising Variety of Structures. Langmuir, 2014, 30, 1778-1787.	3.5	42
68	Exploring the bulk-phase structure of ionic liquid mixtures using small-angle neutron scattering. Faraday Discussions, 2018, 206, 265-289.	3.2	42
69	How Does ZrO2/Surfactant Mesophase Nucleate? Formation Mechanism. Langmuir, 2003, 19, 8503-8510.	3.5	41
70	Separation and Purification of Nanoparticles in a Single Step. Langmuir, 2010, 26, 6989-6994.	3.5	41
71	Reinforcement and Polymer Mobility in Silica–Latex Nanocomposites with Controlled Aggregation. Macromolecules, 2011, 44, 9029-9039.	4.8	41
72	Bulk properties of aqueous graphene oxide and reduced graphene oxide with surfactants and polymers: adsorption and stability. Physical Chemistry Chemical Physics, 2018, 20, 16801-16816.	2.8	41

#	Article	IF	CITATIONS
73	The role of counterions on the elasticity of highly charged lamellar phases: A small-angle x-ray and neutron-scattering determination. Journal of Chemical Physics, 2005, 123, 024704.	3.0	40
74	Self-Assembly of Mixed Anionic and Nonionic Surfactants in Aqueous Solution. Langmuir, 2011, 27, 7453-7463.	3.5	40
75	Influence of Calcium Ions on Rhamnolipid and Rhamnolipid/Anionic Surfactant Adsorption and Self-Assembly. Langmuir, 2013, 29, 3912-3923.	3.5	40
76	Cononsolvency of Water/Methanol Mixtures for PNIPAM and PS- <i>b</i> -PNIPAM: Pathway of Aggregate Formation Investigated Using Time-Resolved SANS. Macromolecules, 2014, 47, 6867-6879.	4.8	40
77	Interactions between a Nonionic Gemini Surfactant and Cyclodextrins Investigated by Small-Angle Neutron Scattering. Journal of Colloid and Interface Science, 2002, 255, 403-409.	9.4	39
78	Small-Angle Neutron Scattering Study of Mixtures of Cationic Polyelectrolyte and Anionic Surfactant:Â Effect of Polyelectrolyte Charge Density. Journal of Physical Chemistry B, 2004, 108, 1874-1881.	2.6	39
79	New insights into the initial steps of the formation of SBA-15 materials: an in situ small angle neutron scattering investigation. Chemical Communications, 2007, , 834-836.	4.1	39
80	How Nanoâ€lons Act Like Ionic Surfactants. Angewandte Chemie - International Edition, 2020, 59, 8084-8088.	13.8	39
81	Hydrophobically Modified Gelatin and Its Interaction in Aqueous Solution with Sodium Dodecyl Sulfate. Langmuir, 2001, 17, 2594-2601.	3.5	38
82	SANS studies of the effects of surfactant head group on aggregation properties in water/glycol and pure glycol systems. Journal of Colloid and Interface Science, 2007, 315, 714-720.	9.4	38
83	Adsorption of Polymer–Surfactant Mixtures at the Oil–Water Interface. Langmuir, 2012, 28, 14974-14982.	3.5	38
84	Structural Characterization of Pluronic Micelles Swollen with Perfume Molecules. Langmuir, 2018, 34, 13395-13408.	3.5	38
85	What Is So Special about Aerosol-OT? Part IIIGlutaconate versus Sulfosuccinate Headgroups and Oilâ^'Water Interfacial Tensions. Langmuir, 2002, 18, 1505-1510.	3.5	37
86	Microemulsions as tunable nanomagnets. Soft Matter, 2012, 8, 11609.	2.7	37
87	<i>Aurore</i> : new software for neutron reflectivity data analysis. Journal of Applied Crystallography, 2016, 49, 330-339.	4.5	37
88	Surface and bulk properties of surfactants used in fire-fighting. Journal of Colloid and Interface Science, 2018, 530, 686-694.	9.4	37
89	Time-resolved nuclear spin-dependent small-angle neutron scattering from polarised proton domains in deuterated solutions. European Physical Journal B, 2006, 49, 157-165.	1.5	36
90	Controlling Aggregation of Nonionic Surfactants Using Mixed Glycol Media. Langmuir, 2007, 23, 4199-4202.	3.5	36

#	Article	IF	CITATIONS
91	Structure and dynamics of reverse micelles containing supercooled water investigated by neutron scattering. Physical Review E, 2009, 79, 031404.	2.1	36
92	Early stage kinetics of polyelectrolyte complex coacervation monitored through stopped-flow light scattering. Soft Matter, 2016, 12, 9030-9038.	2.7	36
93	Structural forces in soft matter systems: unique flocculation pathways between deformable droplets. Soft Matter, 2011, 7, 11334.	2.7	35
94	Diffraction evidence for the structure of cellulose microfibrils in bamboo, a model for grass and cereal celluloses. BMC Plant Biology, 2015, 15, 153.	3.6	35
95	SANS structural determination of a nonionic surfactant layer adsorbed on clay particles. European Physical Journal B, 1999, 10, 29-34.	1.5	34
96	Impact of Model Perfumes on Surfactant and Mixed Surfactant Self-Assembly. Langmuir, 2008, 24, 12209-12220.	3.5	34
97	Quantifying the Interactions in the Aggregation of Thermoresponsive Polymers: The Effect of Cononsolvency. Macromolecular Rapid Communications, 2016, 37, 420-425.	3.9	34
98	Experimental evidence for two thermodynamic length scales in neutralized polyacrylate gels. Journal of Chemical Physics, 2002, 117, 9103-9106.	3.0	33
99	Structure of Thermosensitive Poly(N-vinylcaprolactam-co-N-vinylpyrrolidone) Microgels. Macromolecules, 2005, 38, 5266-5270.	4.8	33
100	Multiple Scale Reorganization of Electrostatic Complexes of Poly(styrenesulfonate) and Lysozyme. Langmuir, 2010, 26, 7078-7085.	3.5	33
101	Photoreactive Surfactants: A Facile and Clean Route to Oxide and Metal Nanoparticles in Reverse Micelles. Langmuir, 2011, 27, 9277-9284.	3.5	33
102	From Crab Shells to Smart Systems: Chitosan–Alkylethoxy Carboxylate Complexes. Langmuir, 2014, 30, 10608-10616.	3.5	33
103	How Nanoâ€lons Act Like Ionic Surfactants. Angewandte Chemie, 2020, 132, 8161-8165.	2.0	33
104	Modeling of Intermediate Structures and Chain Conformation in Silica–Latex Nanocomposites Observed by SANS During Annealing. Macromolecules, 2012, 45, 1663-1675.	4.8	32
105	A novel explanation for the enhanced colloidal stability of silver nanoparticles in the presence of an oppositely charged surfactant. Physical Chemistry Chemical Physics, 2017, 19, 28037-28043.	2.8	32
106	PEGylated mucus-penetrating nanocrystals for lung delivery of a new FtsZ inhibitor against Burkholderia cenocepacia infection. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 23, 102113.	3.3	32
107	Alternative non-aqueous water-miscible solvents for surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 282-283, 134-142.	4.7	31
108	Mesodynamics: watching vesicle formation in situ by small-angle neutron scattering. Colloid and Polymer Science, 2010, 288, 827-840.	2.1	31

#	Article	IF	CITATIONS
109	Self-Assembling Peptide/Thermoresponsive Polymer Composite Hydrogels: Effect of Peptide–Polymer Interactions on Hydrogel Properties. Langmuir, 2014, 30, 10471-10480.	3.5	31
110	Structural and Spectroscopic Characterization of TPGS Micelles: Disruptive Role of Cyclodextrins and Kinetic Pathways. Langmuir, 2017, 33, 4737-4747.	3.5	31
111	Kinetics of aggregation in micellar solutions of thermoresponsive triblock copolymers – influence of concentration, start and target temperatures. Soft Matter, 2013, 9, 1685-1699.	2.7	30
112	Vesicle Gel Formed by a Self-Organization Process. Journal of Physical Chemistry B, 2000, 104, 11594-11597.	2.6	29
113	Structure and Dynamics of a Thermoresponsive Microgel around Its Volume Phase Transition Temperature. Journal of Physical Chemistry B, 2010, 114, 10285-10293.	2.6	29
114	Physical Hydrogels via Charge Driven Self-Organization of a Triblock Polyampholyte – Rheological and Structural Investigations. Macromolecules, 2014, 47, 7561-7572.	4.8	29
115	Insertion of Small Anionic Particles in Negatively Charged Lamellar Phases. Langmuir, 2000, 16, 4830-4839.	3.5	28
116	Influence of the Formulation Process in Electrostatic Assembly of Nanoparticles and Macromolecules in Aqueous Solution: The Mixing Pathway. Journal of Physical Chemistry C, 2010, 114, 12870-12877.	3.1	28
117	Recovery of Nanoparticles Made Easy. Langmuir, 2010, 26, 3794-3797.	3.5	28
118	Self-Assembly of Hydrophobin and Hydrophobin/Surfactant Mixtures in Aqueous Solution. Langmuir, 2011, 27, 10514-10522.	3.5	28
119	Effect of Temperature, Cosolvent, and Added Drug on Pluronic–Flurbiprofen Micellization. Journal of Physical Chemistry B, 2012, 116, 11545-11551.	2.6	28
120	Rupture of Pluronic Micelles by Di-Methylated β-Cyclodextrin Is Not Due to Polypseudorotaxane Formation. Journal of Physical Chemistry B, 2012, 116, 1273-1281.	2.6	28
121	Photoinduced Phase Separation. Journal of the American Chemical Society, 2006, 128, 1468-1469.	13.7	27
122	Characterising the size and shape of polyamidoamines in solution as a function of pH using neutron scattering and pulsed-gradient spin-echo NMR. International Journal of Pharmaceutics, 2006, 317, 175-186.	5.2	27
123	Photodestructible Vesicles. Langmuir, 2006, 22, 851-853.	3.5	27
124	Self-Assembly in Mixed Dialkyl Chain Cationicâ~'Nonionic Surfactant Mixtures: Dihexadecyldimethyl Ammonium Bromideâ~'Monododecyl Hexaethylene Glycol (Monododecyl Dodecaethylene Glycol) Mixtures. Langmuir, 2008, 24, 7674-7687.	3.5	26
125	Complexing a small interfering RNA with divalent cationic surfactants. Soft Matter, 2012, 8, 749-756.	2.7	26
126	Hemicellulose binding and the spacing of cellulose microfibrils in spruce wood. Cellulose, 2020, 27, 4249-4254.	4.9	26

#	Article	IF	CITATIONS
127	Self-Assembly in Complex Mixed Surfactant Solutions: The Impact of Dodecyl Triethylene Glycol on Dihexadecyl Dimethyl Ammonium Bromide. Langmuir, 2008, 24, 10089-10098.	3.5	25
128	The long-chain dynamics in a model homopolymer blend under strong flow: small-angle neutron scattering and theory. Soft Matter, 2009, 5, 2383.	2.7	25
129	The Adsorption and Self-Assembly of Mixtures of Alkylbenzene Sulfonate Isomers and the Role of Divalent Electrolyte. Langmuir, 2011, 27, 6674-6682.	3.5	25
130	Cylinder to sphere transition in reverse microemulsions: The effect of hydrotropes. Journal of Colloid and Interface Science, 2013, 392, 304-310.	9.4	25
131	Interaction between Surfactants and Colloidal Latexes in Nonpolar Solvents Studied Using Contrast-Variation Small-Angle Neutron Scattering. Langmuir, 2014, 30, 3422-3431.	3.5	25
132	Morphology of bile salts micelles and mixed micelles with lipolysis products, from scattering techniques and atomistic simulations. Journal of Colloid and Interface Science, 2021, 587, 522-537.	9.4	25
133	Control over Microemulsions with Solvent Blends. Langmuir, 2009, 25, 2743-2748.	3.5	24
134	Growth and Branching of Charged Wormlike Micelles as Revealed by Dilution Laws. Langmuir, 2010, 26, 10411-10414.	3.5	24
135	Neutron scattering from polarised proton domains. Europhysics Letters, 2002, 59, 62-67.	2.0	23
136	ASAXS, SAXS and SANS investigations of vulcanized elastomers filled with carbon black. Journal of Synchrotron Radiation, 2006, 13, 445-452.	2.4	23
137	Electrostastic Control of Spontaneous Curvature in Catanionic Reverse Micelles. Langmuir, 2007, 23, 9983-9989.	3.5	23
138	Competition between Entropy and Electrostatic Interactions in a Binary Colloidal Mixture of Spheres and Platelets. Langmuir, 2008, 24, 11422-11430.	3.5	23
139	Combined molecular dynamics (MD) and small angle scattering (SAS) analysis of organization on a nanometer-scale in ternary solvent solutions containing a hydrotrope. Journal of Colloid and Interface Science, 2019, 540, 623-633.	9.4	23
140	Structure–property relationships in metallosurfactants. Soft Matter, 2010, 6, 1981.	2.7	22
141	Structure of colloidal sphere–plate mixtures. Journal of Physics Condensed Matter, 2011, 23, 194109.	1.8	22
142	Spontaneous Transformations between Surfactant Bilayers of Different Topologies Observed in Mixtures of Sodium Octyl Sulfate and Hexadecyltrimethylammonium Bromide. Langmuir, 2014, 30, 3928-3938.	3.5	22
143	Surfactants with colloids: Adsorption or absorption?. Journal of Colloid and Interface Science, 2015, 449, 205-214.	9.4	22
144	Molecular insights into the behaviour of bile salts at interfaces: a key to their role in lipid digestion. Journal of Colloid and Interface Science, 2019, 556, 266-277.	9.4	22

#	Article	IF	CITATIONS
145	Spontaneous Ouzo Emulsions Coexist with Pre-Ouzo Ultraflexible Microemulsions. Langmuir, 2021, 37, 3817-3827.	3.5	22
146	Testing the Scaling Behavior of Microemulsionâ^'Polymer Mixtures. Langmuir, 2009, 25, 3944-3952.	3.5	21
147	Small Angle Neutron Scattering Study of Polyelectrolyte Brushes Grafted to Well-Defined Gold Nanoparticle Interfaces. Langmuir, 2010, 26, 7482-7488.	3.5	21
148	Insertion of small anisotropic clay particles in swollen lamellar or sponge phases of nonionic surfactant. European Physical Journal E, 2001, 5, 377-386.	1.6	20
149	Photo-stabilised microemulsions. Chemical Communications, 2005, , 2785.	4.1	20
150	Phase Behavior, Topology, and Growth of Neutral Catanionic Reverse Micelles. Langmuir, 2006, 22, 8017-8028.	3.5	20
151	Structure and rheological properties of model microemulsion networks filled with nanoparticles. European Physical Journal E, 2008, 26, 13-24.	1.6	20
152	Supercooling of water confined in reverse micelles. Journal of Physics Condensed Matter, 2008, 20, 104204.	1.8	20
153	Small-Angle Neutron Scattering Study of Microemulsionâ~'Polymer Mixtures in the Protein Limit. Langmuir, 2008, 24, 3053-3060.	3.5	20
154	Self-Assembly in Mixtures of an Anionic and a Cationic Surfactant: A Comparison between Small-Angle Neutron Scattering and Cryo-Transmission Electron Microscopy. Langmuir, 2013, 29, 11834-11848.	3.5	20
155	Impact of AlCl ₃ on the Self-Assembly of the Anionic Surfactant Sodium Polyethylene Glycol Monoalkyl Ether Sulfate in Aqueous Solution. Langmuir, 2013, 29, 13359-13366.	3.5	20
156	Phase Transitions in a Single Supported Phospholipid Bilayer: Real-Time Determination by Neutron Reflectometry. Physical Review Letters, 2019, 122, 248101.	7.8	20
157	Microemulsion-based organogels containing inorganic nanoparticles. Soft Matter, 2010, 6, 1291.	2.7	19
158	Structural Investigation on Thermoresponsive PVA/Poly(methacrylate- <i>co</i> - <i>N</i> -isopropylacrylamide) Microgels across the Volume Phase Transition. Macromolecules, 2011, 44, 4470-4478.	4.8	19
159	Pseudo-Polyrotaxanes of Cyclodextrins with Direct and Reverse X-Shaped Block Copolymers: A Kinetic and Structural Study. Macromolecules, 2019, 52, 1458-1468.	4.8	19
160	Formation of Surfactant-Stabilized Silica Organosols. Langmuir, 2008, 24, 12793-12797.	3.5	18
161	Time-resolved small-angle neutron scattering as a lamellar phase evolves into a microemulsion. Soft Matter, 2009, 5, 2125.	2.7	18
162	Surface and Solution Properties of Anionic/Nonionic Surfactant Mixtures of Alkylbenzene Sulfonate and Triethyleneglycol Decyl Ether. Langmuir, 2010, 26, 10614-10626.	3.5	18

#	Article	IF	CITATIONS
163	Phase Behavior, Small-Angle Neutron Scattering and Rheology of Ternary Nonionic Surfactant–Oil–Water Systems: A Comparison of Oils. Langmuir, 2013, 29, 3575-3582.	3.5	18
164	Ion Specific Effects in Trivalent Counterion Induced Surface and Solution Self-Assembly of the Anionic Surfactant Sodium Polyethylene Glycol Monododecyl Ether Sulfate. Langmuir, 2014, 30, 4694-4702.	3.5	18
165	Phase Transitions in Non-ionic Detergent Micelles. Magyar Apróvad Közlemények, 2002, 68, 469-478.	1.4	17
166	Synthetic Viruslike Particles and Hybrid Constructs Based on Lipopeptide Selfâ€Assembly. Small, 2010, 6, 1191-1196.	10.0	17
167	Alignment of Dispersions of Plate-Like Colloidal Particles of Ni(OH) ₂ Induced by Elongational Flow. Journal of Physical Chemistry B, 2011, 115, 3271-3280.	2.6	17
168	The collapse and aggregation of thermoresponsive poly(2-oxazoline) gradient copolymers: a time-resolved SANS study. Colloid and Polymer Science, 2014, 292, 2413-2425.	2.1	17
169	Effects of small ionic amphiphilic additives on reverse microemulsion morphology. Journal of Colloid and Interface Science, 2014, 421, 56-63.	9.4	17
170	Fluorinated lamellar phases: structural characterisation and use as templates for highly ordered silica materials. Soft Matter, 2014, 10, 4902-4912.	2.7	17
171	Combination of acoustic levitation with small angle scattering techniques and synchrotron radiation circular dichroism. Application to the study of protein solutions. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 3693-3699.	2.4	17
172	Molecular characterization of a hyperbranched polyester. II. Small-angle neutron scattering. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 1352-1361.	2.1	16
173	Phase Behavior of Polyelectrolyte Block Copolymers in Mixed Solvents. Macromolecules, 2008, 41, 1872-1880.	4.8	16
174	Not All Anionic Polyelectrolytes Complex with DTAB. Langmuir, 2009, 25, 13712-13717.	3.5	16
175	Self-assembly in dilute mixtures of non-ionic and anionic surfactants and rhamnolipd biosurfactants. Journal of Colloid and Interface Science, 2017, 487, 493-503.	9.4	16
176	Superchaotropic nano-ions as foam stabilizers. Journal of Colloid and Interface Science, 2021, 603, 141-147.	9.4	16
177	Photosensitive gelatin. Chemical Communications, 2006, , 4407.	4.1	15
178	A systematic study of the influence of mesoscale structuring on the kinetics of a chemical reaction. Physical Chemistry Chemical Physics, 2017, 19, 23773-23780.	2.8	15
179	High-Temperature Behavior of Early Life Membrane Models. Langmuir, 2020, 36, 13516-13526.	3.5	15
180	The Frozen State in the Liquid Phase of Side-Chain Liquid-Crystal Polymers. Physical Review Letters, 2006, 96, 077801.	7.8	14

#	Article	IF	CITATIONS
181	Characterization of bamboo foam films by neutron and X-ray experiments. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 309, 112-116.	4.7	14
182	Impact of Model Perfume Molecules on the Self-Assembly of Anionic Surfactant Sodium Dodecyl 6-Benzene Sulfonate. Langmuir, 2013, 29, 3234-3245.	3.5	14
183	Structure of polymer and particle aggregates in hydrogel composites. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 421-429.	2.1	14
184	Form fluctuations of polymer loaded spherical microemulsions studied by neutron scattering and dielectric spectroscopy. Journal of Chemical Physics, 2014, 141, 084903.	3.0	14
185	Trimethylsilyl hedgehogs – a novel class of super-efficient hydrocarbon surfactants. Physical Chemistry Chemical Physics, 2017, 19, 23869-23877.	2.8	14
186	An experimental approach to the dynamics of nuclear polarisation. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 526, 81-90.	1.6	13
187	Shear-Induced Morphology Transition and Microphase Separation in a Lamellar Phase Doped with Clay Particles. Langmuir, 2004, 20, 3947-3953.	3.5	13
188	Photo-labile lamellar phases. Soft Matter, 2008, 4, 1215.	2.7	13
189	Effects of Structure Variation on Solution Properties of Hydrotropes: Phenyl versus Cyclohexyl Chain Tips. Langmuir, 2012, 28, 9332-9340.	3.5	13
190	Tuning the Viscoelasticity of Nonionic Wormlike Micelles with β-Cyclodextrin Derivatives: A Highly Discriminative Process. Langmuir, 2013, 29, 7697-7708.	3.5	13
191	Correlation between the geometrical shape and growth behaviour of surfactant micelles investigated with small-angle neutron scattering. Soft Matter, 2014, 10, 9362-9372.	2.7	13
192	Structural Investigation of Carbosilane Liquid Crystalline Dendrimers. Journal of Physical Chemistry B, 2008, 112, 16346-16356.	2.6	12
193	Transition from Vesicles to Small Nanometer Scaled Vesicles, Arising from the Manipulation of Curvature in Dialkyl Chain Cationic/Nonionic Surfactant Mixed Aggregates by the Addition of Straight Chain Alkanols. Langmuir, 2009, 25, 4934-4944.	3.5	12
194	Neutron flow-mapping: Multiscale modelling opens a new experimental window. Soft Matter, 2009, 5, 4426.	2.7	12
195	Scaling the Structure Factors of Protein Limit Colloidâ^'Polymer Mixtures. Langmuir, 2010, 26, 1630-1634.	3.5	12
196	Pd- η ³ -C ₆ H ₉ complexes of the Trost modular ligand: high nuclearity columnar aggregation controlled by concentration, solvent and counterion. Chemical Science, 2015, 6, 5793-5801.	7.4	12
197	Small angle neutron scattering study of globular proteins confined in porous carbons. Carbon, 2016, 106, 142-151.	10.3	12
198	Looking into Limoncello: The Structure of the Italian Liquor Revealed by Small-Angle Neutron Scattering. ACS Omega, 2018, 3, 15407-15415.	3.5	12

#	Article	IF	CITATIONS
199	A small-angle neutron scattering study of biologically relevant mixed surfactant micelles comprising 1,2-diheptanoyl-sn-phosphatidylcholine and sodium dodecyl sulfate or dodecyltrimethylammonium bromide. Soft Matter, 2005, 1, 152.	2.7	11
200	Colloidal Structure and Stability of DNA/Polycations Polyplexes Investigated by Small Angle Scattering. Biomacromolecules, 2011, 12, 4272-4282.	5.4	11
201	Monomerâ^'Aggregate Exchange Rates in Dialkyl Chain Cationicâ^'Nonionic Surfactant Mixtures. Langmuir, 2009, 25, 2661-2666.	3.5	10
202	Structural Characterization of Self-Assembling Hybrid Nanoparticles for Bisphosphonate Delivery in Tumors. Molecular Pharmaceutics, 2018, 15, 1258-1265.	4.6	10
203	One-step procedure for the preparation of functional polysaccharide/fatty acid multilayered coatings. Communications Chemistry, 2019, 2, .	4.5	10
204	Biocompatible Glyconanoparticles by Grafting Sophorolipid Monolayers on Monodispersed Iron Oxide Nanoparticles. ACS Applied Bio Materials, 2019, 2, 3095-3107.	4.6	10
205	Structure of the H-NS–DNA nucleoprotein complex. Soft Matter, 2016, 12, 3636-3642.	2.7	9
206	Chain conformation: A key parameter driving clustering or dispersion in polyelectrolyte – Colloid systems. Journal of Colloid and Interface Science, 2020, 561, 426-438.	9.4	9
207	Albumin-driven disassembly of lipidic nanoparticles: the specific case of the squalene-adenosine nanodrug. Nanoscale, 2020, 12, 2793-2809.	5.6	9
208	Interactions of bile salts with a dietary fibre, methylcellulose, and impact on lipolysis. Carbohydrate Polymers, 2020, 231, 115741.	10.2	9
209	Variegated Micelle Surfaces:Â Correlating the Microstructure of Mixed Surfactant Micelles with Bulk Solution Properties. Langmuir, 2004, 20, 7313-7322.	3.5	8
210	Structure and dynamics of nanoemulsions: Insights from combining dynamic and static neutron scattering. Physical Review E, 2012, 86, 061407.	2.1	8
211	The role of solvent swelling in the self-assembly of squalene based nanomedicines. Soft Matter, 2015, 11, 4173-4179.	2.7	8
212	Green Nanovectors for Phytodrug Delivery: In-Depth Structural and Morphological Characterization. ACS Sustainable Chemistry and Engineering, 2019, 7, 12838-12846.	6.7	8
213	Polymerization of Cationic Surfactant Films in Microemulsions. Journal of Dispersion Science and Technology, 2001, 22, 597-607.	2.4	7
214	Neutron reflection and small-angle neutron scattering studies of a fluorocarbon telomer surfactant. Journal of Colloid and Interface Science, 2003, 261, 184-190.	9.4	7
215	Neutron scattering from polarised proton domains. Physica B: Condensed Matter, 2003, 335, 193-195.	2.7	7
216	Fluorocarbon–hydrocarbon incompatibility in micellar polymerizations. Journal of Colloid and Interface Science, 2009, 330, 437-442.	9.4	7

#	Article	IF	CITATIONS
217	Lipid multilayered particles: the role of chitosan on structure and morphology. Soft Matter, 2010, 6, 2533.	2.7	7
218	Polymer conformation in nanoscopic soft confinement. Soft Matter, 2017, 13, 6709-6717.	2.7	7
219	SANS study of the mechanisms and kinetics of the synthesis of mesoporous materials from micelles of tri-block copolymers. Studies in Surface Science and Catalysis, 2008, , 805-810.	1.5	6
220	Impact of Ni(OH) ₂ Platelike Particles on Lamellar Surfactant Mesophases and the Orientation of Their Mixtures under Elongational Flow. Journal of Physical Chemistry B, 2011, 115, 10413-10424.	2.6	6
221	The effect of size ratio on the sphere structure factor in colloidal sphere-plate mixtures. Journal of Chemical Physics, 2012, 137, 204909.	3.0	6
222	Effect of particle polydispersity on the structure and dynamics of complex formation between small particles and large polymer. RSC Advances, 2014, 4, 14896.	3.6	6
223	Polymer loaded microemulsions: Changeover from finite size effects to interfacial interactions. Journal of Chemical Physics, 2016, 145, 164904.	3.0	6
224	Supramolecular gels of cholesterol-modified gellan gum with disc-like and worm-like micelles. Journal of Colloid and Interface Science, 2019, 556, 301-312.	9.4	6
225	Dynamics of Formation of Vesicles Studied by Highly Time-resolved Stopped-flow Experiments. Tenside, Surfactants, Detergents, 2010, 47, 300-306.	1.2	6
226	Polymeric Surfactant P84/Polyoxometalate α-PW12O4O3â^'—A Model System to Investigate the Interplay between Chaotropic and Hydrophobic Effects. Colloids and Interfaces, 2022, 6, 16.	2.1	6
227	Light-sensitive lamellar phases. Journal of Colloid and Interface Science, 2008, 322, 611-616.	9.4	5
228	Chain Deformation in Entangled Polymer Melts at Re-entrant Corners. Macromolecules, 2010, 43, 1539-1542.	4.8	5
229	Polymer-induced recovery of nanoparticles from microemulsions. Physical Chemistry Chemical Physics, 2011, 13, 3059-3063.	2.8	5
230	A Neutron Scattering Study of the Structure of Poly(dimethylsiloxane)-Stabilized Poly(methyl) Tj ETQq0 0 0 rgB1	[Oyerloch	₹ 19 Tf 50 222
231	Small angle neutron scattering with single grain quasicrystals. Physica B: Condensed Matter, 2001, 300, 52-60.	2.7	4
232	Polymer Blends in a Contractionâ [~] 'Expansion Flow. Macromolecules, 2006, 39, 7607-7616.	4.8	4
233	Bidisperse colloids: Nanoparticles and microemulsions in coexistence. Journal of Colloid and Interface Science, 2010, 344, 447-450.	9.4	4
234	The solution phase characterization of poly(ferrocenyldimethylsilane)s by small-angle neutron scattering. Journal of Polymer Science Part A, 2013, 51, 4011-4020.	2.3	4

#	Article	IF	CITATIONS
235	The aggregation of an alkyl–C ₆₀ derivative as a function of concentration, temperature and solvent type. Physical Chemistry Chemical Physics, 2018, 20, 3373-3380.	2.8	4
236	Silica nanoparticles dispersed in a self-assembled viscoelastic matrix: structure, rheology, and comparison to reinforced elastomers. Brazilian Journal of Physics, 2009, 39, 198-204.	1.4	3
237	Neutron imaging using a conventional small-angle neutron scattering instrument. Journal of Applied Crystallography, 2016, 49, 736-742.	4.5	3
238	The Initiation Mechanism of Butadiene Polymerization in Aliphatic Hydrocarbons: A Full Mechanistic Approach. Macromolecules, 2016, 49, 5397-5406.	4.8	3
239	Formation Kinetics of Oil-Rich, Nonionic Microemulsions. Langmuir, 2016, 32, 6360-6366.	3.5	3
240	Spontaneous Nanoparticle Dispersal in Polybutadiene by Brush-Forming End-Functional Polymers. Macromolecules, 2016, 49, 1434-1443.	4.8	3
241	Local vibrational and mechanical characterization of Ag conducting chalcogenide glasses. Journal of Alloys and Compounds, 2018, 762, 906-914.	5.5	3
242	SANS Study of Coated Block Copolymer Micelles. Macromolecular Chemistry and Physics, 2005, 206, 1206-1215.	2.2	2
243	Molecular exchange in spherical diblock copolymer colloids synthesised by polymerisation-induced self-assembly. Journal of Colloid and Interface Science, 2020, 579, 243-249.	9.4	2
244	Threading Different Rings on X-Shaped Block Copolymers: Hybrid Pseudopolyrotaxanes of Cyclodextrins and Tetronics. Macromolecules, 2020, 53, 3166-3174.	4.8	2
245	Dynamics of structural transitions in amphiphilic systems monitored by scattering techniques. , 2004, , 32-39.		1
246	MendiletÂal.Reply:. Physical Review Letters, 2007, 98, .	7.8	1
247	Dynamics of Nanostructures for Drug Delivery: the Potential of QENS. Zeitschrift Fur Physikalische Chemie, 2010, 224, 227-242.	2.8	1
248	POLARIZED PROTONS DOMAINS IN MATTER. , 2002, , .		1
249	Neutron Flow-Mapping of Controlled-Architecture Polymer Melts. AIP Conference Proceedings, 2008, ,	0.4	0