List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5159587/publications.pdf Version: 2024-02-01

SHUICHI KODAIRA

#	Article	IF	CITATIONS
1	High Pore Fluid Pressure May Cause Silent Slip in the Nankai Trough. Science, 2004, 304, 1295-1298.	12.6	668
2	Splay Fault Branching Along the Nankai Subduction Zone. Science, 2002, 297, 1157-1160.	12.6	522
3	The 2011 Tohoku-Oki Earthquake: Displacement Reaching the Trench Axis. Science, 2011, 334, 1240-1240.	12.6	377
4	Seismological evidence of mantle flow driving plate motions at a palaeo-spreading centre. Nature Geoscience, 2014, 7, 371-375.	12.9	302
5	Subducted Seamount Imaged in the Rupture Zone of the 1946 Nankaido Earthquake. Science, 2000, 289, 104-106.	12.6	277
6	Coseismic fault rupture at the trench axis during the 2011 Tohoku-oki earthquake. Nature Geoscience, 2012, 5, 646-650.	12.9	193
7	Crustal structure and evolution of the Mariana intra-oceanic island arc. Geology, 2007, 35, 203.	4.4	183
8	Along-arc structural variation of the plate boundary at the Japan Trench margin: Implication of interplate coupling. Journal of Geophysical Research, 2002, 107, ESE 11-1-ESE 11-15.	3.3	173
9	Seismological evidence for variable growth of crust along the Izu intraoceanic arc. Journal of Geophysical Research, 2007, 112, .	3.3	141
10	Structure and growth of the Izuâ€Boninâ€Mariana arc crust: 2. Role of crustâ€mantle transformation and the transparent Moho in arc crust evolution. Journal of Geophysical Research, 2008, 113, .	3.3	136
11	Crustal structure across the coseismic rupture zone of the 1944 Tonankai earthquake, the central Nankai Trough seismogenic zone. Journal of Geophysical Research, 2002, 107, EPM 2-1-EPM 2-21.	3.3	128
12	Structural factors controlling the rupture process of a megathrust earthquake at the Nankai trough seismogenic zone. Geophysical Journal International, 2002, 149, 815-835.	2.4	128
13	New seismological constraints on growth of continental crust in the Izu-Bonin intra-oceanic arc. Geology, 2007, 35, 1031.	4.4	115
14	Tectonic features of the Japan Trench convergent margin off Sanriku, northeastern Japan, revealed by multichannel seismic reflection data. Journal of Geophysical Research, 2000, 105, 16403-16413.	3.3	114
15	Silicic Magmas in the Izu–Bonin Oceanic Arc and Implications for Crustal Evolution. Journal of Petrology, 2009, 50, 685-723.	2.8	112
16	Stress State in the Largest Displacement Area of the 2011 Tohoku-Oki Earthquake. Science, 2013, 339, 687-690.	12.6	112
17	Low-frequency tremors associated with reverse faults in a shallow accretionary prism. Earth and Planetary Science Letters, 2009, 287, 168-174.	4.4	111
18	Structural characteristics off Miyagi forearc region, the Japan Trench seismogenic zone, deduced from a wide-angle reflection and refraction study. Tectonophysics, 2005, 407, 165-188.	2.2	106

#	Article	IF	CITATIONS
19	Systematic changes in the incoming plate structure at the Kuril trench. Geophysical Research Letters, 2013, 40, 88-93.	4.0	102
20	Structure and growth of the Izuâ€Boninâ€Mariana arc crust: 1. Seismic constraint on crust and mantle structure of the Mariana arc–backâ€arc system. Journal of Geophysical Research, 2008, 113, .	3.3	98
21	Western Nankai Trough seismogenic zone: Results from a wide-angle ocean bottom seismic survey. Journal of Geophysical Research, 2000, 105, 5887-5905.	3.3	97
22	Shallow very-low-frequency earthquakes accompany slow slip events in the Nankai subduction zone. Nature Communications, 2018, 9, 984.	12.8	96
23	Crustal structure of the central part of the VÃ,ring Basin, mid-Norway margin, from ocean bottom seismographs. Tectonophysics, 1997, 277, 235-257.	2.2	91
24	Normalâ€faulting earthquakes beneath the outer slope of the Japan Trench after the 2011 Tohoku earthquake: Implications for the stress regime in the incoming Pacific plate. Geophysical Research Letters, 2012, 39, .	4.0	91
25	Crustal structure of southwest Japan, revealed by the integrated seismic experiment Southwest Japan 2002. Tectonophysics, 2009, 472, 124-134.	2.2	89
26	A low-velocity zone with weak reflectivity along the Nankai subduction zone. Geology, 2010, 38, 283-286.	4.4	89
27	A deep strong reflector in the Nankai accretionary wedge from multichannel seismic data: Implications for underplating and interseismic shear stress release. Journal of Geophysical Research, 2002, 107, ESE 3-1-ESE 3-16.	3.3	86
28	A cause of rupture segmentation and synchronization in the Nankai trough revealed by seismic imaging and numerical simulation. Journal of Geophysical Research, 2006, 111, .	3.3	81
29	Detailed structural image around splayâ€fault branching in the Nankai subduction seismogenic zone: Results from a highâ€density ocean bottom seismic survey. Journal of Geophysical Research, 2008, 113, .	3.3	81
30	Structure of the Jan Mayen microcontinent and implications for its evolution. Geophysical Journal International, 1998, 132, 383-400.	2.4	79
31	Crustal structure of the northern part of the VÃ,ring Basin, mid-Norway margin, from wide-angle seismic and gravity data. Tectonophysics, 1998, 293, 175-205.	2.2	79
32	Crustal structure of the outer VÃ,ring Plateau, offshore Norway, from ocean bottom seismic and gravity data. Journal of Geophysical Research, 2001, 106, 6769-6791.	3.3	79
33	<i>V</i> _P / <i>V</i> _S ratio and shear-wave splitting in the Nankai Trough seismogenic zone: Insights into effective stress, pore pressure, and sediment consolidation. Geophysics, 2011, 76, WA71-WA82.	2.6	79
34	A subducting seamount beneath the Nankai Accretionary Prism off Shikoku, southwestern Japan. Geophysical Research Letters, 1999, 26, 931-934.	4.0	78
35	Bending of the subducting oceanic plate and its implication for rupture propagation of large interplate earthquakes off Miyagi, Japan, in the Japan Trench subduction zone. Geophysical Research Letters, 2005, 32, .	4.0	78
36	Crustal structure of the southern Okinawa Trough: Symmetrical rifting, submarine volcano, and potential mantle accretion in the continental backâ€arc basin. Journal of Geophysical Research: Solid Earth, 2017, 122, 622-641.	3.4	74

#	Article	IF	CITATIONS
37	A slump in the trench: Tracking the impact of the 2011 Tohoku-Oki earthquake. Geology, 2013, 41, 935-938.	4.4	73
38	Crustal structure of the southern part of the VÃ,ring Basin, mid-Norway margin, from wide-angle seismic and gravity data. Tectonophysics, 2002, 355, 99-126.	2.2	71
39	Title is missing!. Marine Geophysical Researches, 2002, 23, 169-183.	1.2	71
40	A subducted oceanic ridge influencing the Nankai megathrust earthquake rupture. Earth and Planetary Science Letters, 2004, 217, 77-84.	4.4	69
41	Crustal structure of the Kolbeinsey Ridge, North Atlantic, obtained by use of ocean bottom seismographs. Journal of Geophysical Research, 1997, 102, 3131-3151.	3.3	68
42	Confirming sharp bending of the Pacific plate in the northern Japan trench subduction zone by applying a traveltime mapping method. Physics of the Earth and Planetary Interiors, 2006, 157, 72-85.	1.9	66
43	Structural characteristics controlling the seismicity crustal structure of southern Japan Trench fore-arc region, revealed by ocean bottom seismographic data. Tectonophysics, 2003, 363, 79-102.	2.2	65
44	Seismic structure and seismogenesis off Sanriku region, northeastern Japan. Geophysical Journal International, 2004, 159, 129-145.	2.4	65
45	Structural variations of arc crusts and rifted margins in the southern Izuâ€Ogasawara arc–back arc system. Geochemistry, Geophysics, Geosystems, 2009, 10, .	2.5	65
46	The 1946 Nankai earthquake and segmentation of the Nankai Trough. Physics of the Earth and Planetary Interiors, 2002, 132, 75-87.	1.9	64
47	Controlling factor of incoming plate hydration at the north-western Pacific margin. Nature Communications, 2018, 9, 3844.	12.8	63
48	Crustal lineaments, distribution of lower crustal intrusives and structural evolution of the VÃ,ring Margin, NE Atlantic; new insight from wide-angle seismic models. Tectonophysics, 2003, 369, 199-218.	2.2	59
49	Learning from crustal deformation associated with the M9 2011 Tohoku-oki earthquake. , 2018, 14, 552-571.		58
50	Missing Oligocene Crust of the Izu-Bonin Arc: Consumed or Rejuvenated During Collision?. Journal of Petrology, 2010, 51, 823-846.	2.8	56
51	Highâ€resolution seismic imaging in the Japan Trench axis area off Miyagi, northeastern Japan. Geophysical Research Letters, 2013, 40, 1713-1718.	4.0	56
52	Large fault slip peaking at trench in the 2011 Tohoku-oki earthquake. Nature Communications, 2017, 8, 14044.	12.8	56
53	Multiscale seismic imaging of the eastern Nankai trough by full waveform inversion. Geophysical Research Letters, 2004, 31, .	4.0	52
54	Aftershocks near the updip end of the 2011 Tohoku-Oki earthquake. Earth and Planetary Science Letters, 2013, 382, 111-116.	4.4	51

#	Article	IF	CITATIONS
55	Detection of hydroacoustic signals on a fiber-optic submarine cable. Scientific Reports, 2021, 11, 2797.	3.3	50
56	Out-of-sequence thrust faults developed in the coseismic slip zone of the 1946 Nankai Earthquake (Mw=8.2) off Shikoku, southwest Japan. Geophysical Research Letters, 2000, 27, 1033-1036.	4.0	49
57	Geochemical variations in Japan Sea backâ€arc basin basalts formed by highâ€temperature adiabatic melting of mantle metasomatized by sediment subduction components. Geochemistry, Geophysics, Geosystems, 2015, 16, 1324-1347.	2.5	49
58	The State of Stress on the Fault Before, During, and After a Major Earthquake. Annual Review of Earth and Planetary Sciences, 2020, 48, 49-74.	11.0	49
59	Detailed subduction structure across the eastern Nankai Trough obtained from ocean bottom seismographic profiles. Journal of Geophysical Research, 1998, 103, 27151-27168.	3.3	48
60	Seismic structure of western end of the Nankai trough seismogenic zone. Journal of Geophysical Research, 2002, 107, ESE 2-1-ESE 2-19.	3.3	48
61	Cyclic ridge subduction at an inter-plate locked zone off central Japan. Geophysical Research Letters, 2003, 30, .	4.0	47
62	Deep seismic imaging of the eastern Nankai trough, Japan, from multifold ocean bottom seismometer data by combined travel time tomography and prestack depth migration. Journal of Geophysical Research, 2004, 109, .	3.3	47
63	Evolution from foreâ€arc oceanic crust to island arc crust: A seismic study along the Izuâ€Bonin fore arc. Journal of Geophysical Research, 2010, 115, .	3.3	47
64	Crustal structure across the middle Ryukyu trench obtained from ocean bottom seismographic data. Tectonophysics, 1996, 263, 39-60.	2.2	45
65	Structure of the tsunamigenic plate boundary and low-frequency earthquakes in the southern Ryukyu Trench. Nature Communications, 2016, 7, 12255.	12.8	45
66	Depth-varying structural characters in the rupture zone of the 2011 Tohoku-oki earthquake. , 2017, 13, 1408-1424.		45
67	Micro-seismicity around the seaward updip limit of the 1946 Nankai Earthquake dislocation area. Geophysical Research Letters, 2001, 28, 2333-2336.	4.0	43
68	Deformable backstop as seaward end of coseismic slip in the Nankai Trough seismogenic zone. Earth and Planetary Science Letters, 2002, 203, 255-263.	4.4	43
69	Vp/Vs ratio along the VÃ,ring Margin, NE Atlantic, derived from OBS data: implications on lithology and stress field. Tectonophysics, 2003, 369, 175-197.	2.2	43
70	Seismic constraints of the formation process on the backâ€arc basin in the southeastern Japan Sea. Journal of Geophysical Research: Solid Earth, 2014, 119, 1563-1579.	3.4	43
71	Urgent aftershock observation of the 2004 off the Kii Peninsula earthquake using ocean bottom seismometers. Earth, Planets and Space, 2005, 57, 363-368.	2.5	42
72	Precise aftershock distribution of the 2007 Chuetsu-oki Earthquake obtained by using an ocean bottom seismometer network. Earth, Planets and Space, 2008, 60, 1121-1126.	2.5	41

#	Article	IF	CITATIONS
73	Seismicity in the incoming/subducting Philippine Sea plate off the Kii Peninsula, central Nankai trough. Journal of Geophysical Research, 2005, 110, .	3.3	40
74	Seismic imaging of a possible paleoarc in the Izuâ€Bonin intraoceanic arc and its implications for arc evolution processes. Geochemistry, Geophysics, Geosystems, 2008, 9, .	2.5	39
75	Alongâ€trench variations in the seismic structure of the incoming Pacific plate at the outer rise of the northern Japan Trench. Geophysical Research Letters, 2016, 43, 666-673.	4.0	37
76	Imaging of the subducted Kyushu-Palau Ridge in the Hyuga-nada region, western Nankai Trough subduction zone. Tectonophysics, 2013, 589, 90-102.	2.2	36
77	Spatial variations of incoming sediments at the northeastern Japan arc and their implications for megathrust earthquakes. Geology, 2020, 48, 614-619.	4.4	36
78	Structural factors controlling the coseismic rupture zone of the 1973 Nemuro-Oki earthquake, the southern Kuril Trench seismogenic zone. Journal of Geophysical Research, 2004, 109, .	3.3	35
79	Fault plane geometry in the source region of the 1994 Sanriku-oki earthquake. Earth and Planetary Science Letters, 2004, 223, 163-175.	4.4	35
80	Seafloor Displacement After the 2011 Tohokuâ€oki Earthquake in the Northern Japan Trench Examined by Repeated Bathymetric Surveys. Geophysical Research Letters, 2017, 44, 11,833.	4.0	35
81	Crustal structure of the Lofoten continental margin, off northern Norway, from ocean-bottom seismographic studies. Geophysical Journal International, 1995, 121, 907-924.	2.4	34
82	Crustal evolution of the southwestern Kuril Arc, Hokkaido Japan, deduced from seismic velocity and geochemical structure. Tectonophysics, 2009, 472, 105-123.	2.2	34
83	Research article: The formation of the Jan Mayen microcontinent: the missing piece in the continental puzzle between the MÃ,re-VÃ,ring Basins and East Greenland. First Break, 1997, 15, .	0.4	34
84	Outer-rise normal fault development and influence on near-trench décollement propagation along the Japan Trench, off Tohoku. Earth, Planets and Space, 2014, 66, 135.	2.5	33
85	Advent of Continents: A New Hypothesis. Scientific Reports, 2016, 6, 33517.	3.3	33
86	Microseismicity around rupture area of the 1944 Tonankai earthquake from ocean bottom seismograph observations. Earth and Planetary Science Letters, 2004, 222, 561-572.	4.4	32
87	Sub-basalt structures east of the Faroe Islands revealed from wide-angle seismic and gravity data. Petroleum Geoscience, 2005, 11, 291-308.	1.5	32
88	Precise aftershock distribution of the 2011 off the Pacific coast of Tohoku Earthquake revealed by an ocean-bottom seismometer network. Earth, Planets and Space, 2012, 64, 1137-1148.	2.5	32
89	Seismic imaging and velocity structure around the JFAST drill site in the Japan Trench: low Vp, high Vp/Vs in the transparent frontal prism. Earth, Planets and Space, 2014, 66, 121.	2.5	32
90	Gravity and S-wave modelling across the Jan Mayen Ridge, North Atlantic; implications for crustal lithology. Marine Geophysical Researches, 2007, 28, 27-41.	1.2	31

#	Article	IF	CITATIONS
91	Last stage of the Japan Sea back-arc opening deduced from the seismic velocity structure using wide-angle data. Geochemistry, Geophysics, Geosystems, 2006, 7, n/a-n/a.	2.5	30
92	Modelling shear waves in OBS data from the Vi¿½ring basin (Northern Norway) by 2-D ray-tracing. Pure and Applied Geophysics, 1996, 147, 611-629.	1.9	29
93	A regional shear-wave velocity model in the central VÃ ring Basin, N. Norway, using three-component Ocean Bottom Seismographs. Tectonophysics, 1998, 293, 157-174.	2.2	29
94	VpIVsratio structure of the Lofoten continental margin, northern Norway, and its geological implications. Geophysical Journal International, 1996, 124, 724-740.	2.4	27
95	Structural evolution of preexisting oceanic crust through intraplate igneous activities in the Marcusâ€Wake seamount chain. Geochemistry, Geophysics, Geosystems, 2010, 11, .	2.5	27
96	Structural heterogeneities around the megathrust zone of the 2011 Tohoku earthquake from tomographic inversion of onshore and offshore seismic observations. Journal of Geophysical Research: Solid Earth, 2014, 119, 1165-1180.	3.4	27
97	Detailed plate boundary structure off northeast Japan coast. Geophysical Research Letters, 2000, 27, 1977-1980.	4.0	26
98	Crustal structure of the ocean-island arc transition at the mid Izu-Ogasawara (Bonin) arc margin. Earth, Planets and Space, 2006, 58, e33-e36.	2.5	26
99	Role of fluids in the initiation of the 2008 Iwate earthquake (M7.2) in northeast Japan. Geophysical Research Letters, 2008, 35, .	4.0	26
100	Seismogenic zone temperatures and heat-flow anomalies in the To-nankai margin segment based on temperature data from IODP expedition 333 and thermal model. Earth and Planetary Science Letters, 2012, 349-350, 171-185.	4.4	26
101	Upper-plate controls on subduction zone geometry, hydration and earthquake behaviour. Nature Geoscience, 2022, 15, 143-148.	12.9	26
102	Widely distributed thrust and strike-slip faults within subducting oceanic crust in the Nankai Trough off the Kii Peninsula, Japan. Tectonophysics, 2013, 600, 52-62.	2.2	25
103	The source fault of the 1983 Nihonkai–Chubu earthquake revealed by seismic imaging. Earth and Planetary Science Letters, 2014, 400, 14-25.	4.4	23
104	Earthquake Activity in Northern Cascadia Subduction Zone Off Vancouver Island Revealed by Oceanâ€Bottom Seismograph Observations. Bulletin of the Seismological Society of America, 2015, 105, 489-495.	2.3	23
105	Large Coseismic Slip to the Trench During the 2011 Tohoku-Oki Earthquake. Annual Review of Earth and Planetary Sciences, 2020, 48, 321-343.	11.0	23
106	Microseismicity at the seaward updip limit of the western Nankai Trough seismogenic zone. Journal of Geophysical Research, 2003, 108, .	3.3	22
107	Three-dimensional P- and S-wave velocity structures beneath Japan. Physics of the Earth and Planetary Interiors, 2008, 168, 49-70.	1.9	22
108	Aftershock observation of the 2011 off the Pacific coast of Tohoku Earthquake by using ocean bottom seismometer network. Earth, Planets and Space, 2011, 63, 835-840.	2.5	22

#	Article	IF	CITATIONS
109	Subduction of thick oceanic plateau and highâ€angle normalâ€fault earthquakes intersecting the slab. Geophysical Research Letters, 2017, 44, 6109-6115.	4.0	22
110	Seismic velocity structure and its implications for oceanic mantle hydration in the trench–outer rise of the Japan Trench. Geophysical Journal International, 2019, 217, 1629-1642.	2.4	22
111	Ocean Floor Networks Capture Low-Frequency Earthquake Event. Eos, 2016, 97, .	0.1	22
112	Structural heterogeneities in the crust and upper mantle beneath Taiwan. Tectonophysics, 2009, 476, 460-477.	2.2	21
113	Forearc slope deformation above the Japan Trench megathrust: Implications for subduction erosion. Earth and Planetary Science Letters, 2017, 462, 26-34.	4.4	21
114	Recycling of depleted continental mantle by subduction and plumes at the Hikurangi Plateau large igneous province, southwestern Pacific Ocean. Geology, 2019, 47, 795-798.	4.4	21
115	Along-trench structural variation and seismic coupling in the northern Japan subduction zone. Earth, Planets and Space, 2013, 65, 75-83.	2.5	19
116	Friction properties of the plate boundary megathrust beneath the frontal wedge near the Japan Trench: an inference from topographic variation. Earth, Planets and Space, 2014, 66, .	2.5	19
117	The 2016 Mw 5.9 earthquake off the southeastern coast of Mie Prefecture as an indicator of preparatory processes of the next Nankai Trough megathrust earthquake. Progress in Earth and Planetary Science, 2018, 5, .	3.0	19
118	Structure of oceanic crust in back-arc basins modulated by mantle source heterogeneity. Geology, 2021, 49, 468-472.	4.4	19
119	Intraoceanic thrusts in the Nankai Trough off the Kii Peninsula: Implications for intraplate earthquakes. Geophysical Research Letters, 2009, 36, .	4.0	18
120	Seismic structure off the Kii Peninsula, Japan, deduced from passive- and active-source seismographic data. Earth and Planetary Science Letters, 2017, 461, 163-175.	4.4	18
121	Seismic reflection and bathymetric evidences for the Nankai earthquake rupture across a stable segment-boundary. Earth, Planets and Space, 2012, 64, 299-303.	2.5	17
122	Ambient seafloor noise excited by earthquakes in the Nankai subduction zone. Nature Communications, 2015, 6, 6132.	12.8	17
123	The continent/ocean transition of the Lofoten volcanic margin, N. Norway. Journal of Geodynamics, 1996, 22, 189-206.	1.6	16
124	Comparison between a Regional and Semi-regional Crustal OBS Model in the VÃ,ring Basin, Mid-Norway Margin. Pure and Applied Geophysics, 1997, 149, 641-665.	1.9	16
125	Rayleigh wave phase velocity measurements across the Philippine sea from a broad-band OBS array. Geophysical Journal International, 2004, 158, 257-266.	2.4	16
126	Amplitude modeling of the seismic reflectors in the crustâ€mantle transition layer beneath the volcanic front along the northern Izuâ€Bonin island arc. Geochemistry, Geophysics, Geosystems, 2009, 10, .	2.5	16

#	Article	IF	CITATIONS
127	Threeâ€Dimensional <i>P</i> Wave Velocity Structure of the Northern Hikurangi Margin From the NZ3D Experiment: Evidence for Faultâ€Bound Anisotropy. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB020433.	3.4	16
128	Three-dimensional plate geometry and P-wave velocity models of the subduction zone in SW Japan: Implications for seismogenesis. , 0, , .		16
129	Hypocenter distribution of the main- and aftershocks of the 2005 Off Miyagi Prefecture earthquake located by ocean bottom seismographic data. Earth, Planets and Space, 2006, 58, 1543-1548.	2.5	15
130	Seafloor seismometers monitor northern Cascadia earthquakes. Eos, 2011, 92, 421-422.	0.1	15
131	Evolution of the Earth as an andesite planet: water, plate tectonics, and delamination of anti-continent. Earth, Planets and Space, 2015, 67, .	2.5	15
132	Physical properties and seismic structure of <scp>lzu</scp> â€ <scp>B</scp> oninâ€ <scp>M</scp> ariana foreâ€arc crust: Results from IODP <scp>E</scp> xpedition 352 and comparison with oceanic crust. Geochemistry, Geophysics, Geosystems, 2016, 17, 4973-4991.	2.5	15
133	Structural variation of the oceanic Moho in the Pacific plate revealed by active-source seismic data. Earth and Planetary Science Letters, 2017, 476, 111-121.	4.4	15
134	Seismic evidence for arc segmentation, active magmatic intrusions and syn-rift fault system in the northern Ryukyu volcanic arc. Earth, Planets and Space, 2018, 70, .	2.5	15
135	Seismicity in the source areas of the 1896 and 1933 Sanriku earthquakes and implications for large near-trench earthquake faults. Geophysical Journal International, 2018, 212, 2061-2072.	2.4	14
136	Spatial relationship between recent compressional structures and older high-velocity crustal structures; examples from the VÃring Margin, NE Atlantic, and Northern Honshu, Japan. Journal of Geodynamics, 2003, 36, 537-562.	1.6	13
137	Onshore-offshore seismic transect from the eastern Nankai Trough to central Japan crossing a zone of the Tokai slow slip event. Earth, Planets and Space, 2005, 57, 943-959.	2.5	13
138	Alongâ€arc variation in seismic velocity structure related to variable growth of arc crust in northern Izuâ€Bonin intraoceanic arc. Geochemistry, Geophysics, Geosystems, 2010, 11, .	2.5	13
139	Aftershocks of the December 7, 2012 intraplate doublet near the Japan Trench axis. Earth, Planets and Space, 2014, 66, .	2.5	12
140	Active-source seismic survey on the northeastern Hawaiian Arch: insights into crustal structure and mantle reflectors. Earth, Planets and Space, 2018, 70, .	2.5	12
141	Processes Governing Giant Subduction Earthquakes: IODP Drilling to Sample and Instrument Subduction Zone Megathrusts. Oceanography, 2019, 32, 80-93.	1.0	12
142	Crustal Structure Across the Lord Howe Rise, Northern Zealandia, and Rifting of the Eastern Gondwana Margin. Journal of Geophysical Research: Solid Earth, 2019, 124, 3036-3056.	3.4	12
143	Deep Investigations of Outerâ€Rise Tsunami Characteristics Using Wellâ€Mapped Normal Faults Along the Japan Trench. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB020060.	3.4	12
144	Correlation of frontal prism structures and slope failures near the trench axis with shallow megathrust slip at the Japan Trench. Scientific Reports, 2020, 10, 11607.	3.3	12

9

#	Article	IF	CITATIONS
145	Seismicity around the trench axis and outer-rise region of the southern Japan Trench, south of the main rupture area of the 2011 Tohoku-oki earthquake. Geophysical Journal International, 2021, 226, 131-145.	2.4	12
146	Crustal Structure of the Northern Hikurangi Margin, New Zealand: Variable Accretion and Overthrusting Plate Strength Influenced by Rough Subduction. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021176.	3.4	12
147	Title is missing!. Marine Geophysical Researches, 2002, 23, 123-145.	1.2	11
148	Seismicity at the Eastern End of the 1944 Tonankai Earthquake Rupture Area. Bulletin of the Seismological Society of America, 2009, 99, 110-122.	2.3	11
149	Seismic reflection imaging of a Warm Core Ring south of Hokkaido. Exploration Geophysics, 2011, 42, 18-24.	1.1	11
150	Modeling the Geometry of Plate Boundary and Seismic Structure in the Southern Ryukyu Trench Subduction Zone, Japan, Using Amphibious Seismic Observations. Journal of Geophysical Research: Solid Earth, 2018, 123, 1793-1809.	3.4	11
151	Spatial relationship between shallow very low frequency earthquakes and the subducted Kyushu-Palau Ridge in the Hyuga-nada region of the Nankai subduction zone. Geophysical Journal International, 2020, 222, 1542-1554.	2.4	11
152	Heterogeneous structure of western Nankai seismogenic zone deduced by multichannel reflection data and wide-angle seismic data. Tectonophysics, 2003, 364, 167-190.	2.2	10
153	Distribution and migration of aftershocks of the 2010 Mw 7.4 Ogasawara Islands intraplate normal-faulting earthquake related to a fracture zone in the Pacific plate. Geochemistry, Geophysics, Geosystems, 2014, 15, 1363-1373.	2.5	10
154	Delayed Subsidence After Rifting and a Record of Breakup for Northwestern Zealandia. Journal of Geophysical Research: Solid Earth, 2019, 124, 3057-3072.	3.4	10
155	Seismic Characteristics of the Nootka Fault Zone: Results from the Seafloor Earthquake Array Japan–Canada Cascadia Experiment (SeaJade). Bulletin of the Seismological Society of America, 2019, 109, 2252-2276.	2.3	10
156	An extensive Ocean Bottom Seismograph survey in the VÃ,ring basin, Norway. First Break, 1996, 14, .	0.4	10
157	The MoHole: A Crustal Journey and Mantle Quest, Workshop in Kanazawa, Japan, 3–5 June 2010. Scientific Drilling, 0, 10, 56-63.	0.6	10
158	Seismic image and its implications for an earthquake swarm at an active volcanic region off the Miyake-jima–Kozu-shima, Japan. Geophysical Research Letters, 2002, 29, 43-1.	4.0	9
159	Seismicity and structural heterogeneities around the western Nankai Trough subduction zone, southwestern Japan. Earth and Planetary Science Letters, 2014, 396, 34-45.	4.4	9
160	Velocity Structure of the Izu–Ogasawara Island Arc. Journal of Geography (Chigaku) Tj ETQq0 0 0 rgE	3T /Oyerloo 0.3	ck]0 Tf 50 I
161	Seismic Evidence of Magmatic Rifting in the Offshore Taupo Volcanic Zone, New Zealand. Geophysical Research Letters, 2019, 46, 12949-12957.	4.0	9

162Transition from continental rift to back-arc basin in the southern Japan Sea deduced from seismic
velocity structures. Geophysical Journal International, 2020, 221, 722-739.2.4

#	Article	IF	CITATIONS
163	Investigating a tsunamigenic megathrust earthquake in the Japan Trench. Science, 2021, 371, .	12.6	9
164	Seismicity related to heterogeneous structure along the western Nankai trough off Shikoku Island. Geophysical Research Letters, 2006, 33, .	4.0	8
165	Physical interpretation of the characteristics of LCDs embedded with MgO and SiO ₂ nanoparticles. Journal of the Society for Information Display, 2008, 16, 871-874.	2.1	8
166	Characteristics of deformation structure around the 2007 Niigata-ken Chuetsu-oki earthquake detected by multi-channel seismic reflection imaging. Earth, Planets and Space, 2009, 61, 1111-1115.	2.5	8
167	Geographical distribution of shear wave anisotropy within marine sediments in the northwestern Pacific. Progress in Earth and Planetary Science, 2015, 2, .	3.0	8
168	Evidence for frozen melts in the mid-lithosphere detected from active-source seismic data. Scientific Reports, 2017, 7, 15770.	3.3	8
169	Bathymetric imaging of protothrust zone along the Nankai Trough. Island Arc, 2018, 27, e12233.	1.1	8
170	Crustal Structure of the Hikurangi Margin From SHIRE Seismic Data and the Relationship Between Forearc Structure and Shallow Megathrust Slip Behavior. Geophysical Research Letters, 2022, 49, .	4.0	8
171	The 3â€D distribution of random velocity inhomogeneities in southwestern Japan and the western part of the Nankai subduction zone. Journal of Geophysical Research: Solid Earth, 2013, 118, 2246-2257.	3.4	7
172	Deformation of the Manazuru Knoll in Sagami Bay, central Japan, associated with subduction of the Philippine Sea plate. Earth, Planets and Space, 2014, 66, .	2.5	7
173	Construction of DONET2. , 2016, , .		7
174	Lateral variation of the uppermost oceanic plate in the outer-rise region of the Northwest Pacific Ocean inferred from Po-to-s converted waves. Earth, Planets and Space, 2018, 70, .	2.5	7
175	Seismic Structure of the Oceanic Crust Around Petitâ€5pot Volcanoes in the Outerâ€Rise Region of the Japan Trench. Geophysical Research Letters, 2018, 45, 11,123.	4.0	7
176	Evidence for Mass Transport Deposits at the IODP JFAST-Site in the Japan Trench. Advances in Natural and Technological Hazards Research, 2014, , 33-43.	1.1	7
177	Investigation of the Huge Tsunami from the 2011 TÅhoku-Oki, Japan, Earthquake Using Ocean Floor Boreholes to the Fault Zone. Oceanography, 2014, 27, 132-137.	1.0	7
178	Heterogeneous Sediment Input at the Nankai Trough Subduction Zone: Implications for Shallow Slow Earthquake Localization. Geochemistry, Geophysics, Geosystems, 2021, 22, .	2.5	7
179	Structural Anomaly at the Boundary Between Strong and Weak Plate Coupling in the Centralâ€Western Nankai Trough. Geophysical Research Letters, 2022, 49, .	4.0	7
180	Acquisition, processing and analysis of densely sampled P- and S-wave OBS-data on the mid-Norwegian Margin, NE Atlantic. Earth, Planets and Space, 2002, 54, e1219-e1236.	2.5	6

#	Article	IF	CITATIONS
181	Intra-plate seismicity in the subducting Philippine Sea Plate, southwest Japan: magnitude–depth correlations. Physics of the Earth and Planetary Interiors, 2004, 145, 179-202.	1.9	6
182	Random inhomogeneities in the northern Izu-Bonin arc estimated by tomographic inversion of peak delay times ofSwave seismograms. Journal of Geophysical Research, 2011, 116, .	3.3	6
183	<i>S</i> wave attenuation structure on the western side of the Nankai subduction zone: Implications for fluid distribution and dynamics. Journal of Geophysical Research: Solid Earth, 2014, 119, 7805-7822.	3.4	6
184	Seismic imaging for an ocean drilling site survey and its verification in the Izu rear arc. Exploration Geophysics, 2018, 49, 1-10.	1.1	6
185	Rejuvenated extension of the Philippine Sea plate and its effect on subduction dynamics in the Nankai Trough. Island Arc, 2021, 30, e12402.	1.1	6
186	Wide-angle seismic profiling of arc-arc collision zone in the northern Izu-Ogasawara arc –KYO4O8 cruise–. JAMSTEC Report of Research and Development, 2005, 1, 23-36.	0.2	6
187	Wide-angle seismic profiling of oceanic island arc in the southern Izu-Ogasawara arc –KY0502 cruise–. JAMSTEC Report of Research and Development, 2006, 3, 43-52.	0.2	6
188	Overview of the Drilling Project on the Bend-fault Hydrology in Old Incoming Plate. Journal of Geography (Chigaku Zasshi), 2017, 126, 247-262.	0.3	6
189	Extraction of <i>P</i> Wave From Ambient Seafloor Noise Observed by Distributed Acoustic Sensing. Geophysical Research Letters, 2022, 49, .	4.0	6
190	Structure of a Volcanic Continental Margin Derived from Ocean-bottom Seismographic Data: The Northern VÃ,ring Margin, off Norway. Pure and Applied Geophysics, 1998, 152, 1-21.	1.9	5
191	New Insights from Seismic Images of the Oceanic Plate in the Northwestern Pacific. Journal of Geography (Chigaku Zasshi), 2015, 124, 321-332.	0.3	5
192	Fracture Alignments in Marine Sediments Off Vancouver Island fromPsSplitting Analysis. Bulletin of the Seismological Society of America, 2017, 107, 387-402.	2.3	5
193	Significant geometric variation of the subducted plate beneath the northernmost Cascadia subduction zone and its tectonic implications as revealed by the 2014 M 6.4 earthquake sequence. Earth and Planetary Science Letters, 2020, 551, 116569.	4.4	5
194	Crustal Transect across the Lofoten Volcanic Passive Continental Margin, N. Norway, Obtained by Use of Ocean Bottom Seismographs, and Implications for Its Evolution Journal of Physics of the Earth, 1995, 43, 729-745.	1.4	5
195	Frequency dispersion amplifies tsunamis caused by outer-rise normal faults. Scientific Reports, 2021, 11, 20064.	3.3	5
196	Red relief image map and integration of topographic data in and around the Japan Sea. JAMSTEC Report of Research and Development, 2016, 22, 13-29.	0.2	5
197	Title is missing!. Marine Geophysical Researches, 1997, 19, 81-96.	1.2	4
198	Three-component OBS-data processing for lithology and fluid prediction in the mid-Norway margin, NE Atlantic. Earth, Planets and Space, 2001, 53, 75-89.	2.5	4

#	Article	IF	CITATIONS
199	Structural variation of the Bonin ridge revealed by modeling of seismic and gravity data. Earth, Planets and Space, 2011, 63, 963-973.	2.5	4
200	Stress and displacement fields in the outer wedge induced by megathrust earthquakes. Journal of Geophysical Research: Solid Earth, 2014, 119, 4219-4232.	3.4	4
201	Structural characteristics of the Bayonnaise Knoll caldera as revealed by a high-resolution seismic reflection survey. Earth, Planets and Space, 2015, 67, .	2.5	4
202	Interferometric OBS imaging for wide-angle seismic data. Geophysics, 2017, 82, Q39-Q51.	2.6	4
203	Crustal characteristic variation in the central Yamato Basin, Japan Sea back-arc basin, deduced from seismic survey results. Tectonophysics, 2018, 726, 1-13.	2.2	4
204	Multichannel seismic reflection data from the southern part of the Japan Sea. JAMSTEC Report of Research and Development, 2018, 27, 127-141.	0.2	4
205	Highâ€Đensity Seismic Refraction Imaging of Plateâ€Boundary Structures in the Slow Earthquake Gap Zone off Western Kii Peninsula, Nankai Trough. Geophysical Research Letters, 2021, 48, e2020GL089132.	4.0	4
206	Wide-angle seismic experiment crossing the Sofu-gan tectonic line in the Izu-Ogasawara arc –KY0507 cruise–. JAMSTEC Report of Research and Development, 2006, 3, 19-29.	0.2	4
207	MCS seismic profiling of an oceanic island arc in the southern Izu-Ogasawara arc-backarc area –KR0607 cruise–. JAMSTEC Report of Research and Development, 2007, 5, 51-60.	0.2	4
208	Refraction and reflection Seismic profilings to investigate Eocene arc-KY0715 cruise JAMSTEC Report of Research and Development, 2008, 8, 91-106.	0.2	4
209	Regional and semi-regional modelling of wide-angle shear waves in OBS data from the VÃ,ring Basin, N. Norway—a comparison. Earth, Planets and Space, 2003, 55, 65-81.	2.5	3
210	Deep Seismic Investigation of the Ontong Java Plateau. Eos, 2011, 92, 61-62.	0.1	3
211	Plate geometry model and seismicity in the northern Ryukyu subduction zone, Japan, deduced from amphibious seismic observations. Earth and Planetary Science Letters, 2020, 536, 116143.	4.4	3
212	Along-strike variations in protothrust zone characteristics at the Nankai Trough subduction margin. , 2021, 17, 389-408.		3
213	Weak faults at megathrust plate boundary respond to tidal stress. Earth, Planets and Space, 2021, 73, .	2.5	3
214	Active source seismic studies across/along across-arc seamount chains in Izu-Bonin arc –Cruise report of KR0601 and KR0605–. JAMSTEC Report of Research and Development, 2006, 4, 13-26.	0.2	3
215	Multi-channel seismic reflection survey in the Izu-Ogasawara-Mariana island arc –KR06-13 cruise report–. JAMSTEC Report of Research and Development, 2007, 5, 41-50.	0.2	3
216	Multi-channel seismic reflection survey in the northern Izu-Ogasawara island arc –KR07-09 cruise–. JAMSTEC Report of Research and Development, 2008, 7, 31-41.	0.2	3

#	Article	IF	CITATIONS
217	Microseismicity in the Reykjanes Ridge, July, 1990: Hypocenter Distribution Derived from an OBS Array. Zisin (Journal of the Seismological Society of Japan 2nd Ser), 1992, 45, 327-337.	0.2	2
218	Correction to "A cause of rupture segmentation and synchronization in the Nankai trough revealed by seismic imaging and numerical simulation― Journal of Geophysical Research, 2006, 111, .	3.3	2
219	Reflection imaging of oceanic fine structure under strong ocean current in the Izu-Ogasawara region. , 2015, , .		2
220	Wide-area distribution of S-wave anisotropy estimated by airgun surveys around seafloor-cabled seismometers in the Nankai Trough, Japan. , 2016, , .		2
221	Time lapse seismic analysis of the Tohoku-Oki 2011 earthquake. International Journal of Greenhouse Gas Control, 2019, 82, 98-116.	4.6	2
222	Wide-angle seismic profiling across an active rifted zone in the middle Izu-Ogasawara arc –KY0511 cruise–. JAMSTEC Report of Research and Development, 2006, 4, 27-40.	0.2	2
223	Wide-angle seismic profiling across the middle Izu-Ogasawara arc for understanding boundary structure between the mature and juvenile arcs - KY0609 cruise JAMSTEC Report of Research and Development, 2007, 5, 9-19.	0.2	2
224	Wide-angle seismic profiling across the middle Izu-Ogasawara Arc –KR07-13 cruise–. JAMSTEC Report of Research and Development, 2008, 7, 19-29.	0.2	2
225	Structural Research on the Nankai Trough Using Reflections and Refractions. Journal of Disaster Research, 2009, 4, 67-71.	0.7	2
226	Co-seismic displacement of the 2011 Tohoku-oki Earthquake reaching to the trench axis detected by differential bathymetry survey. Journal of the Geological Society of Japan, 2012, 118, 530-534.	0.6	2
227	IODP workshop: tracking the Tsunamigenic slips across and along the Japan Trench (JTRACK). Scientific Drilling, 0, 19, 27-32.	0.6	2
228	Developing community-based scientific priorities and new drilling proposals in the southern Indian and southwestern Pacific oceans. Scientific Drilling, 0, 24, 61-70.	0.6	2
229	Seismicity in the Tjörnes Fracture Zone, off NE-Iceland, Derived from an Ocean Bottom Seismographic Observation. Zisin (Journal of the Seismological Society of Japan 2nd Ser), 1995, 48, 257-270.	0.2	1
230	Review of five years of activity at IFREE /JAMSTEC. JAMSTEC Report of Research and Development, 2009, 9, 2_43-2_94.	0.2	1
231	S-wave attenuation structure beneath the northern Izu–Bonin arc. Earth, Planets and Space, 2016, 68, .	2.5	1
232	Development of a database and visualization system integrating various models of seismic velocity structure and subducting plate geometry around Japan. Progress in Earth and Planetary Science, 2018, 5, .	3.0	1
233	Marine activeâ€source seismic studies in the Japan Trench: a seismogenic zone in an oceanâ€continent collision zone. Acta Geologica Sinica, 2019, 93, 94-95	1.4	1
234	Stress Field Estimation From Sâ€Wave Anisotropy Observed in Multiâ€Azimuth Seismic Survey With Cabled Seafloor Seismometers Above the Nankai Trough Megathrust Zone, Japan. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021380.	3.4	1

#	Article	IF	CITATIONS
235	The comparative survey of specification for the multi-channel seismic reflection exploration about oceanic fine structure. BUTSURI-TANSA(Geophysical Exploration), 2013, 66, 111-118.	0.0	1
236	Crustal Structure and Urgent Aftershock Observation of the 2004 Off Kii-Peninsula Earthquake. Zisin (Journal of the Seismological Society of Japan 2nd Ser), 2006, 59, 187-197.	0.2	1
237	Wide-angle seismic experiment crossing the southern Izu-Ogasawara Arc and multi-channel seismic profiling of the Ogasawara Plateau –KR07-03 cruise–. JAMSTEC Report of Research and Development, 2007, 6, 39-51.	0.2	1
238	Recent traveltime inversion methods for lithospheric scale velocity structure: evaluation and improvement. JAMSTEC Report of Research and Development, 2011, 12, 37-51.	0.2	1
239	Trans-dimensional imaging of the random inhomogeneity structure in the southern Ryukyu arc, Japan. Geophysical Journal International, 2022, 229, 1392-1407.	2.4	1
240	A new portable mutli-channel seismic reflection system for high resolution structural imaging. , 2013, , .		0
241	Comparison of high resolution multi-channel seismic reflection survey across the IODP drilling site in Kashinosaki Knoll. , 2013, , .		Ο
242	Experiment to detect temporal change of seismic velocity in the subducting plate boundary in the Nankai Trough using the DONET submarine cabled observation network and airgun controlled source. , 2014, , .		0
243	Multi-Scale Bathymetric Imaging Around the Nankai Trough Using Red Relief Image Map and Sub-Bottom Profiling. , 2018, , .		0
244	Reflections on solid Earth research. Nature Reviews Earth & Environment, 2021, 2, 21-25.	29.7	0
245	Vp/Vs and shearâ€wave splitting at the seismogenic plate subduction zone: Insight into effective―stress and pore pressure distribution. , 2010, , .		0
246	Seismic survey using Ultra-Deep OBS in the Japan Trench axis area. , 2013, , .		0
247	Seismic imaging along the Kii channel using OBS-airgun data. , 2013, , .		0
248	Crustal imaging by pre-stack depth migration using integrated data from MCS and OBS survey. , 2013, , .		0
249	Feasibility study on the waveform analysis to the conventional wide-angle marine seismic survey data. , 2019, , .		Ο