
Anirban Sen Gupta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5159059/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bioinspired artificial platelets: past, present and future. Platelets, 2022, 33, 35-47.	2.3	16
2	Platelet-mimicking procoagulant nanoparticles augment hemostasis in animal models of bleeding. Science Translational Medicine, 2022, 14, eabb8975.	12.4	35
3	Plateletâ€inspired nanomedicine in hemostasis thrombosis and thromboinflammation. Journal of Thrombosis and Haemostasis, 2022, 20, 1535-1549.	3.8	23
4	Beyond the thrombus: Plateletâ€inspired nanomedicine approaches in inflammation, immune response, and cancer. Journal of Thrombosis and Haemostasis, 2022, 20, 1523-1534.	3.8	6
5	Assessment of fibrinolytic status in whole blood using a dielectric coagulometry microsensor. Biosensors and Bioelectronics, 2022, 210, 114299.	10.1	7
6	Platelet dysfunction after trauma: From mechanisms to targeted treatment. Transfusion, 2022, 62, .	1.6	8
7	Nanomedicine platform for targeting activated neutrophils and neutrophil–platelet complexes using an α1-antitrypsin-derived peptide motif. Nature Nanotechnology, 2022, 17, 1004-1014.	31.5	26
8	Targeting Thymidine Phosphorylase With Tipiracil Hydrochloride Attenuates Thrombosis Without Increasing Risk of Bleeding in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 668-682.	2.4	14
9	Synthetic Blood Substitutes. , 2021, , 719-743.		1
10	Intravenous Nanomedicine for Targeted Delivery of Thrombin to Augment Hemostasis. Blood, 2021, 138, 1029-1029.	1.4	3
11	Bioinspired artificial platelets for transfusion applications in traumatic hemorrhage. Transfusion, 2020, 60, 229-231.	1.6	10
12	Oxygen Carriers. , 2020, , 197-222.		6
13	Vascular Nanomedicine: Current Status, Opportunities, and Challenges. Seminars in Thrombosis and Hemostasis, 2020, 46, 524-544.	2.7	15
14	A polymer-based systemic hemostatic agent. Science Advances, 2020, 6, eaba0588.	10.3	69
15	Combination targeting of â€~platelets + fibrin' enhances clot anchorage efficiency of nanoparticles for vascular drug delivery. Nanoscale, 2020, 12, 21255-21270.	5.6	15
16	A novel, pointâ€of are, wholeâ€blood assay utilizing dielectric spectroscopy is sensitive to coagulation factor replacement therapy in haemophilia A patients. Haemophilia, 2019, 25, 885-892.	2.1	11
17	Pass interference: Getting in the way of platelets. Journal of Thrombosis and Haemostasis, 2019, 17, 1414-1416.	3.8	0
18	Traumaâ€ŧargeted delivery of tranexamic acid improves hemostasis and survival in rat liver hemorrhage model. Journal of Thrombosis and Haemostasis, 2019, 17, 1632-1644	3.8	24

ANIRBAN SEN GUPTA

#	Article	IF	CITATIONS
19	Hemoglobin-based Oxygen Carriers: Current State-of-the-art and Novel Molecules. Shock, 2019, 52, 70-83.	2.1	75
20	Synthetic Platelets for Treatment of Traumatic Hemorrhage and Thrombocytopenia. Blood, 2019, 134, SCI-37-SCI-37.	1.4	2
21	Intravenous synthetic platelet (SynthoPlate) nanoconstructs reduce bleeding and improve †golden hour' survival in a porcine model of traumatic arterial hemorrhage. Scientific Reports, 2018, 8, 3118.	3.3	60
22	Intravenous administration of synthetic platelets (SynthoPlate) in a mouse liver injury model of uncontrolled hemorrhage improves hemostasis. Journal of Trauma and Acute Care Surgery, 2018, 84, 917-923.	2.1	34
23	Platelets and Platelet-Inspired Biomaterials Technologies in Wound Healing Applications. ACS Biomaterials Science and Engineering, 2018, 4, 1176-1192.	5.2	55
24	Biomaterials and Advanced Technologies for Hemostatic Management of Bleeding. Advanced Materials, 2018, 30, 1700859.	21.0	326
25	Influence of particle size and shape on their margination and wall-adhesion: implications in drug delivery vehicle design across nano-to-micro scale. Nanoscale, 2018, 10, 15350-15364.	5.6	162
26	Factor XII and uPAR upregulate neutrophil functions to influence wound healing. Journal of Clinical Investigation, 2018, 128, 944-959.	8.2	103
27	Bioâ€inspired nanomedicine strategies for artificial blood components. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9, e1464.	6.1	53
28	Platelet microparticle-inspired clot-responsive nanomedicine for targeted fibrinolysis. Biomaterials, 2017, 128, 94-108.	11.4	123
29	InÂvitro characterization of SynthoPlateâ,,¢ (synthetic platelet) technology and its inÂvivo evaluation in severely thrombocytopenic mice. Journal of Thrombosis and Haemostasis, 2017, 15, 375-387.	3.8	47
30	ClotChip: A Microfluidic Dielectric Sensor for Point-of-Care Assessment of Hemostasis. IEEE Transactions on Biomedical Circuits and Systems, 2017, 11, 1459-1469.	4.0	36
31	Uncontrolled Hemorrhagic Shock Modeled via Liver Laceration in Mice with Real Time Hemodynamic Monitoring. Journal of Visualized Experiments, 2017, , .	0.3	8
32	Role of particle size, shape, and stiffness in design of intravascular drug delivery systems: insights from computations, experiments, and nature. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2016, 8, 255-270.	6.1	88
33	Ferric Chloride-induced Murine Thrombosis Models. Journal of Visualized Experiments, 2016, , .	0.3	32
34	Cardiovascular Nanomedicine: Materials and Technologies. Methods in Pharmacology and Toxicology, 2016, , 251-277.	0.2	1
35	A Miniaturized Microfluidic Dielectric Sensor for Point-of-Care Assessment of Blood Coagulation. Blood, 2016, 128, 3754-3754.	1.4	1
36	Targeted killing of metastatic cells using a platelet-inspired drug delivery system. RSC Advances, 2015, 5, 46218-46228.	3.6	18

ANIRBAN SEN GUPTA

#	Article	IF	CITATIONS
37	Photoinitiator-free synthesis of endothelial cell-adhesive and enzymatically degradable hydrogels. Acta Biomaterialia, 2015, 13, 52-60.	8.3	9
38	Biomaterials-Based Strategies in Blood Substitutes. , 2015, , 113-137.		1
39	The effects of PEG-based surface modification of PDMS microchannels on long-term hemocompatibility. Journal of Biomedical Materials Research - Part A, 2014, 102, n/a-n/a.	4.0	45
40	A factor VIII-derived peptide enables von Willebrand factor (VWF)-binding of artificial platelet nanoconstructs without interfering with VWF-adhesion of natural platelets. Nanoscale, 2014, 6, 4765-4773.	5.6	20
41	Platelet-like Nanoparticles: Mimicking Shape, Flexibility, and Surface Biology of Platelets To Target Vascular Injuries. ACS Nano, 2014, 8, 11243-11253.	14.6	284
42	Heteromultivalent ligand-decoration for actively targeted nanomedicine. Biomaterials, 2014, 35, 2568-2579.	11.4	35
43	A platelet-inspired paradigm for nanomedicine targeted to multiple diseases. Nanomedicine, 2013, 8, 1709-1727.	3.3	21
44	Synthetic Approaches to RBC Mimicry and Oxygen Carrier Systems. Biomacromolecules, 2013, 14, 939-948.	5.4	74
45	Photodynamic nanomedicine in the treatment of solid tumors: Perspectives and challenges. Journal of Controlled Release, 2013, 168, 88-102.	9.9	328
46	A Cell-Targeted Photodynamic Nanomedicine Strategy for Head and Neck Cancers. Molecular Pharmaceutics, 2013, 10, 1988-1997.	4.6	52
47	InÂvitro and inÂvivo hemostatic capabilities of a functionally integrated platelet-mimetic liposomal nanoconstruct. Biomaterials, 2013, 34, 3031-3041.	11.4	83
48	Approaches to synthetic platelet analogs. Biomaterials, 2013, 34, 526-541.	11.4	96
49	A Platelet-Mimetic Paradigm for Metastasis-Targeted Nanomedicine Platforms. Biomacromolecules, 2013, 14, 910-919.	5.4	28
50	Peptide-Decorated Liposomes Promote Arrest and Aggregation of Activated Platelets under Flow on Vascular Injury Relevant Protein Surfaces in Vitro. Biomacromolecules, 2012, 13, 1495-1502.	5.4	51
51	Mimicking Adhesive Functionalities of Blood Platelets using Ligand-Decorated Liposomes. Bioconjugate Chemistry, 2012, 23, 1266-1275.	3.6	52
52	Streptokinase Loading in Liposomes for Vascular Targeted Nanomedicine Applications: Encapsulation Efficiency and Effects of Processing. Journal of Biomaterials Applications, 2012, 26, 509-527.	2.4	11
53	EGFR-mediated intracellular delivery of Pc 4 nanoformulation for targeted photodynamic therapy of cancer: in vitro studies. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 655-664.	3.3	69
54	EGF receptor-targeted nanocarriers for enhanced cancer treatment. Nanomedicine, 2012, 7, 1895-1906.	3.3	112

ANIRBAN SEN GUPTA

#	Article	IF	CITATIONS
55	Optimization of a Nanomedicine-Based Silicon Phthalocyanine 4 Photodynamic Therapy (Pc 4-PDT) Strategy for Targeted Treatment of EGFR-Overexpressing Cancers. Molecular Pharmaceutics, 2012, 9, 2331-2338.	4.6	44
56	Nanomedicine approaches in vascular disease: a review. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 763-779.	3.3	100
57	Heteromultivalent liposomal nanoconstructs for enhanced targeting and shear-stable binding to active platelets for site-selective vascular drug delivery. Biomaterials, 2011, 32, 9504-9514.	11.4	58
58	<i>In vitro</i> and <i>in vivo</i> platelet targeting by cyclic RGDâ€modified liposomes. Journal of Biomedical Materials Research - Part A, 2010, 93A, 1004-1015.	4.0	62
59	Delivery of the photosensitizer Pc 4 in PEG–PCL micelles for in vitro PDT studies. Journal of Pharmaceutical Sciences, 2010, 99, 2386-2398.	3.3	151
60	Biomimetic Fluorocarbon Surfactant Polymers Reduce Platelet Adhesion on PTFE/ePTFE Surfaces. Journal of Biomaterials Science, Polymer Edition, 2009, 20, 619-635.	3.5	29
61	Affinity manipulation of surface-conjugated RGD peptide to modulate binding of liposomes to activated platelets. Biomaterials, 2008, 29, 1676-1685.	11.4	125
62	Properties of l-tyrosine based polyphosphates pertinent to potential biomaterial applications. Polymer, 2005, 46, 2133-2140.	3.8	32
63	RGD-modified liposomes targeted to activated platelets as a potential vascular drug delivery system. Thrombosis and Haemostasis, 2005, 93, 106-114.	3.4	82
64	Synthesis and characterization of l-tyrosine based novel polyphosphates for potential biomaterial applications. Polymer, 2004, 45, 4653-4662.	3.8	45
65	Investigation of the solid phase synthesis of tyrosine-derived diphenol monomers with resin-bound carbodiimide coupling reagents. Journal of Polymer Science Part A, 2004, 42, 4906-4915.	2.3	6
66	L-Tyrosine-based backbone-modified poly(amino acids). Journal of Biomaterials Science, Polymer Edition, 2002, 13, 1093-1104.	3.5	18