Daniel T Starczynowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5158429/publications.pdf

Version: 2024-02-01

62 papers

7,316 citations

218677 26 h-index 189892 50 g-index

66 all docs 66
docs citations

66 times ranked 16557 citing authors

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Identification of miR-145 and miR-146a as mediators of the 5q– syndrome phenotype. Nature Medicine, 2010, 16, 49-58.	30.7	588
3	Targeting IRAK1 as a Therapeutic Approach for Myelodysplastic Syndrome. Cancer Cell, 2013, 24, 90-104.	16.8	168
4	U2AF1 mutations induce oncogenic IRAK4 isoforms and activate innate immune pathways in myeloid malignancies. Nature Cell Biology, 2019, 21, 640-650.	10.3	165
5	Chronic immune response dysregulation in MDS pathogenesis. Blood, 2018, 132, 1553-1560.	1.4	159
6	Genome-wide identification of human microRNAs located in leukemia-associated genomic alterations. Blood, 2011, 117, 595-607.	1.4	105
7	Cytotoxic effects of bortezomib in myelodysplastic syndrome/acute myeloid leukemia depend on autophagy-mediated lysosomal degradation of TRAF6 and repression of PSMA1. Blood, 2012, 120, 858-867.	1.4	94
8	Loss of <i>Tifab</i> , a del(5q) MDS gene, alters hematopoiesis through derepression of Toll-like receptor–TRAF6 signaling. Journal of Experimental Medicine, 2015, 212, 1967-1985.	8. 5	93
9	Adaptive response to inflammation contributes to sustained myelopoiesis and confers a competitive advantage in myelodysplastic syndrome HSCs. Nature Immunology, 2020, 21, 535-545.	14.5	92
10	Innate immune pathways and inflammation in hematopoietic aging, clonal hematopoiesis, and MDS. Journal of Experimental Medicine, 2021, 218, .	8. 5	88
11	Ubiquitination of hnRNPA1 by TRAF6 links chronic innate immune signaling with myelodysplasia. Nature Immunology, 2017, 18, 236-245.	14.5	85
12	A calcium- and calpain-dependent pathway determines the response to lenalidomide in myelodysplastic syndromes. Nature Medicine, 2016, 22, 727-734.	30.7	68
13	Myeloid Malignancies with Chromosome 5q Deletions Acquire a Dependency on an Intrachromosomal NF-κB Gene Network. Cell Reports, 2014, 8, 1328-1338.	6.4	64
14	TRAF6 Mediates Basal Activation of NF-κB Necessary for Hematopoietic Stem Cell Homeostasis. Cell Reports, 2018, 22, 1250-1262.	6.4	62
15	p62 Is Required for Stem Cell/Progenitor Retention through Inhibition of IKK/NF-κB/Ccl4 Signaling at the Bone Marrow Macrophage-Osteoblast Niche. Cell Reports, 2014, 9, 2084-2097.	6.4	56
16	Overcoming adaptive therapy resistance in AML by targeting immune response pathways. Science Translational Medicine, 2019, 11 , .	12.4	54
17	Germline DDX41 mutations cause ineffective hematopoiesis and myelodysplasia. Cell Stem Cell, 2021, 28, 1966-1981.e6.	11.1	49
18	Innate Immune Signaling in the Myelodysplastic Syndromes. Hematology/Oncology Clinics of North America, 2010, 24, 343-359.	2.2	43

#	Article	IF	CITATIONS
19	IRAK1 and IRAK4 as emerging therapeutic targets in hematologic malignancies. Current Opinion in Hematology, 2022, 29, 8-19.	2.5	42
20	Role of microRNA-146a in normal and malignant hematopoietic stem cell function. Frontiers in Genetics, 2014, 5, 219.	2.3	41
21	Sequential CRISPR gene editing in human iPSCs charts the clonal evolution of myeloid leukemia and identifies early disease targets. Cell Stem Cell, 2021, 28, 1074-1089.e7.	11.1	37
22	Nuclear deubiquitination in the spotlight: the multifaceted nature of USP7 biology in disease. Current Opinion in Cell Biology, 2019, 58, 85-94.	5.4	34
23	IRAK1 is a novel DEK transcriptional target and is essential for head and neck cancer cell survival. Oncotarget, 2015, 6, 43395-43407.	1.8	34
24	Deconstructing innate immune signaling in myelodysplastic syndromes. Experimental Hematology, 2015, 43, 587-598.	0.4	29
25	KDM6B overexpression activates innate immune signaling and impairs hematopoiesis in mice. Blood Advances, 2018, 2, 2491-2504.	5.2	29
26	MicroRNA-223 dose levels fine tune proliferation and differentiation in human cord blood progenitors and acute myeloid leukemia. Experimental Hematology, 2015, 43, 858-868.e7.	0.4	28
27	TIFAB Regulates USP15-Mediated p53 Signaling during Stressed and Malignant Hematopoiesis. Cell Reports, 2020, 30, 2776-2790.e6.	6.4	27
28	Targeting AML-associated FLT3 mutations with a type I kinase inhibitor. Journal of Clinical Investigation, 2020, 130, 2017-2023.	8.2	23
29	TRAF6 functions as a tumor suppressor in myeloid malignancies by directly targeting MYC oncogenic activity. Cell Stem Cell, 2022, 29, 298-314.e9.	11.1	23
30	Inhibition of IRAK1 Ubiquitination Determines Glucocorticoid Sensitivity for TLR9-Induced Inflammation in Macrophages. Journal of Immunology, 2017, 199, 3654-3667.	0.8	21
31	TIFA and TIFAB: FHA-domain proteins involved in inflammation, hematopoiesis, and disease. Experimental Hematology, 2020, 90, 18-29.	0.4	20
32	IRAK1: oncotarget in MDS and AML. Oncotarget, 2014, 5, 1699-1700.	1.8	18
33	Innate Immune Signaling Suppresses Acute Leukemia By Modifying MYC Oncogenic Activity. Blood, 2019, 134, 727-727.	1.4	18
34	Possible role of intragenic DNA hypermethylation in gene silencing of the tumor suppressor gene NR4A3 in acute myeloid leukemia. Leukemia Research, 2016, 50, 85-94.	0.8	15
35	TNF-α-induced alterations in stromal progenitors enhance leukemic stem cell growth via CXCR2 signaling. Cell Reports, 2021, 36, 109386.	6.4	15
36	Mitochondrial Fragmentation Triggers Ineffective Hematopoiesis in Myelodysplastic Syndromes. Cancer Discovery, 2022, 12, 250-269.	9.4	14

#	Article	lF	Citations
37	FBXO11 is a candidate tumor suppressor in the leukemic transformation of myelodysplastic syndrome. Blood Cancer Journal, 2020, 10, 98.	6.2	13
38	TNFAIP3 Plays a Role in Aging of the Hematopoietic System. Frontiers in Immunology, 2020, 11, 536442.	4.8	13
39	The deubiquitinase USP15 modulates cellular redox and is a therapeutic target in acute myeloid leukemia. Leukemia, 2022, 36, 438-451.	7.2	13
40	Blocking UBE2N abrogates oncogenic immune signaling in acute myeloid leukemia. Science Translational Medicine, 2022, 14, eabb7695.	12.4	13
41	The National MDS Natural History Study: design of an integrated data and sample biorepository to promote research studies in myelodysplastic syndromes. Leukemia and Lymphoma, 2019, 60, 3161-3171.	1.3	12
42	SF3B1 Mutations Induce Oncogenic IRAK4 Isoforms and Activate Targetable Innate Immune Pathways in MDS and AML. Blood, 2019, 134, 4224-4224.	1.4	12
43	Momelotinib is a highly potent inhibitor of FLT3-mutant AML. Blood Advances, 2022, 6, 1186-1192.	5. 2	10
44	Innate immune mediator, Interleukin-1 receptor accessory protein (IL1RAP), is expressed and pro-tumorigenic in pancreatic cancer. Journal of Hematology and Oncology, 2022, 15, .	17.0	6
45	Inflammation rapidly recruits mammalian GMP and MDP from bone marrow into regional lymphatics. ELife, $2021,10,.$	6.0	5
46	Errant innate immune signaling in del(5q) MDS. Blood, 2014, 124, 669-671.	1.4	4
47	GMP-ing to Spatial Conclusions about Emergency and Leukemic Myelopoiesis. Cell Stem Cell, 2017, 20, 579-581.	11.1	4
48	Chronic innate immune signaling results in ubiquitination of splicing machinery. Cell Cycle, 2018, 17, 407-409.	2.6	3
49	Genomic instability establishes dependencies on acquired gene regulatory networks: A novel role of p62 in myeloid malignancies with del(5q). Molecular and Cellular Oncology, 2015, 2, e1014219.	0.7	2
50	Targeted Sequencing of 7 Genes Can Help Reduce Pathologic Misclassification of MDS. Blood, 2020, 136, 32-33.	1.4	2
51	Preclinical Activity of the Clinical Stage Protein Arginine Methyltransferase 5 (PRMT5) Inhibitor PRT543 in Splicing Mutant Myelodysplastic Syndrome (MDS) and Acute Myeloid Leukemia (AML). Blood, 2021, 138, 2597-2597.	1.4	1
52	Sqstm1 Is Required to Retain Hematopoietic Stem Cell/ Progenitors As a Negative Regulator of Macrophage-Dependent Inflammatory Signaling in the Bone Marrow Osteoblastic Niche. Blood, 2014, 124, 350-350.	1.4	0
53	Novel Small Molecule FLT3 Inhibitors for the Treatment of FLT3-ITD AML. Blood, 2015, 126, 3690-3690.	1.4	O
54	Genomic Landscape of Multiple Myeloma with Elevated Lactate Dehydrogenase. Blood, 2018, 132, 470-470.	1.4	0

#	Article	IF	CITATIONS
55	Cell-Intrinsic Inflammation Drives Progression from Myelodysplastic Syndromes to Leukemia. Blood, 2019, 134, 2983-2983.	1.4	О
56	The Inherited MDS Gene DDX41 Is Required for Ribosome Biogenesis and Cell Viability. Blood, 2019, 134, 773-773.	1.4	0
57	Clonal Cytopenias of Undetermined Significance Are Common in Cytopenic Adults Evaluated for MDS in the National MDS Study. Blood, 2019, 134, 4271-4271.	1.4	O
58	Momelotinib Is a Highly Potent Inhibitor of FLT3-Mutant AML. Blood, 2021, 138, 206-206.	1.4	0
59	Heterozygous Mutations in DDX41 Cause Erythroid Progenitor Cell Defects. Blood, 2021, 138, 148-148.	1.4	O
60	The Inherited MDS Gene DDX41 Is Essential for Ribosomal RNA Processing through Regulation of Snorna Biogenesis. Blood, 2020, 136, 40-40.	1.4	0
61	HHEX expression drives AML development. Blood, 2020, 136, 1575-1576.	1.4	0
62	IKAROS and MENIN in synergy in AML. Nature Cancer, 2022, 3, 528-529.	13.2	0