Joseph J Kieber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5156062/publications.pdf Version: 2024-02-01

LOSEDH | KIERED

#	Article	IF	CITATIONS
1	CTR1, a negative regulator of the ethylene response pathway in arabidopsis, encodes a member of the Raf family of protein kinases. Cell, 1993, 72, 427-441.	28.9	1,841
2	WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature, 2005, 438, 1172-1175.	27.8	747
3	Type-A Arabidopsis Response Regulators Are Partially Redundant Negative Regulators of Cytokinin Signaling[W]. Plant Cell, 2004, 16, 658-671.	6.6	631
4	Characterization of the Response of the Arabidopsis Response Regulator Gene Family to Cytokinin. Plant Physiology, 2000, 124, 1706-1717.	4.8	541
5	CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19486-19491.	7.1	539
6	Cytokinin signaling in plant development. Development (Cambridge), 2018, 145, .	2.5	472
7	Cytokinins. The Arabidopsis Book, 2014, 12, e0168.	0.5	450
8	The Yin-Yang of Hormones: Cytokinin and Auxin Interactions in Plant Development. Plant Cell, 2015, 27, 44-63.	6.6	441
9	Multiple Type-B Response Regulators Mediate Cytokinin Signal Transduction in Arabidopsis Â. Plant Cell, 2005, 17, 3007-3018.	6.6	397
10	The Arabidopsis Histidine Phosphotransfer Proteins Are Redundant Positive Regulators of Cytokinin Signaling. Plant Cell, 2006, 18, 3073-3087.	6.6	392
11	Type B Response Regulators of <i>Arabidopsis</i> Play Key Roles in Cytokinin Signaling and Plant Development. Plant Cell, 2008, 20, 2102-2116.	6.6	386
12	RESPONSIVE-TO-ANTAGONIST1, a Menkes/Wilson Disease–Related Copper Transporter, Is Required for Ethylene Signaling in Arabidopsis. Cell, 1999, 97, 383-393.	28.9	385
13	Cytokinin signaling: two-components and more. Trends in Plant Science, 2008, 13, 85-92.	8.8	361
14	Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling inArabidopsis. Plant Journal, 2003, 33, 221-233.	5.7	360
15	Two Genes with Similarity to Bacterial Response Regulators Are Rapidly and Specifically Induced by Cytokinin in Arabidopsis. Plant Cell, 1998, 10, 1009-1019.	6.6	355
16	A subset of Arabidopsis AP2 transcription factors mediates cytokinin responses in concert with a two-component pathway. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11081-11085.	7.1	353
17	The eto1, eto2, and eto3 Mutations and Cytokinin Treatment Increase Ethylene Biosynthesis in Arabidopsis by Increasing the Stability of ACS Protein. Plant Cell, 2003, 15, 545-559.	6.6	350
18	Localization of the Raf-like Kinase CTR1 to the Endoplasmic Reticulum of Arabidopsis through Participation in Ethylene Receptor Signaling Complexes. Journal of Biological Chemistry, 2003, 278, 34725-34732.	3.4	323

Joseph J Kieber

#	Article	IF	CITATIONS
19	Cytokinins. New Insights into a Classic Phytohormone. Plant Physiology, 2002, 128, 354-362.	4.8	310
20	Environmental perception avenues: the interaction of cytokinin and environmental response pathways. Plant, Cell and Environment, 2009, 32, 1147-1160.	5.7	305
21	Cytokinins play opposite roles in lateral root formation, and nematode and Rhizobial symbioses. Plant Journal, 2004, 38, 203-214.	5.7	300
22	Two Leucine-Rich Repeat Receptor Kinases Mediate Signaling, Linking Cell Wall Biosynthesis and ACC Synthase in <i>Arabidopsis</i> . Plant Cell, 2008, 20, 3065-3079.	6.6	290
23	Expression Profiling of Cytokinin Action in Arabidopsis. Plant Physiology, 2003, 132, 1998-2011.	4.8	276
24	Cytokinin signaling. Current Opinion in Plant Biology, 2005, 8, 518-525.	7.1	245
25	Cytokinin Regulates Type-A <i>Arabidopsis</i> Response Regulator Activity and Protein Stability via Two-Component Phosphorelay. Plant Cell, 2008, 19, 3901-3914.	6.6	240
26	Regulation of Ethylene Biosynthesis. Journal of Plant Growth Regulation, 2007, 26, 92-105.	5.1	233
27	Identification of Cytokinin-Responsive Genes Using Microarray Meta-Analysis and RNA-Seq in Arabidopsis Â. Plant Physiology, 2013, 162, 272-294.	4.8	230
28	Two-Component Elements Mediate Interactions between Cytokinin and Salicylic Acid in Plant Immunity. PLoS Genetics, 2012, 8, e1002448.	3.5	222
29	A Strong Loss-of-Function Mutation in RAN1 Results in Constitutive Activation of the Ethylene Response Pathway as Well as a Rosette-Lethal Phenotype. Plant Cell, 2000, 12, 443-455.	6.6	215
30	Cytokinin and the cell cycle. Current Opinion in Plant Biology, 2014, 21, 7-15.	7.1	215
31	Eto Brute? Role of ACS turnover in regulating ethylene biosynthesis. Trends in Plant Science, 2005, 10, 291-296.	8.8	212
32	Two Arabidopsis Mutants That Overproduce Ethylene Are Affected in the Posttranscriptional Regulation of 1-Aminocyclopropane-1-Carboxylic Acid Synthase1. Plant Physiology, 1999, 119, 521-530.	4.8	210
33	Characterization of Genes Involved in Cytokinin Signaling and Metabolism from Rice Â. Plant Physiology, 2012, 158, 1666-1684.	4.8	197
34	Regulation of ACS protein stability by cytokinin and brassinosteroid. Plant Journal, 2009, 57, 606-614.	5.7	186
35	Cytokinin Signaling in Arabidopsis. Plant Cell, 2002, 14, S47-S59.	6.6	182
36	The Regulation of Cellulose Biosynthesis in Plants. Plant Cell, 2019, 31, 282-296.	6.6	181

#	Article	IF	CITATIONS
37	THE ETHYLENE RESPONSE PATHWAY IN ARABIDOPSIS. Annual Review of Plant Biology, 1997, 48, 277-296.	14.3	176
38	Functional Characterization of the GATA Transcription Factors GNC and CGA1 Reveals Their Key Role in Chloroplast Development, Growth, and Division in Arabidopsis Â. Plant Physiology, 2012, 160, 332-348.	4.8	172
39	The BTB ubiquitin ligases ETO1, EOL1 and EOL2 act collectively to regulate ethylene biosynthesis in Arabidopsis by controlling typeâ $\in 2$ ACC synthase levels. Plant Journal, 2009, 57, 332-345.	5.7	166
40	Type-B Response Regulators Display Overlapping Expression Patterns in Arabidopsis. Plant Physiology, 2004, 135, 927-937.	4.8	156
41	Cytokinin induces genome-wide binding of the type-B response regulator ARR10 to regulate growth and development in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5995-E6004.	7.1	154
42	Cytokinin Induces Cell Division in the Quiescent Center of the Arabidopsis Root Apical Meristem. Current Biology, 2013, 23, 1979-1989.	3.9	151
43	ATMPK4, an Arabidopsis Homolog of Mitogen-Activated Protein Kinase, Is Activated in Vitro by AtMEK1 through Threonine Phosphorylation. Plant Physiology, 2000, 122, 1301-1310.	4.8	147
44	Type-B response regulators ARR1 and ARR12 regulate expression of AtHKT1;1 and accumulation of sodium in Arabidopsis shoots. Plant Journal, 2010, 64, 753-763.	5.7	145
45	Cytokinin signaling and transcriptional networks. Current Opinion in Plant Biology, 2010, 13, 533-539.	7.1	138
46	Two-Component Signaling Elements and Histidyl-Aspartyl Phosphorelays ^{â€} . The Arabidopsis Book, 2008, 6, e0112.	0.5	137
47	Cytokinin is required for escape but not release from auxin mediated apical dominance. Plant Journal, 2015, 82, 874-886.	5.7	136
48	Protein Phosphatase 2A Controls Ethylene Biosynthesis by Differentially Regulating the Turnover of ACC Synthase Isoforms. PLoS Genetics, 2011, 7, e1001370.	3.5	134
49	Arabidopsis Response Regulators ARR3 and ARR4 Play Cytokinin-Independent Roles in the Control of Circadian Period. Plant Cell, 2005, 18, 55-69.	6.6	133
50	Dynamic Construction, Perception, and Remodeling of Plant Cell Walls. Annual Review of Plant Biology, 2020, 71, 39-69.	18.7	132
51	Ethylene Inhibits Cell Proliferation of the Arabidopsis Root Meristem. Plant Physiology, 2015, 169, 338-350.	4.8	130
52	Identification of a new motif for CDPK phosphorylation in vitro that suggests ACC synthase may be a CDPK substrate. Archives of Biochemistry and Biophysics, 2004, 428, 81-91.	3.0	129
53	Cellulose synthesis via the FEI2 RLK/SOS5 pathway and CELLULOSE SYNTHASE 5 is required for the structure of seed coat mucilage in Arabidopsis. Plant Journal, 2011, 68, 941-953.	5.7	129
54	CLE Peptides can Negatively Regulate Protoxylem Vessel Formation via Cytokinin Signaling. Plant and Cell Physiology, 2011, 52, 37-48.	3.1	118

#	Article	IF	CITATIONS
55	14-3-3 Regulates 1-Aminocyclopropane-1-Carboxylate Synthase Protein Turnover in <i>Arabidopsis</i> Â Â. Plant Cell, 2013, 25, 1016-1028.	6.6	115
56	Isolation and Characterization of Arabidopsis Mutants Defective in the Induction of Ethylene Biosynthesis by Cytokinin. Genetics, 1998, 149, 417-427.	2.9	114
57	SCF ^{KMD} controls cytokinin signaling by regulating the degradation of type-B response regulators. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10028-10033.	7.1	106
58	Role of A-type ARABIDOPSIS RESPONSE REGULATORS in meristem maintenance and regeneration. European Journal of Cell Biology, 2010, 89, 279-284.	3.6	103
59	The cytokinin response factors modulate root and shoot growth and promote leaf senescence in Arabidopsis. Plant Journal, 2016, 85, 134-147.	5.7	101
60	Typeâ€A response regulators are required for proper root apical meristem function through postâ€ŧranscriptional regulation of PIN auxin efflux carriers. Plant Journal, 2011, 68, 1-10.	5.7	98
61	Phosphorelay signal transduction: the emerging family of plant response regulators. Trends in Biochemical Sciences, 1999, 24, 452-456.	7.5	96
62	A rapid cytokinin response assay in Arabidopsis indicates a role for phospholipase D in cytokinin signalling. FEBS Letters, 2002, 515, 39-43.	2.8	96
63	Molecular mechanisms of cytokinin action. Current Opinion in Plant Biology, 1999, 2, 359-364.	7.1	93
64	The subcellular distribution of the Arabidopsis histidine phosphotransfer proteins is independent of cytokinin signaling. Plant Journal, 2010, 62, 473-482.	5.7	88
65	Coordination of Chloroplast Development through the Action of the GNC and GLK Transcription Factor Families. Plant Physiology, 2018, 178, 130-147.	4.8	85
66	Functional Characterization of Type-B Response Regulators in the Arabidopsis Cytokinin Response Â. Plant Physiology, 2013, 162, 212-224.	4.8	82
67	COBRA-LIKE2, a Member of the Glycosylphosphatidylinositol-Anchored COBRA-LIKE Family, Plays a Role in Cellulose Deposition in Arabidopsis Seed Coat Mucilage Secretory Cells Â, Â Â. Plant Physiology, 2015, 167, 711-724.	4.8	82
68	Ethylene gas: it's not just for ripening any more!. Trends in Genetics, 1993, 9, 356-362.	6.7	80
69	The Role of Receptor-Like Kinases in Regulating Cell Wall Function. Plant Physiology, 2010, 153, 479-484.	4.8	75
70	Cytokininâ€dependent specification of the functional megaspore in the Arabidopsis female gametophyte. Plant Journal, 2013, 73, 929-940.	5.7	74
71	Factors regulating ethylene biosynthesis in etiolatedArabidopsis thalianaseedlings. Physiologia Plantarum, 1999, 105, 478-484.	5.2	73
72	Nomenclature for Two-Component Signaling Elements of Rice. Plant Physiology, 2007, 143, 555-557.	4.8	72

#	Article	IF	CITATIONS
73	Response Regulators 9 and 10 Negatively Regulate Salinity Tolerance in Rice. Plant and Cell Physiology, 2019, 60, 2549-2563.	3.1	68
74	<i>Pseudomonas syringae</i> type III effector HopAF1 suppresses plant immunity by targeting methionine recycling to block ethylene induction. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3577-86.	7.1	66
75	The Perception of Cytokinin: A Story 50 Years in the Making: Figure 1 Plant Physiology, 2010, 154, 487-492.	4.8	64
76	1-Aminocyclopropane 1-Carboxylic Acid and Its Emerging Role as an Ethylene-Independent Growth Regulator. Frontiers in Plant Science, 2019, 10, 1602.	3.6	61
77	The interaction of cytokinin with other signals. Physiologia Plantarum, 2005, 123, 184-194.	5.2	58
78	Cytokinin acts through the auxin influx carrier AUX1 to regulate cell elongation in the root. Development (Cambridge), 2016, 143, 3982-3993.	2.5	55
79	SHOU4 Proteins Regulate Trafficking of Cellulose Synthase Complexes to the Plasma Membrane. Current Biology, 2018, 28, 3174-3182.e6.	3.9	55
80	Role of <i>BASIC PENTACYSTEINE</i> transcription factors in a subset of cytokinin signaling responses. Plant Journal, 2018, 95, 458-473.	5.7	52
81	RCN1-Regulated Phosphatase Activity and EIN2 Modulate Hypocotyl Gravitropism by a Mechanism That Does Not Require Ethylene Signaling. Plant Physiology, 2006, 141, 1617-1629.	4.8	51
82	Regulation of the turnover of <scp>ACC</scp> synthases by phytohormones and heterodimerization in Arabidopsis. Plant Journal, 2017, 91, 491-504.	5.7	48
83	The Role of Cytokinin During Infection of <i>Arabidopsis thaliana</i> by the Cyst Nematode <i>Heterodera schachtii</i> . Molecular Plant-Microbe Interactions, 2016, 29, 57-68.	2.6	44
84	Cytokinin modulates context-dependent chromatin accessibility through the type-B response regulators. Nature Plants, 2018, 4, 1102-1111.	9.3	44
85	Cloning and Characterization of an <i>Arabidopsis thaliana</i> Topoisomerase I Gene. Plant Physiology, 1992, 99, 1493-1501.	4.8	40
86	The ethylene signal transduction pathway inArabidopsis. Journal of Experimental Botany, 1997, 48, 211-218.	4.8	40
87	The influence of cytokinin–auxin cross-regulation on cell-fate determination in Arabidopsis thaliana root development. Journal of Theoretical Biology, 2011, 283, 152-167.	1.7	40
88	Cytosolic activity of SPINDLY implies the existence of a DELLAâ€independent gibberellinâ€response pathway. Plant Journal, 2009, 58, 979-988.	5.7	39
89	EXO70D isoforms mediate selective autophagic degradation of type-A ARR proteins to regulate cytokinin sensitivity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27034-27043.	7.1	39
90	Characterization of the cytokinin-responsive transcriptome in rice. BMC Plant Biology, 2016, 16, 260.	3.6	38

#	Article	IF	CITATIONS
91	Dynamic patterns of expression for genes regulating cytokinin metabolism and signaling during rice inflorescence development. PLoS ONE, 2017, 12, e0176060.	2.5	38
92	Type-B response regulators of rice play key roles in growth, development, and cytokinin signaling. Development (Cambridge), 2019, 146, .	2.5	38
93	Cytokinins. The Arabidopsis Book, 2002, 1, e0063.	0.5	31
94	The FEI2-SOS5 pathway and CELLULOSE SYNTHASE 5 are required for cellulose biosynthesis in the Arabidopsis seed coat and affect pectin mucilage structure. Plant Signaling and Behavior, 2012, 7, 285-288.	2.4	31
95	Alterations in Auxin Homeostasis Suppress Defects in Cell Wall Function. PLoS ONE, 2014, 9, e98193.	2.5	31
96	Cloning and characterization of an inorganic pyrophosphatase gene from Arabidopsis thaliana. Plant Molecular Biology, 1991, 16, 345-348.	3.9	29
97	The rice F-box protein KISS ME DEADLY2 functions as a negative regulator of cytokinin signalling. Plant Signaling and Behavior, 2013, 8, e26434.	2.4	27
98	Two Genes with Similarity to Bacterial Response Regulators Are Rapidly and Specifically Induced by Cytokinin in Arabidopsis. Plant Cell, 1998, 10, 1009.	6.6	26
99	The HK5 and HK6 cytokinin receptors mediate diverse developmental pathways in rice. Development (Cambridge), 2020, 147, .	2.5	24
100	Tribute to Folke Skoog: Recent Advances in our Understanding of Cytokinin Biology. Journal of Plant Growth Regulation, 2002, 21, 1-2.	5.1	22
101	Localization of the Arabidopsis histidine phosphotransfer proteins is independent of cytokinin. Plant Signaling and Behavior, 2010, 5, 896-898.	2.4	20
102	Integrated omics reveal novel functions and underlying mechanisms of the receptor kinase FERONIA in <i>Arabidopsis thaliana</i> . Plant Cell, 2022, 34, 2594-2614.	6.6	18
103	Signaling via Histidine-Containing Phosphotransfer Proteins inArabidopsis. Plant Signaling and Behavior, 2007, 2, 287-289.	2.4	17
104	The role of cytokinin in ovule development in <i><i>Arabidopsis</i></i> . Plant Signaling and Behavior, 2013, 8, e23393.	2.4	17
105	ACC synthase and its cognate E3 ligase are inversely regulated by light. Plant Signaling and Behavior, 2013, 8, e26478.	2.4	14
106	indCAPS: A tool for designing screening primers for CRISPR/Cas9 mutagenesis events. PLoS ONE, 2017, 12, e0188406.	2.5	13
107	A role for twoâ€component signaling elements in the Arabidopsis growth recovery response to ethylene. Plant Direct, 2018, 2, e00058.	1.9	11
108	Functional Analysis of the Rice Type-B Response Regulator RR22. Frontiers in Plant Science, 2020, 11, 577676.	3.6	8

#	Article	IF	CITATIONS
109	Heat Stress Targeting Individual Organs Reveals the Central Role of Roots and Crowns in Rice Stress Responses. Frontiers in Plant Science, 2021, 12, 799249.	3.6	8
110	Function of the pseudo phosphotransfer proteins has diverged between rice and Arabidopsis. Plant Journal, 2021, 106, 159-173.	5.7	7
111	Mutagenomics: A Rapid, High-Throughput Method to Identify Causative Mutations from a Genetic Screen. Plant Physiology, 2020, 184, 1658-1673.	4.8	6
112	Cytokinin Signaling in Plants. , 2014, , 269-289.		4
113	Metaâ€analysis of transcriptomic studies of cytokininâ€ŧreated rice roots defines a core set of cytokinin response genes. Plant Journal, 2021, 107, 1387-1402.	5.7	4
114	Behind the Screen: How a Simple Seedling Response Helped Unravel Ethylene Signaling in Plants. Plant Cell, 2019, 31, 1402-1403.	6.6	3
115	Signaling: Cytokinin Signaling. , 2014, , 1-19.		2
116	The Plant CellIntroduces Breakthrough Reports: A New Forum for Cutting-Edge Plant Research. Plant Cell, 2015, , tpc.15.00862.	6.6	1
117	Using indCAPS to Detect CRISPR/Cas9 Induced Mutations. Bio-protocol, 2019, 9, e3374.	0.4	1