
Simon J Allison

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5155785/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Investigation of the cytotoxicity induced by didocosahexaenoin, an omega 3 derivative, in human prostate carcinoma cell lines. Current Research in Pharmacology and Drug Discovery, 2022, 3, 100085.	3.6	2
2	An Efficient Method for the Isolation of Toxins from Pteridium aquilinum and Evaluation of Ptaquiloside Against Cancer and Non-cancer Cells. Planta Medica, 2021, 87, 892-895.	1.3	2
3	Self-assembly of an anion receptor with metal-dependent kinase inhibition and potent in vitro anti-cancer properties. Nature Communications, 2021, 12, 3898.	12.8	11
4	The Warburg effect as a therapeutic target for bladder cancers and intratumoral heterogeneity in associated molecular targets. Cancer Science, 2021, 112, 3822-3834.	3.9	19
5	Revisiting Bromohexitols as a Novel Class of Microenvironmentâ€Activated Prodrugs for Cancer Therapy. ChemMedChem, 2020, 15, 228-235.	3.2	0
6	Glycoconjugated Metallohelices have Improved Nuclear Delivery and Suppress Tumour Growth In Vivo. Angewandte Chemie - International Edition, 2020, 59, 14677-14685.	13.8	10
7	Glycoconjugated Metallohelices have Improved Nuclear Delivery and Suppress Tumour Growth In Vivo. Angewandte Chemie, 2020, 132, 14785-14793.	2.0	1
8	Nicotinamide adenine dinucleotide (NAD+): essential redox metabolite, co-substrate and an anti-cancer and anti-ageing therapeutic target. Biochemical Society Transactions, 2020, 48, 733-744.	3.4	28
9	Discovery of selective, antimetastatic and anti-cancer stem cell metallohelices <i>via</i> post-assembly modification. Chemical Science, 2019, 10, 8547-8557.	7.4	23
10	Selective in vitro anti-cancer activity of non-alkylating minor groove binders. MedChemComm, 2019, 10, 1620-1634.	3.4	10
11	Chemically-induced neurite-like outgrowth reveals multicellular network function in patient-derived glioblastoma cells. Journal of Cell Science, 2019, 132, .	2.0	6
12	KHS101 disrupts energy metabolism in human glioblastoma cells and reduces tumor growth in mice. Science Translational Medicine, 2018, 10, .	12.4	54
13	Ruthenium ontaining Linear Helicates and Mesocates with Tuneable p53‣elective Cytotoxicity in Colorectal Cancer Cells. Angewandte Chemie - International Edition, 2018, 57, 9799-9804.	13.8	39
14	Ruthenium ontaining Linear Helicates and Mesocates with Tuneable p53‣elective Cytotoxicity in Colorectal Cancer Cells. Angewandte Chemie, 2018, 130, 9947-9952.	2.0	15
15	Abstract 2139: Evaluation of a novel hypoxia-activated prodrug strategy in colorectal cancer cells. , 2018, , .		0
16	Bisâ€picolinamide Ruthenium(III) Dihalide Complexes: Dichlorideâ€toâ€Diiodide Exchange Generates Single <i>trans</i> Isomers with High Potency and Cancer Cell Selectivity. Chemistry - A European Journal, 2017, 23, 6341-6356.	3.3	20
17	Preclinical anti-cancer activity and multiple mechanisms of action of a cationic silver complex bearing N-heterocyclic carbene ligands. Cancer Letters, 2017, 403, 98-107.	7.2	49
18	Abstract 970: Probing the expression and function of aldehyde dehydrogenases in prostate cancer		0

using ALDH-affinic compounds and siRNA. , 2017, , .

0

SIMON J ALLISON

#	Article	IF	CITATIONS
19	Cytotoxic hydrogen bridged ruthenium quinaldamide complexes showing induced cancer cell death by apoptosis. Dalton Transactions, 2016, 45, 13196-13203.	3.3	11
20	Polysialic acid sustains cancer cell survival and migratory capacity in a hypoxic environment. Scientific Reports, 2016, 6, 33026.	3.3	45
21	Development and characterization of a microfluidic model of the tumour microenvironment. Scientific Reports, 2016, 6, 36086.	3.3	95
22	Increasing anti-cancer activity with longer tether lengths of group 9 Cp* complexes. Dalton Transactions, 2016, 45, 6812-6815.	3.3	34
23	Anticancer metallohelices: nanomolar potency and high selectivity. Chemical Science, 2016, 7, 951-958.	7.4	53
24	Abstract 4093: The impact of the prostate cancer microenvironment on the expression and regulation of aldehyde dehydrogenases. , 2016, , .		0
25	Hypoxia-Sensitive Metal β-Ketoiminato Complexes Showing Induced Single-Strand DNA Breaks and Cancer Cell Death by Apoptosis. Journal of Medicinal Chemistry, 2015, 58, 4940-4953.	6.4	58
26	RNA Interference by Single- and Double-stranded siRNA With a DNA Extension Containing a 3′ Nuclease-resistant Mini-hairpin Structure. Molecular Therapy - Nucleic Acids, 2014, 3, e141.	5.1	16
27	Identification of LDH-A as a therapeutic target for cancer cell killing via (i) p53/NAD(H)-dependent and (ii) p53-independent pathways. Oncogenesis, 2014, 3, e102-e102.	4.9	101
28	Hypoxia modulates the activity of a series of clinically approved tyrosine kinase inhibitors. British Journal of Pharmacology, 2014, 171, 224-236.	5.4	31
29	Active regulator of SIRT1 is required for cancer cell survival but not for SIRT1 activity. Open Biology, 2013, 3, 130130.	3.6	26
30	A Deacetylase-Deficient SIRT1 Variant Opposes Full-Length SIRT1 in Regulating Tumor Suppressor p53 and Governs Expression of Cancer-Related Genes. Molecular and Cellular Biology, 2012, 32, 704-716.	2.3	25
31	SIRT1, p53 and mitotic chromosomes. Cell Cycle, 2011, 10, 3049-3049.	2.6	9
32	SIRT1 Undergoes Alternative Splicing in a Novel Auto-Regulatory Loop with p53. PLoS ONE, 2010, 5, e13502.	2.5	42
33	Oncogenic viral protein HPV E7 up-regulates the SIRT1 longevity protein in human cervical cancer cells. Aging, 2009, 1, 316-327.	3.1	50
34	JNK2-dependent regulation of SIRT1 protein stability. Cell Cycle, 2008, 7, 3091-3097.	2.6	114
35	SIRT3 is Pro-Apoptotic and Participates in Distinct Basal Apoptotic Pathways. Cell Cycle, 2007, 6, 2669-2677.	2.6	139
36	Remodelling chromatin on a global scale: a novel protective function of p53. Carcinogenesis, 2004, 25, 1551-1557.	2.8	43

SIMON J ALLISON

#	Article	IF	CITATIONS
37	Loss of p53 has site-specific effects on histone H3 modification, including serine 10 phosphorylation important for maintenance of ploidy. Cancer Research, 2003, 63, 6674-9.	0.9	37
38	CK2 Forms a Stable Complex with TFIIIB and Activates RNA Polymerase III Transcription in Human Cells. Molecular and Cellular Biology, 2002, 22, 3757-3768.	2.3	71
39	Retinoblastoma Protein Disrupts Interactions Required for RNA Polymerase III Transcription. Molecular and Cellular Biology, 2000, 20, 9192-9202.	2.3	73
40	RNA polymerase III transcription factor TFIIIC2 is overexpressed in ovarian tumors. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 12619-12624.	7.1	124
41	RNA polymerase III Transcription — Its Control by Tumour Suppressors and Its Deregulation in Cancers. Biochemical Society Transactions, 1999, 27, A66-A66.	3.4	Ο
42	RNA Polymerase III Transcription Factor IIIB Is a Target for Repression by Pocket Proteins p107 and p130. Molecular and Cellular Biology, 1999, 19, 4255-4261.	2.3	60