Jun Mei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5155698/publications.pdf Version: 2024-02-01

IIIN MEI

#	Article	IF	CITATIONS
1	Twoâ€Dimensional Metal Oxide Nanomaterials for Nextâ€Generation Rechargeable Batteries. Advanced Materials, 2017, 29, 1700176.	21.0	317
2	Nonlithium Metal–Sulfur Batteries: Steps Toward a Leap. Advanced Materials, 2019, 31, e1802822.	21.0	168
3	Cobalt oxide-based nanoarchitectures for electrochemical energy applications. Progress in Materials Science, 2019, 103, 596-677.	32.8	166
4	Strongly interfacial-coupled 2D-2D TiO2/g-C3N4 heterostructure for enhanced visible-light induced synthesis and conversion. Journal of Hazardous Materials, 2020, 394, 122529.	12.4	118
5	Thermal reduction of sulfur-containing MAX phase for MXene production. Chemical Engineering Journal, 2020, 395, 125111.	12.7	116
6	Strategies for improving the lithium-storage performance of 2D nanomaterials. National Science Review, 2018, 5, 389-416.	9.5	108
7	Two-dimensional metal oxide nanosheets for rechargeable batteries. Journal of Energy Chemistry, 2018, 27, 117-127.	12.9	105
8	Toward Promising Cathode Catalysts for Nonlithium Metal–Oxygen Batteries. Advanced Energy Materials, 2020, 10, 1901997.	19.5	102
9	Two-dimensional fluorine-free mesoporous Mo2C MXene via UV-induced selective etching of Mo2Ga2C for energy storage. Sustainable Materials and Technologies, 2020, 25, e00156.	3.3	89
10	Bioinspired 2D Nanomaterials for Sustainable Applications. Advanced Materials, 2020, 32, e1902806.	21.0	84
11	2D/2D Heterostructures: Rational Design for Advanced Batteries and Electrocatalysis. Energy and Environmental Materials, 2022, 5, 115-132.	12.8	70
12	Black phosphorus nanosheets promoted 2D-TiO2-2D heterostructured anode for high-performance lithium storage. Energy Storage Materials, 2019, 19, 424-431.	18.0	69
13	Surfaceâ€Dependent Intermediate Adsorption Modulation on Iridiumâ€Modified Black Phosphorus Electrocatalysts for Efficient pHâ€Universal Water Splitting. Advanced Materials, 2021, 33, e2104638.	21.0	65
14	A facile functionalized routine for the synthesis of imidazolium-based anion-exchange membrane with excellent alkaline stability. Journal of Membrane Science, 2016, 505, 138-147.	8.2	63
15	Molybdenumâ€Promoted Surface Reconstruction in Polymorphic Cobalt for Initiating Rapid Oxygen Evolution. Advanced Energy Materials, 2022, 12, 2103247.	19.5	59
16	Two-Dimensional Bismuth Oxide Heterostructured Nanosheets for Lithium- and Sodium-Ion Storages. ACS Applied Materials & Interfaces, 2019, 11, 28205-28212.	8.0	52
17	Honeycombâ€Inspired Heterogeneous Bimetallic Co–Mo Oxide Nanoarchitectures for Highâ€Rate Electrochemical Lithium Storage. Small Methods, 2019, 3, 1900055. 	8.6	40
18	Anchoring High-dispersed MnO 2 Nanowires on Nitrogen Doped Graphene as Electrode Materials for Supercapacitors. Electrochimica Acta, 2015, 173, 338-344.	5.2	38

Jun Mei

#	Article	lF	CITATIONS
19	2D/2D Black Phosphorus/Nickel Hydroxide Heterostructures for Promoting Oxygen Evolution via Electronic Structure Modulation and Surface Reconstruction. Advanced Energy Materials, 2022, 12, .	19.5	37
20	Three-Dimensional Fast Na-Ion Transport in Sodium Titanate Nanoarchitectures via Engineering of Oxygen Vacancies and Bismuth Substitution. ACS Nano, 2021, 15, 13604-13615.	14.6	36
21	Carbon–Phosphorus Bonds-Enriched 3D Graphene by Self-Sacrificing Black Phosphorus Nanosheets for Elevating Capacitive Lithium Storage. ACS Applied Materials & Interfaces, 2020, 12, 21720-21729.	8.0	33
22	Bambooâ€Membrane Inspired Multilevel Ultrafast Interlayer Ion Transport for Superior Volumetric Energy Storage. Advanced Functional Materials, 2021, 31, 2100299.	14.9	27
23	Bioinspired Materials for Energy Storage. Small Methods, 2022, 6, e2101076.	8.6	25
24	Nano Polymorphism‣nabled Redox Electrodes for Rechargeable Batteries. Advanced Materials, 2021, 33, e2004920.	21.0	23
25	Fabrication of the magnetic manganese dioxide/graphene nanocomposite and its application in dye removal from the aqueous solution at room temperature. Materials Research Bulletin, 2015, 70, 82-86.	5.2	17
26	High-added-value biomass-derived composites by chemically coupling post-consumer plastics with agricultural and forestry wastes. Journal of Cleaner Production, 2021, 284, 124768.	9.3	16
27	2D Metal Oxides: Twoâ€Dimensional Metal Oxide Nanomaterials for Nextâ€Generation Rechargeable Batteries (Adv. Mater. 48/2017). Advanced Materials, 2017, 29, 1770344.	21.0	14
28	Ultrasonic-assisted self-assembly synthesis of highly dispersed β-MnO ₂ nano-branches interwoven with graphene flakes for catalytic oxidation of aromatic compounds. RSC Advances, 2015, 5, 14843-14850.	3.6	13
29	Facile and economic synthesis of nitrogen doped graphene/manganese dioxide composites in aqueous solution for energy storage devices. Materials Letters, 2015, 143, 163-166.	2.6	12
30	Novel MnOOH–graphene nanocomposites: Preparation, characterization and electrochemical properties for supercapacitors. Journal of Solid State Chemistry, 2015, 221, 178-183.	2.9	12
31	Maximizing ionic transport of Li1+xAlxTi2-xP3O12 electrolytes for all-solid-state lithium-ion storage: A theoretical study. Journal of Materials Science and Technology, 2021, 73, 45-51.	10.7	12
32	Phase engineering activation of low-cost iron-containing sulfide minerals for advanced electrocatalysis. Journal of Materials Science and Technology, 2022, 111, 181-188.	10.7	12
33	Understanding heterogeneous metal-mediated interfacial enhancement mechanisms in graphene-embedded copper matrix composites. Applied Surface Science, 2021, 541, 148524.	6.1	11
34	Phase engineering of dual active 2D Bi ₂ O ₃ -based nanocatalysts for alkaline hydrogen evolution reaction electrocatalysis. Journal of Materials Chemistry A, 2022, 10, 808-817.	10.3	10
35	First Exploration on Electrochemical Activation of Lowâ€Cost Albite Mineral for Boosting Lithium Storage Capability. Advanced Sustainable Systems, 2020, 4, 2000057.	5.3	8
36	Crystal Channel Engineering for Rapid Ion Transport: From Nature to Batteries. Chemistry - A European Journal, 2022, 28, .	3.3	6

Jun Mei

#	Article	IF	CITATIONS
37	Bioinspired 2D Nanomaterials: Bioinspired 2D Nanomaterials for Sustainable Applications (Adv. Mater.) Tj ETQq1	l 0,78431 21.0	4₅gBT /Ove
38	Interfacial Design on Graphene–Hematite Heterostructures for Enhancing Adsorption and Diffusion towards Superior Lithium Storage. Nanomaterials, 2021, 11, 81.	4.1	5
39	MAXâ€phase Derived Tin Diselenide for 2D/2D Heterostructures with Ultralow Surface/Interface Transport Barriers toward Liâ€∤Naâ€ions Storage. Small Methods, 2022, 6, .	8.6	5
40	Probing Interface Manipulation of Metalâ€Graphene Composites via Doping and Vacancy Engineering towards Excellent Mechanical Strengths. ChemistrySelect, 2020, 5, 61-68.	1.5	3
41	Two-dimensional metal oxide nanomaterials for sustainable energy applications. , 2020, , 39-72.		3
42	In Situ Growth of Transition Metal Nanoparticles on Aluminosilicate Minerals for Oxygen Evolution. Advanced Energy and Sustainability Research, 2021, 2, 2100057.	5.8	3
43	Theoretical insight on mechanically robust graphene-nickel interfaces using chromium-substituted nickel and boron-doped graphene. Applied Surface Science, 2022, 593, 153356.	6.1	2
44	Molybdenumâ€Promoted Surface Reconstruction in Polymorphic Cobalt for Initiating Rapid Oxygen Evolution (Adv. Energy Mater. 5/2022). Advanced Energy Materials, 2022, 12, .	19.5	1
45	Hydrothermal Synthesis of Rock Candy-Shaped Mn3O4 Nanoparticles with High-Stability Electrochemical Performances. Journal of Nanoscience and Nanotechnology, 2018, 18, 3682-3685.	0.9	0
46	Frontispiece: Crystal Channel Engineering for Rapid Ion Transport: From Nature to Batteries. Chemistry - A European Journal, 2022, 28, .	3.3	0