Ken Okano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5155507/publications.pdf Version: 2024-02-01

KEN OKANO

#	Article	IF	CITATIONS
1	Low-threshold cold cathodes made of nitrogen-doped chemical-vapour-deposited diamond. Nature, 1996, 381, 140-141.	27.8	539
2	Electron field emission from diamond and other carbon materials after H2, O2, and Cs treatment. Applied Physics Letters, 1995, 67, 1328-1330.	3.3	331
3	Fabrication of a diamond field emitter array. Applied Physics Letters, 1994, 64, 2742-2744.	3.3	142
4	Electron emission from phosphorus- and boron-doped polycrystalline diamond films. Electronics Letters, 1995, 31, 74-75.	1.0	104
5	Studies of the effect of hydrostatic pressure pretreatment on thermal gelation of chicken myofibrils and pork meat patty. Food Chemistry, 2006, 95, 474-483.	8.2	104
6	Characterization of Boron-Doped Diamond Film. Japanese Journal of Applied Physics, 1989, 28, 1066-1071.	1.5	101
7	Synthesis of Diamond Thin Films Having Semiconductive Properties. Japanese Journal of Applied Physics, 1988, 27, L173-L175.	1.5	83
8	Metal-insulator-vacuum type electron emission from N-containing chemical vapor deposited diamond. Applied Physics Letters, 2001, 79, 275-277.	3.3	45
9	Development of an Amorphous Selenium-Based Photodetector Driven by a Diamond Cold Cathode. Sensors, 2013, 13, 13744-13778.	3.8	41
10	Field emission from reconstructed heavily phosphorus-doped homoepitaxial diamond (111). Applied Physics Letters, 2006, 88, 212114.	3.3	39
11	Synthesis of B-doped diamond film. Journal of Crystal Growth, 1990, 99, 1192-1195.	1.5	37
12	Fabrication of Metal-Insulator-Semiconductor Devices Using Polycrystalline Diamond Film. Japanese Journal of Applied Physics, 1991, 30, L2015-L2017.	1.5	35
13	pâ€njunction diode made of semiconducting diamond films. Applied Physics Letters, 1991, 58, 840-841.	3.3	34
14	Conditions for a carrier multiplication in amorphous-selenium based photodetector. Applied Physics Letters, 2013, 102, .	3.3	33
15	A transparent ultraviolet triggered amorphous selenium p-n junction. Applied Physics Letters, 2011, 98,	3.3	32
16	Characterization of electron emission from N-doped diamond using simultaneous field emission and photoemission technique. Applied Surface Science, 1999, 146, 274-279.	6.1	31
17	Fabrication of a diamond p-n junction diode using the chemical vapour deposition technique. Solid-State Electronics, 1991, 34, 139-141.	1.4	28
18	Field emission characteristics from graphene on hexagonal boron nitride. Applied Physics Letters, 2014, 104, .	3.3	28

Κεν Οκανο

#	Article	IF	CITATIONS
19	Potential profile between boron-doped diamond electron emitter and anode electrode. Applied Physics Letters, 2000, 76, 1297-1299.	3.3	27
20	Field emission mechanism of oxidized highly phosphorus-doped homoepitaxial diamond (111). Applied Physics Letters, 2005, 87, 234107.	3.3	24
21	Electron emission from the pyramidal-shaped diamond after hydrogen and oxygen surface treatments. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1997, 15, 1678.	1.6	22
22	Amorphous selenium photodetector driven by diamond cold cathode. IEEE Electron Device Letters, 2003, 24, 16-18.	3.9	21
23	Electron emission mechanism of diamond characterized using combined x-ray photoelectron spectroscopy/ultraviolet photoelectron spectroscopy/field emission spectroscopy system. Applied Physics Letters, 2006, 88, 202101.	3.3	21
24	Field emission from surfaceâ€modified heavily phosphorusâ€doped homoepitaxial (111) diamond. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 2957-2964.	1.8	21
25	Characterizations of a-Se based photodetectors using X-ray photoelectron spectroscopy and Raman spectroscopy. Journal of Non-Crystalline Solids, 2007, 353, 308-312.	3.1	20
26	Fabrication of a miniature-size pyramidal-shape diamond field emitter array. IEEE Electron Device Letters, 1995, 16, 239-241.	3.9	16
27	Isothermal capacitance transient spectroscopy measurements on polycrystalline diamond/hydrogenated amorphous silicon heterojunctions. Applied Physics Letters, 1992, 61, 1808-1810.	3.3	15
28	Nucleation and growth of diamond particles from the vapor phase. Diamond and Related Materials, 1992, 1, 157-160.	3.9	15
29	Anneal-Induced Degradation of Amorphous Selenium Characterized by Photoconductivity Measurements. Japanese Journal of Applied Physics, 2005, 44, L334-L337.	1.5	13
30	Electron emission from conduction band of heavily phosphorus doped diamond negative electron affinity surface. Journal Physics D: Applied Physics, 2016, 49, 045102.	2.8	13
31	Polycrystalline Diamond/Hydrogenated Amorphous Silicon P-N Heterojunction. Japanese Journal of Applied Physics, 1992, 31, L388-L391.	1.5	11
32	Triode-structure amorphous selenium photodetector driven by diamond cold cathode. Electronics Letters, 2002, 38, 1711.	1.0	11
33	Characterization of semiconducting diamond film and its application to electronic devices. Thin Solid Films, 1991, 206, 183-187.	1.8	10
34	Estimation of the Emission Barrier Height of p-Type Semiconducting Diamond from its Field Emission Property. Japanese Journal of Applied Physics, 1995, 34, L1068-L1070.	1,5	10
35	Growth of homoepitaxial diamond doped with nitrogen for electron emitter. Diamond and Related Materials, 2002, 11, 257-261.	3.9	10
36	Optically triggered Schottky barrier diodes in single crystal diamond. Diamond and Related Materials, 2005, 14, 499-503.	3.9	10

Κέν Οκάνο

#	Article	IF	CITATIONS
37	Field Emission from Modified P-Doped Diamond Surfaces with Different Barrier Heights. Japanese Journal of Applied Physics, 2008, 47, 8921-8924.	1.5	10
38	An optical investigation of diamond thin films on silicon. Vacuum, 1990, 41, 1387-1389.	3.5	9
39	Electron emission from nitrogen-doped chemical vapour deposited diamond. Ultramicroscopy, 1998, 73, 43-49.	1.9	9
40	Formation of ohmic contacts on semiconducting diamond grown by chemical vapour deposition. Diamond and Related Materials, 1994, 3, 30-34.	3.9	8
41	Field emission process of O-terminated heavily P-doped homoepitaxial diamond. Diamond and Related Materials, 2006, 15, 863-865.	3.9	8
42	Durability and photo-electric characteristics of a mille-feuille structured amorphous selenium (a-Se)–arsenic selenide (As2Se3) multi-layered thin film. Journal of Non-Crystalline Solids, 2013, 378, 96-100.	3.1	8
43	Field emission spectroscopy measurements of graphene/n-type diamond heterojunction. Applied Physics Letters, 2019, 114, .	3.3	8
44	Transport Properties of Se/As 2 Se 3 Nanolayer Superlattice Fabricated Using Rotational Evaporation. Advanced Functional Materials, 2019, 29, 1904758.	14.9	7
45	Isothermal capacitance transient spectroscopy study of defect states in polycrystalline diamond films. Diamond and Related Materials, 1993, 2, 1179-1184.	3.9	6
46	Formation of pâ€n Junction in aâ€Se Thin Film and Its Application to High Sensitivity Photodetector Driven by Diamond Cold Cathode. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700161.	1.8	6
47	Electron emission mechanism of hydrogenated natural type IIb diamond (111). Diamond and Related Materials, 2008, 17, 162-166.	3.9	5
48	Energy-Efficient Stacks—Covellite (CuS) on Polyethylene Terephthalate Film: A Sustainable Solution to Heat Management. Journal of Physical Chemistry C, 2020, 124, 3314-3321.	3.1	5
49	Effect of sp2/sp3 Ratio on Electron Emission Properties of Nitrogen-Doped Diamond Electron Emitter. Physica Status Solidi A, 2001, 186, 257-262.	1.7	4
50	Electron emission from N-doped homoepitaxially grown diamond. Journal of Applied Physics, 2002, 92, 2194-2197.	2.5	4
51	Seebeck Measurements of N-Doped Diamond Thin Film. Physica Status Solidi A, 2002, 193, 457-461.	1.7	4
52	Sensitivity to red/green/blue illumination of amorphous selenium based photodetector driven by nitrogen (N)-Doped CVD diamond. Diamond and Related Materials, 2008, 17, 95-99.	3.9	4
53	Combined x-ray photoelectron spectroscopy/ultraviolet photoelectron spectroscopy/field emission spectroscopy for characterization of electron-emission mechanism of diamond. Journal of Vacuum Science & Technology B, 2008, 26, 730-734.	1.3	4
54	Understanding tube-like electron emission from nanographite clustered films. Journal of Applied Physics, 2011, 110, 034903.	2.5	4

Ken Okano

#	Article	IF	CITATIONS
55	Electronic properties and potential applications of the heterojunction between silicon and multiâ€nanolayer amorphous selenium. Electronics Letters, 2017, 53, 1270-1272.	1.0	4
56	Diamond Tip Arrays for Parallel Lithography and Data Storage. Japanese Journal of Applied Physics, 1998, 37, L562-L564.	1.5	3
57	Formation of backcontacts on diamond electron emitters. Applied Surface Science, 1999, 146, 245-250.	6.1	3
58	A field effect transistor using highly nitrogen-doped CVD diamond for power device applications. Applied Surface Science, 2003, 216, 483-489.	6.1	3
59	Clarification of band structure at metal–diamond contact using device simulation. Applied Surface Science, 2008, 254, 6285-6288.	6.1	3
60	Modification of internal barrier in hydrogenâ€ŧerminated heavily phosphorusâ€doped diamond for field emission. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2063-2068.	1.8	3
61	Electrolysis as a controllable method for establishing p-n junctions in multi-nanolayer films of amorphous selenium. Journal of Applied Physics, 2017, 122, .	2.5	3
62	Observation of two-level defect system in amorphous Se superlattices. Applied Physics Letters, 2020, 116, 192104.	3.3	3
63	Junction Properties of Polycrystalline Diamond/Hydrogenated Amorphous Siliconp-nHeterojunctions. Japanese Journal of Applied Physics, 1993, 32, 3739-3747.	1.5	2
64	Simultaneous Field Emission and Photoemission Characterization of N-Doped CVD Diamond. Materials Research Society Symposia Proceedings, 1998, 509, 59.	0.1	2
65	Electron emission from diamond having negative electron affinity. Electronics and Communications in Japan, 1998, 81, 54-64.	0.2	1
66	Angular-resolved study of secondary-electron emission from NEA diamond surfaces. Diamond and Related Materials, 1999, 8, 1485-1489.	3.9	1
67	Effect of Oxygen Coverage on Electron Emission from Boron-Doped Polycrystalline Diamond. Japanese Journal of Applied Physics, 2001, 40, L829-L831.	1.5	1
68	Growth of N-doped heteroepitaxial diamond thin films on iridium for cold cathode. Physica Status Solidi A, 2003, 199, 33-38.	1.7	1
69	Electron emission mechanism of diamond characterised by combined XPS/UPS/FES. , 2008, , .		1
70	Response time of amorphous selenium based photodetector driven by diamond cold cathode. , 2018, , .		1
71	Modifying the Electronic Properties of Se/n‣i Heterostructure Using Electrolysis. Physica Status Solidi (B): Basic Research, 2019, 256, 1800445.	1.5	1
72	Electron emission mechanism of diamond characterised by combined XPS/UPS/FES. , 0, , .		0

Κέν Οκάνο

#	Article	IF	CITATIONS
73	Electron emission from diamond having negative electron affinity. Electronics and Communications in Japan, 1999, 82, 42-52.	0.2	0
74	Uniform electron emission from a nitrogen-doped diamond-based electron emitter fabricated by the sintering technique. IEEE Electron Device Letters, 2000, 21, 531-533.	3.9	0
75	Electron emission from heavily nitrogen (N)-doped polycrystalline, homo, and heteroepitaxial CVD diamond. , 0, , .		0
76	Triode-structure amorphous selenium photodetector driven by diamond cold cathode. , 0, , .		0
77	Field emission from heavily phosphorus-doped homoepitaxial diamond. , 0, , .		0
78	Field emission from surface-reconstructed phosphorus-doped homoepitaxial diamond (111). , 2006, , .		0
79	Barrier Height Difference Induced by Surface Terminations for Field Emission from P-doped Diamond. Materials Research Society Symposia Proceedings, 2007, 1039, 1.	0.1	0
80	Field Emission Mechanism of H-Terminated N-Type Diamond NEA Surface. Materials Research Society Symposia Proceedings, 2012, 1395, 51.	0.1	0
81	Characterization of amorphous selenium based photoconductor for a high-sensitivity photodetector driven by diamond cold cathode. , 2017, , .		0
82	Spectroscopic ellipsometry of amorphous Se superlattices. Journal Physics D: Applied Physics, 2021, 54, 255106.	2.8	0
83	Field Emission Phenomena and Applications. Electron Emission from CVD-grown Diamond Hyomen Kagaku, 1996, 17, 724-730.	0.0	0
84	Quantum device designing (QDD) for future semiconductor engineering. Review of Scientific Instruments, 2022, 93, 034703.	1.3	0