Yuhya Wakasa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5155185/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Immunological and Symptomatic Effects of Oral Intake of Transgenic Rice Containing 7 Linked Major T-Cell Epitopes from Japanese Cedar Pollen Allergens. International Archives of Allergy and Immunology, 2021, 182, 109-119.	0.9	8
2	Long-term oral administration of transgenic rice containing cedar pollen T-cell epitopes potentially improves medication- and allergy-related quality-of-life scores. Allergy and Asthma Proceedings, 2021, 42, 293-300.	1.0	3
3	Clinical trials of Cry j 1 and Cry j 2 T-cell epitope peptide-expressing rice in patients with Japanese cedar pollinosis. Asian Pacific Journal of Allergy and Immunology, 2021, , .	0.2	1
4	Transgenic rice seeds expressing altered peptide ligands against the M3 muscarinic acetylcholine receptor suppress experimental sialadenitis-like SjA¶gren's syndrome. Modern Rheumatology, 2020, 30, 884-893.	0.9	2
5	Rapid analysis of GBSS1 and Vinv genes expressed in potato tubers using microtubers produced in liquid culture medium. Plant Cell Reports, 2020, 39, 1415-1424.	2.8	3
6	Safety and efficacy of rice seed-based oral allergy vaccine for Japanese cedar pollinosis in Japanese monkeys. Molecular Immunology, 2020, 125, 63-69.	1.0	7
7	T ell activation by transgenic rice seeds expressing the genetically modified Japanese cedar pollen allergens. Immunology, 2019, 158, 94-103.	2.0	2
8	Change in subcellular localization of overexpressed vaccine peptide in rice endosperm cell that is caused by suppression of endogenous seed storage proteins. Plant Cell, Tissue and Organ Culture, 2018, 133, 275-287.	1.2	5
9	Transgeneâ€independent heredity of Rd <scp>DM</scp> â€mediated transcriptional gene silencing of endogenous genes in rice. Plant Biotechnology Journal, 2018, 16, 2007-2015.	4.1	13
10	Efficacy of oral immunotherapy with a rice-based edible vaccine containing hypoallergenic Japanese cedar pollen allergens for treatment of established allergic conjunctivitis in mice. Allergology International, 2018, 67, 119-123.	1.4	20
11	Oral Immunotherapy for Allergic Conjunctivitis Using Transgenic Rice Expressing Hypoallergenic Antigens. Cornea, 2018, 37, S67-S73.	0.9	5
12	Specific region affects the difference in accumulation levels between apple food allergen Mal d 1 and birch pollen allergen Bet v 1 which are expressed in vegetative tissues of transgenic rice. Plant Molecular Biology, 2018, 98, 439-454.	2.0	3
13	Compensatory rebalancing of rice prolamins by production of recombinant prolamin/bioactive peptide fusion proteins within ER-derived protein bodies. Plant Cell Reports, 2018, 37, 209-223.	2.8	12
14	Deposition mode of transforming growth factor-β expressed in transgenic rice seed. Plant Cell Reports, 2016, 35, 2461-2473.	2.8	8
15	Expression of ER quality controlâ€related genes in response to changes in BiP1 levels in developing rice endosperm. Plant Journal, 2011, 65, 675-689	2.8	121
16	Overexpression of BiP has Inhibitory Effects on the Accumulation of Seed Storage Proteins in Endosperm Cells of Rice. Plant and Cell Physiology, 2009, 50, 1532-1543.	1.5	91