Yee Cheong Lam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5155132/publications.pdf

Version: 2024-02-01

305 papers 6,851 citations

71102 41 h-index 63 g-index

306 all docs

306 docs citations

306 times ranked 6097 citing authors

#	Article	IF	CITATIONS
1	Multi-Foci Laser Separation of Sapphire Wafers with Partial Thickness Scanning. Micromachines, 2022, 13, 506.	2.9	3
2	A hybrid machine learning approach to determine the optimal processing window in femtosecond laser-induced periodic nanostructures. Journal of Materials Processing Technology, 2022, 308, 117716.	6.3	8
3	Mechanism and effects of surface morphology on absorption characteristics in ultrashort pulse laser processing of sapphire. Applied Surface Science, 2021, 542, 148734.	6.1	9
4	Electrical Resistance Reduction Induced with CO2 Laser Single Line Scan of Polyimide. Micromachines, 2021, 12, 227.	2.9	6
5	Rapid fabrication of complex nanostructures using room-temperature ultrasonic nanoimprinting. Nature Communications, 2021, 12, 3146.	12.8	20
6	Electroosmotic Flow Hysteresis for Fluids with Dissimilar pH and Ionic Species. Micromachines, 2021, 12, 1031.	2.9	13
7	Vertical Squeezing Route Taylor Flow with Angled Microchannel Junctions. Industrial & Company Research, 2021, 60, 14307-14317.	3.7	17
8	Multi-Foci Division of Nonlinear Energy Absorption on Ultrashort Pulse Laser Singulation of Sapphire Wafers. Micromachines, 2021, 12, 1328.	2.9	1
9	Numerical Investigation of Nanostructure Orientation on Electroosmotic Flow. Micromachines, 2020, 11, 971.	2.9	13
10	Functionalized MXene Enabled Sustainable Water Harvesting and Desalination. Advanced Sustainable Systems, 2020, 4, 2000102.	5.3	36
11	Additive manufacturing of composite materials and functionally graded structures using selective heat melting technique. Journal of Materials Science and Technology, 2020, 47, 243-252.	10.7	19
12	Mechanical response of lightweight hollow truss metal oxide lattices. Materialia, 2019, 8, 100439.	2.7	14
13	Femtosecond Laser-Induced Nonlinear Absorption in Thick Polystyrene. Lasers in Manufacturing and Materials Processing, 2019, 6, 59-66.	2.2	1
14	Thermo-elastic-viscoplastic-damage model for self-heating and mechanical behavior of thermoplastic polymers. International Journal of Plasticity, 2019, 121, 227-243.	8.8	48
15	Interaction of ultrasound with microporous polyethylene scaffolds. Applied Acoustics, 2019, 153, 102-109.	3.3	6
16	Thermal effect of femtosecond laser polystyrene processing. Optics and Laser Technology, 2019, 117, 244-250.	4.6	8
17	Investigation on polycarbonate surface wetting property with femtosecond laser irradiation and ultrasonic treatment. Optics and Laser Technology, 2019, 115, 316-324.	4.6	10
18	Elastic Turbulence of Aqueous Polymer Solution in Multi-Stream Micro-Channel Flow. Micromachines, 2019, 10, 110.	2.9	1

#	Article	IF	Citations
19	Femtosecond laser pulse inducing hydrophilicty and hydrophobicity on polycarbonate surfaces. Journal of Laser Applications, 2019, 31, 022504.	1.7	2
20	Effect of microchannel junction angle on two-phase liquid-gas Taylor flow. Chemical Engineering Science, 2019, 202, 417-428.	3.8	34
21	Dynamic Magnetic Nanomixers for Improved Microarray Assays by Eliminating Diffusion Limitation. Advanced Healthcare Materials, 2019, 8, e1801022.	7.6	15
22	Magnetic nanochain integrated microfluidic biochips. Nature Communications, 2018, 9, 1743.	12.8	94
23	Picosecond laser micro/nano surface texturing of nickel for superhydrophobicity. Journal Physics D: Applied Physics, 2018, 51, 115305.	2.8	16
24	Elastic-plastic behavior analysis of an arbitrarily oriented crack near an elliptical inhomogeneity with generalized Irwin correction. European Journal of Mechanics, A/Solids, 2018, 67, 177-186.	3.7	8
25	Picosecond Laser Surface Texturing of a Stavax Steel Substrate for Wettability Control. Engineering, 2018, 4, 816-821.	6.7	29
26	Electroosmotic Flow in Microchannel with Black Silicon Nanostructures. Micromachines, 2018, 9, 229.	2.9	16
27	Effect of nanostructures orientation on electroosmotic flow in a microfluidic channel. Nanotechnology, 2017, 28, 255303.	2.6	12
28	pH Change in Electroosmotic Flow Hysteresis. Analytical Chemistry, 2017, 89, 9394-9399.	6.5	12
29	Femtosecond laser-induced surface wettability modification of polystyrene surface. Science China: Physics, Mechanics and Astronomy, 2016, 59, 1 .	5.1	16
30	lonic Origin of Electro-osmotic Flow Hysteresis. Scientific Reports, 2016, 6, 22329.	3.3	13
31	Initiation and growth of microcracks near a grain boundary precipitation in coarse-grained zones of welded materials. International Journal of Solids and Structures, 2016, 102-103, 155-162.	2.7	6
32	Electroosmotic Flow Hysteresis for Dissimilar Anionic Solutions. Analytical Chemistry, 2016, 88, 8064-8073.	6.5	15
33	Biofilm development of an opportunistic model bacterium analysed at high spatiotemporal resolution in the framework of a precise flow cell. Npj Biofilms and Microbiomes, 2016, 2, 16023.	6.4	5
34	Modelling the deformation of nickel foil during manufacturing of nanostructures on injection moulding tool inserts. AIP Conference Proceedings, 2016 , , .	0.4	1
35	Thermophoresis of charged colloidal particles in aqueous media $\hat{a} \in \text{Effect}$ of particle size. International Journal of Heat and Mass Transfer, 2016, 101, 1283-1291.	4.8	21
36	Modelling the deformations during the manufacturing of nanostructures on non-planar surfaces for injection moulding tool inserts. Journal of Micromechanics and Microengineering, 2016, 26, 035014.	2.6	1

3

#	Article	IF	CITATIONS
37	Surface Modification of Polystyrene by Femtosecond Laser Irradiation. Journal of Laser Micro Nanoengineering, 2016, 11, 253-256.	0.1	12
38	Visualization of polymer relaxation in viscoelastic turbulent micro-channel flow. Scientific Reports, 2015, 5, 16633.	3. 3	8
39	Chaos analysis of viscoelastic chaotic flows of polymeric fluids in a micro-channel. AIP Advances, 2015, 5, 077150.	1.3	2
40	Surface Wettability Modification of Cyclic Olefin Polymer by Direct Femtosecond Laser Irradiation. Nanomaterials, 2015, 5, 1442-1453.	4.1	38
41	Electroosmotic flow hysteresis for dissimilar ionic solutions. Biomicrofluidics, 2015, 9, 024113.	2.4	14
42	Thermal Effect on Microchannel Electro-osmotic Flow With Consideration of Thermodiffusion. Journal of Heat Transfer, 2015, 137, .	2.1	9
43	Dielectrophoretic cell motion model over periodic microelectrodes with unit-cell approach. Microfluidics and Nanofluidics, 2015, 18, 873-885.	2.2	7
44	Energy benchmark of polymeric embossing systems namely hot embossing systems and ultrasonic systems. , 2014, , .		1
45	An investigation into a micro-sized droplet impinging on a surface with sharp wettability contrast. Journal Physics D: Applied Physics, 2014, 47, 425305.	2.8	15
46	A review on the mechanical methods for evaluating coating adhesion. Acta Mechanica, 2014, 225, 431-452.	2.1	107
47	Phase-field simulation of impingement and spreading of micro-sized droplet on heterogeneous surface. Microfluidics and Nanofluidics, 2014, 17, 131-148.	2.2	39
48	Selective surface modification of PET substrate for inkjet printing. International Journal of Advanced Manufacturing Technology, 2014, 71, 1749-1755.	3.0	17
49	Influence of hydrothermal exposure on surface characteristics and corrosion behaviors of anodized titanium. Surface and Interface Analysis, 2014, 46, 307-313.	1.8	4
50	Patterned Surface with Controllable Wettability for Inkjet Printing of Flexible Printed Electronics. ACS Applied Materials & Samp; Interfaces, 2014, 6, 4011-4016.	8.0	80
51	Finite element simulation of ultrasonic embossing on polymers. , 2014, , .		2
52	Simulation of impingement and spreading of micro-droplet on non-homogeneous solid surface. , 2013, , .		0
53	Direction dependence of displacement time for two-fluid electroosmotic flow. Biomicrofluidics, 2012, 6, 12816-1281617.	2.4	11
54	Numerical study of dc-biased ac-electrokinetic flow over symmetrical electrodes. Biomicrofluidics, 2012, 6, 12817-1281710.	2.4	6

#	Article	IF	Citations
55	Multiple-stream flow and mixing of dissimilar polymeric solutions in abrupt microfluidic contraction/expansion geometries. Proceedings of SPIE, 2012, , .	0.8	1
56	Experimental observations of flow instabilities and rapid mixing of two dissimilar viscoelastic liquids. AIP Advances, 2012, 2, .	1.3	3
57	Numerical simulation of aluminum alloy 6061 micro-mold fabrication for the production of polymeric microstructures by micro-hot-embossing. Journal of Micromechanics and Microengineering, 2012, 22, 085005.	2.6	0
58	Continuous Cell Separation Using Dielectrophoresis through Asymmetric and Periodic Microelectrode Array. Analytical Chemistry, 2012, 84, 6463-6470.	6.5	35
59	Evaluation of roughness, hardness, and strength of AA 6061 molds for manufacturing polymeric microdevices. International Journal of Advanced Manufacturing Technology, 2012, 60, 1215-1221.	3.0	1
60	Electrokinetically driven concentration of particles and cells by dielectrophoresis with DC-offset AC electric field. Microfluidics and Nanofluidics, 2012, 12, 723-733.	2.2	52
61	Comparison of different molds (epoxy, polymer and silicon) for microfabrication by hot embossing technique. Sensors and Actuators B: Chemical, 2012, 163, 233-241.	7.8	28
62	Analysis on micro-mixing enhancement through a constriction under time periodic electroosmotic flow. Microfluidics and Nanofluidics, 2012, 12, 127-141.	2.2	20
63	Micro fabrication of cyclic olefin copolymer (COC) based microfluidic devices. Microsystem Technologies, 2012, 18, 159-166.	2.0	37
64	DC-biased AC-electrokinetics: a conductivity gradient driven fluid flow. Lab on A Chip, 2011, 11, 4241.	6.0	20
65	Fabrication and Analysis of Gecko-Inspired Hierarchical Polymer Nanosetae. ACS Nano, 2011, 5, 1897-1906.	14.6	82
66	Effects of polymer melt compressibility on mold filling in micro-injection molding. Journal of Micromechanics and Microengineering, 2011, 21, 095019.	2.6	18
67	Improving surface smoothness of laser-fabricated microchannels for microfluidic application. Journal of Micromechanics and Microengineering, 2011, 21, 095008.	2.6	38
68	Investigation on femtosecond laser irradiation energy in inducing hydrophobic polymer surfaces. Applied Surface Science, 2011, 257, 10427-10433.	6.1	21
69	Particle streaming and separation using dielectrophoresis through discrete periodic microelectrode array. Microfluidics and Nanofluidics, 2011, 11, 579-591.	2.2	9
70	A modified quasiâ€creep model for assessment of deformation of topas COC substrates in the thermal bonding of microfluidic devices: Experiments and modeling. Journal of Applied Polymer Science, 2011, 122, 867-873.	2.6	9
71	New deformation phenomenon for micro-formability of polycrystalline materials. Materials Science & Science	5.6	3
72	Influence of plasma surface treatment on thermal bonding and flow behavior in Cyclic Olefin Copolymer (COC) based microfluidic devices. Vacuum, 2011, 85, 1102-1104.	3.5	24

#	Article	IF	CITATIONS
73	Large-strain thermo-mechanical behavior of cyclic olefin copolymers: Application to hot embossing and thermal bonding for the fabrication of microfluidic devices. Sensors and Actuators B: Chemical, 2011, 155, 93-105.	7.8	34
74	Rheological (visco-elastic behaviour) analysis of cyclic olefin copolymers with application to hot embossing for microfabrication. Journal of Micromechanics and Microengineering, 2011, 21, 085029.	2.6	7
75	Effect of polymer orientation on pattern replication in a micro-hot embossing process: experiments and numerical simulation. Journal of Micromechanics and Microengineering, 2011, 21, 065007.	2.6	4
76	Determination of pressure drop for concentrated suspension in a capillary flow. Polymer Composites, 2010, 31, 792-798.	4.6	1
77	Morphology and geometry of CO _{2-laser machined PMMA microchannels: influence of molecular weight and number of cut passes. International Journal of Nanomanufacturing, 2010, 6, 85.}	0.3	1
78	Surface analysis, hydrophilic enhancement, ageing behavior and flow in plasma modified cyclic olefin copolymer (COC)-based microfluidic devices. Sensors and Actuators B: Chemical, 2010, 150, 537-549.	7.8	76
79	Thermal bonding of PMMA: effect of polymer molecular weight. Microsystem Technologies, 2010, 16, 487-491.	2.0	19
80	Continuous sorting and separation of microparticles by size using AC dielectrophoresis in a PDMS microfluidic device with 3â€D conducting PDMS composite electrodes. Electrophoresis, 2010, 31, 2622-2631.	2.4	103
81	Viscosity corrections for concentrated suspension in capillary flow with wall slip. AICHE Journal, 2010, 56, 1447-1455.	3.6	7
82	Overview on fabrication of three-dimensional structures in multi-layer ceramic substrate. Journal of the European Ceramic Society, 2010, 30, 1973-1987.	5.7	75
83	A hybrid of mode-pursuing sampling method and genetic algorithm for minimization of injection molding warpage. Materials & Design, 2010, 31, 2118-2123.	5.1	52
84	Viscosity of COC polymer (TOPAS) near the glass transition temperature: Experimental and modeling. Polymer Testing, 2010, 29, 933-938.	4.8	16
85	Constitutive equation with fractional derivatives for the generalized UCM model. Journal of Non-Newtonian Fluid Mechanics, 2010, 165, 88-97.	2.4	33
86	High fidelity hot-embossing of COC microdevices using a one-step process without pre-annealing of polymer substrate. Sensors and Actuators B: Chemical, 2010, 150, 692-699.	7.8	16
87	Mixing enhancement in microfluidic channel with a constriction under periodic electro-osmotic flow. Biomicrofluidics, 2010, 4, 014101.	2.4	73
88	An investigation of the detrimental impact of trapped air in thermoplastic micro-embossing. Journal of Micromechanics and Microengineering, 2010, 20, 065014.	2.6	15
89	Manufacturing of an aluminum alloy mold for micro-hot embossing of polymeric micro-devices. Journal of Micromechanics and Microengineering, 2010, 20, 055020.	2.6	10
90	Laser soft marking on silicon wafer. Journal of Applied Physics, 2010, 107, 053107.	2.5	4

#	Article	IF	Citations
91	A method for the accelerated simulation of micro-embossed topographies in thermoplastic polymers. Journal of Micromechanics and Microengineering, 2010, 20, 065001.	2.6	7
92	Experimental verification of Faradaic charging in ac electrokinetics. Biomicrofluidics, 2009, 3, 022405.	2.4	25
93	Burried hot wire anemometer for fluid velocity measurements. , 2009, , .		7
94	Experimental study of influential process parameters in hot embossing for micropattern formation on low temperature cofirable ceramic green substrates. Journal of Vacuum Science & Technology B, 2009, 27, 1437.	1.3	2
95	A computationally simple method for simulating the micro-embossing of thermoplastic layers. Journal of Micromechanics and Microengineering, 2009, 19, 075007.	2.6	21
96	Flexible Micro-Structured Mold for UV Micro-Casting of Polymeric Microdevices. Advanced Materials Research, 2009, 74, 7-10.	0.3	0
97	Enhancement of electrokinetically driven microfluidic Tâ€mixer using frequency modulated electric field and channel geometry effects. Electrophoresis, 2009, 30, 3144-3152.	2.4	45
98	End pressure corrections in capillary rheometry of concentrated suspensions. Journal of Applied Polymer Science, 2009, 114, 1738-1745.	2.6	2
99	Study on micro hot embossing of low temperature co-firable ceramic green substrates. Microsystem Technologies, 2009, 15, 1225-1232.	2.0	4
100	Numerical analyses of peel demolding for UV embossing of high aspect ratio micro-patterning. Microsystem Technologies, 2009, 15, 581-593.	2.0	14
101	Three-dimensional modeling of roughness effects on microthickness filling in injection mold cavity. International Journal of Advanced Manufacturing Technology, 2009, 45, 481-489.	3.0	6
102	Runner sizing in multiple cavity injection mould by non-dominated sorting genetic algorithm. Engineering With Computers, 2009, 25, 237-245.	6.1	17
103	Carbon burnout and densification of self-constrained LTCC for fabrication of embedded structures in a multi-layer platform. Journal of the European Ceramic Society, 2009, 29, 457-463.	5.7	13
104	Study of deformation and porosity evolution of low temperature co-fired ceramic for embedded structures fabrication. Journal of the European Ceramic Society, 2009, 29, 2737-2745.	5.7	14
105	Modeling of mass transfers in a porous green compact with two-component binder during thermal debinding. Chemical Engineering Science, 2009, 64, 2837-2850.	3.8	8
106	Bio-fluid uptake and release of Indomethacin of direct-compressed HPMC tablets. Carbohydrate Polymers, 2009, 75, 282-286.	10.2	8
107	Polymer hydrophilicity and hydrophobicity induced by femtosecond laser direct irradiation. Applied Physics Letters, 2009, 95, .	3.3	61
108	DC-biased AC-electroosmotic and AC-electrothermal flow mixing in microchannels. Lab on A Chip, 2009, 9, 802-809.	6.0	141

#	Article	IF	Citations
109	Reduction of droplet volume by controlling actuating waveforms in inkjet printing for micro-pattern formation. Journal of Micromechanics and Microengineering, 2009, 19, 055010.	2.6	95
110	Micromixer based on viscoelastic flow instability at low Reynolds number. Biomicrofluidics, 2009, 3, 014106.	2.4	38
111	Seeing the invisible laser markings. Journal Physics D: Applied Physics, 2009, 42, 042004.	2.8	11
112	Effect of SDS on the gelation of hydroxypropylmethylcellulose hydrogels. Journal of Thermal Analysis and Calorimetry, 2008, 93, 495-501.	3.6	22
113	Mold surface roughness effects on cavity filling of polymer melt in micro injection molding. International Journal of Advanced Manufacturing Technology, 2008, 37, 1105-1112.	3.0	37
114	Studies of polymer deformation and recovery in micro hot embossing. Microsystem Technologies, 2008, 14, 1055-1060.	2.0	18
115	Stretched Cavityâ€Assisted Molding of Micrometer and Submicrometer Photopolymerized Hydrogel Particles. Small, 2008, 4, 69-76.	10.0	7
116	Experimental investigation of key parameters on the effects of cavity surface roughness in microinjection molding. Polymer Engineering and Science, 2008, 48, 490-495.	3.1	13
117	Gelation of methylcellulose hydrogels under isothermal conditions. Journal of Applied Polymer Science, 2008, 107, 2101-2108.	2.6	8
118	Effects of salts in the Hofmeister series and solvent isotopes on the gelation mechanisms for hydroxypropylmethylcellulose hydrogels. Journal of Applied Polymer Science, 2008, 109, 363-372.	2.6	53
119	Controlled Fabrication of Multitiered Threeâ€Dimensional Nanostructures in Porous Alumina. Advanced Functional Materials, 2008, 18, 2057-2063.	14.9	56
120	Non-isothermal analysis of concentrated suspension slip flow with particle migration. Composites Science and Technology, 2008, 68, 398-409.	7.8	3
121	Thermoreversible gelation of hydroxypropylmethylcellulose in simulated body fluids. Carbohydrate Polymers, 2008, 72, 133-143.	10.2	33
122	Modeling of dielectrophoretic force for moving dielectrophoresis electrodes. Journal of Electrostatics, 2008, 66, 514-525.	1.9	34
123	Improvement of rectification effects in diffuser/nozzle structures with viscoelastic fluids. Biomicrofluidics, 2008, 2, 34101.	2.4	30
124	Cell Motion Model for Moving Dielectrophoresis. Analytical Chemistry, 2008, 80, 5454-5461.	6.5	40
125	Dielectrophoretic manipulation of particles in a modified microfluidic H filter with multi-insulating blocks. Biomicrofluidics, 2008, 2, 34105.	2.4	83
126	CO ₂ -laser micromachining of PMMA: the effect of polymer molecular weight. Journal of Micromechanics and Microengineering, 2008, 18, 095020.	2.6	81

#	Article	IF	Citations
127	Effect of solvent state and isothermal conditions on gelation of methylcellulose hydrogels. Journal of Biomaterials Science, Polymer Edition, 2008, 19, 1611-1623.	3.5	11
128	Process Development for Realization of Embedded Structures in Multi-Layer Ceramics Platform using Carbon Fugitive Material. , 2008, , .		0
129	Micro embossing of ceramic green substrates for micro devices. , 2008, , .		1
130	Geometry Effect on the Electrokinetic Instability of the Electroosmotic Flow in Microfluidic Channels. , 2008, , .		0
131	Modeling pattern dependencies in the micron-scale embossing of polymeric layers. Proceedings of SPIE, 2008, , .	0.8	2
132	Numerical simulation of cavity roughness effects on melt filling in microinjection molding. Advances in Polymer Technology, 2008, 27, 89-97.	1.7	4
133	Chaotic Mixing Based on Viscoelasticity. , 2008, , 248-254.		1
134	Predicting quarter-buckling and herringbone buckling in rolled strip. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2007, 221, 143-150.	2.1	7
135	Numerical Analysis of the Flatness of Thin, Rolled Steel Strip on the Runout Table. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2007, 221, 241-254.	2.4	22
136	A Total Concentration Fixed-Grid Method for Two-Dimensional Wet Chemical Etching. Journal of Heat Transfer, 2007, 129, 509-516.	2.1	9
137	A study of substrate temperature distribution during ultrashort laser ablation of bulk copper. Laser and Particle Beams, 2007, 25, 155-159.	1.0	14
138	Integration of Glass Layer for Meso and Micro-System Applications. , 2007, , .		2
139	Dynamic Cell Fractionation and Transportation Using Moving Dielectrophoresis. Analytical Chemistry, 2007, 79, 6975-6987.	6.5	52
140	Multi-layer Lamination of Embedded Channels in Low Shrinkage Ceramics based Platform. , 2007, , .		0
141	Joule Heating Induced Heat Transfer and Its Effects on Electrokinetic Mixing in T-Shape Microfluidic Channels., 2007,,.		0
142	Numerical and experimental investigations on thermal debinding of polymeric binder of powder injection molding compact. Chemical Engineering Science, 2007, 62, 6927-6938.	3.8	12
143	Wall slip of concentrated suspension melts in capillary flows. Powder Technology, 2007, 177, 162-169.	4.2	33
144	Effects of surface roughness on microinjection molding. Polymer Engineering and Science, 2007, 47, 2012-2019.	3.1	21

#	Article	IF	Citations
145	Influence of substrate cooling on femtosecond laser machined hole depth and diameter. Applied Physics A: Materials Science and Processing, 2007, 89, 559-563.	2.3	14
146	Thermodynamic characteristics of gelation for methyl-cellulose hydrogels. Journal of Thermal Analysis and Calorimetry, 2007, 87, 475-482.	3.6	28
147	Direct observation of the temperature field during ablation of materials by multiple femtosecond laser pulses. Applied Surface Science, 2007, 253, 7290-7294.	6.1	7
148	Joule heating and its effects on electrokinetic transport of solutes in rectangular microchannels. Sensors and Actuators A: Physical, 2007, 139, 221-232.	4.1	40
149	Joule heating and its effects on electroosmotic flow in microfluidic channels. Journal of Physics: Conference Series, 2006, 34, 925-930.	0.4	16
150	Polymer-based device for efficient mixing of viscoelastic fluids. Applied Physics Letters, 2006, 88, 224103.	3.3	39
151	Experimental studies on polymer deformation and flow in micro hot embossing. , 2006, , .		1
152	Antistick Postpassivation of High-Aspect Ratio Silicon Molds Fabricated by Deep-Reactive Ion Etching. Journal of Microelectromechanical Systems, 2006, 15, 84-93.	2.5	35
153	Design of Experiment for Optimization of Plasma-Polymerized Octafluorocyclobutane Coating on Very High Aspect Ratio Silicon Molds. Langmuir, 2006, 22, 10196-10203.	3.5	33
154	Quantification of thermal energy deposited in silicon by multiple femtosecond laser pulses. Optics Express, 2006, 14, 9261.	3.4	18
155	Theoretical and experimental study of electroosmosis-driven two-fluid displacement in a microcapillary. , 2006, , .		0
156	Study of electroosmosis-driven two-liquid displacement flow in a microcapillary. Journal of Physics: Conference Series, 2006, 34, 283-290.	0.4	2
157	Numerical simulation of Joule heating effect on sample band transport in capillary electrophoresis. Analytica Chimica Acta, 2006, 561, 138-149.	5.4	19
158	Modeling two-dimensional diffusion-controlled wet chemical etching using a total concentration approach. International Journal of Heat and Mass Transfer, 2006, 49, 1480-1488.	4.8	11
159	Total concentration approach for three-dimensional diffusion-controlled wet chemical etching. International Journal of Heat and Mass Transfer, 2006, 49, 3408-3416.	4.8	6
160	Integrated approach for modelling cure and crystallization kinetics of different polymers in 3D pultrusion simulation. Journal of Materials Processing Technology, 2006, 174, 178-182.	6.3	38
161	Efficient mixing of viscoelastic fluids in a microchannel at low Reynolds number. Microfluidics and Nanofluidics, 2006, 3, 101-108.	2.2	59
162	Towards automatic shape modification in injection-moulded-plastic-part design. International Journal of Advanced Manufacturing Technology, 2006, 28, 495-503.	3.0	25

#	Article	IF	CITATIONS
163	A GA/gradient hybrid approach for injection moulding conditions optimisation. Engineering With Computers, 2006, 21, 193-202.	6.1	20
164	Runner sizing and weld line positioning for plastics injection moulding with multiple gates. Engineering With Computers, 2006, 21, 218-224.	6.1	29
165	The influence of fatty acid coating on the rheological and mechanical properties of thermoplastic polyurethane (TPU)/nano-sized precipitated calcium carbonate (NPCC) composites. Polymer Bulletin, 2006, 57, 575-586.	3.3	16
166	Modeling heat and degree of gelation for methyl cellulose hydrogels with NaCl additives. Journal of Applied Polymer Science, 2006, 101, 1620-1629.	2.6	27
167	Assessment of Joule heating and its effects on electroosmotic flow and electrophoretic transport of solutes in microfluidic channels. Electrophoresis, 2006, 27, 628-639.	2.4	88
168	A numerical model for etching through a circular hole. Journal of Physics: Conference Series, 2006, 34, 417-422.	0.4	0
169	Wall Slip of Suspension Flowing in Capillary at Elevated Temperature. Solid State Phenomena, 2006, 111, 87-90.	0.3	2
170	Factors that Affect Fibrillation of the Liquid Crystalline Polymer (LCP)Phase in an Injection Moulded Polycarbonate / LCP Blend. Key Engineering Materials, 2006, 312, 133-138.	0.4	1
171	DISPERSION CHARACTEISTICS OF PASSIVE ANALYTES IN A MICROFLUIDIC SLIT. Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering, 2006, 42, 93.	0.5	0
172	Microstructure and rheological properties of pH-responsive core–shell particles. Polymer, 2005, 46, 10066-10076.	3.8	30
173	Numerical modeling of unidirectional stratified flow with and without phase change. International Journal of Heat and Mass Transfer, 2005, 48, 477-486.	4.8	34
174	Femtosecond laser-induced damage morphologies of crystalline silicon by sub-threshold pulses. Optics and Lasers in Engineering, 2005, 43, 977-986.	3.8	50
175	Microstructure and rheology of stimuli-responsive microgel systemsâ€"effect of cross-linked density. Advances in Colloid and Interface Science, 2005, 113, 111-120.	14.7	39
176	Control chart system with independent quality characteristics. International Journal of Advanced Manufacturing Technology, 2005, 26, 1298-1305.	3.0	9
177	A fixed-grid approach for diffusion- and reaction-controlled wet chemical etching. International Journal of Heat and Mass Transfer, 2005, 48, 2140-2149.	4.8	15
178	Strengthening acrylonitrile-butadiene-styrene (ABS) with nano-sized and micron-sized calcium carbonate. Polymer, 2005, 46, 243-252.	3.8	138
179	Depthwise averaging approach to cross-stream mixing in a pressure-driven microchannel flow. Microfluidics and Nanofluidics, 2005, 1, 218-226.	2.2	31
180	Rheological properties and interfacial slip of a multilayer structure under dynamic shear. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 2683-2693.	2.1	8

#	Article	IF	CITATIONS
181	Automated Selection of Gate Location for Plastic Injection Molding Processing. Polymer-Plastics Technology and Engineering, 2005, 44, 229-242.	1.9	21
182	Algorithms for Two Gate Optimization in Injection Molding. International Polymer Processing, 2005, 20, 14-18.	0.5	12
183	Osmotic Compressibility of Soft Colloidal Systems. Langmuir, 2005, 21, 4283-4290.	3.5	29
184	DEMOLDING OF HIGH ASPECT RATIO POLYMERIC MICRO-PATTERNING. International Journal of Nanoscience, 2005, 04, 543-549.	0.7	6
185	FORMATION OF POROUS STRUCTURES ON SI SURFACE BY LASER-ASSISTED ETCHING. Surface Review and Letters, 2005, 12, 351-354.	1.1	4
186	A Total-Concentration Fixed-Grid Method for Two-Dimensional Diffusion-Controlled Wet Chemical Etching. , 2005, , 113.		1
187	On Electrokinetic Mass Transport in a Microchannel With Joule Heating Effects. Journal of Heat Transfer, 2005, 127, 660-663.	2.1	6
188	Integrated control chart system—optimization of sample sizes, sampling intervals and control limits. International Journal of Production Research, 2005, 43, 563-582.	7. 5	15
189	Simulation and Investigation of Factors Affecting High Aspect Ratio UV Embossing. Langmuir, 2005, 21, 2000-2007.	3.5	31
190	Evolution of liquid-bond strength in powder injection moulding compact during thermal debinding: numerical simulation. Modelling and Simulation in Materials Science and Engineering, 2004, 12, 311-323.	2.0	4
191	SURFACE DAMAGE OF CRYSTALLINE SILICON BY LOW FLUENCE FEMTOSECOND LASER PULSES. Surface Review and Letters, 2004, 11, 217-221.	1.1	13
192	Optimization design of control chart systems. IIE Transactions, 2004, 36, 447-455.	2.1	17
193	Some Observations on Particle Size and Velocity Measurements Using Phase Doppler Anemometry in Plasma Spray. Plasma Chemistry and Plasma Processing, 2004, 24, 85-115.	2.4	9
194	A fixed-grid method for chemical etching. International Communications in Heat and Mass Transfer, 2004, 31, 1123-1131.	5.6	17
195	Optimisation of gate location with design constraints. International Journal of Advanced Manufacturing Technology, 2004, 24, 560-566.	3.0	17
196	Interfacial slip at the thermotropic liquid-crystalline polymer/poly (ethylene naphthalate) interface. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 302-315.	2.1	10
197	Effects of convergent flow onin situ fibrillation of TLCP in PEN. Journal of Applied Polymer Science, 2004, 91, 1505-1513.	2.6	6
198	Rheological and mechanical properties of compatibilized polystyrene/ethylene vinyl acetate blends. Journal of Applied Polymer Science, 2004, 94, 2071-2082.	2.6	7

#	Article	IF	Citations
199	EFFECT OF TEMPERATURE AND INLET VELOCITY ON THE FLOW OF A NONNEWTONIAN FLUID. International Communications in Heat and Mass Transfer, 2004, 31, 1005-1013.	5. 6	20
200	Prediction of the deflection and residual stress in controlled cooling of hot-rolled steel beams including load and arbitrary support. Journal of Materials Processing Technology, 2004, 147, 268-275.	6.3	8
201	Prediction of the deflection and residual stress in controlled cooling of hot-rolled steel beams including load and arbitrary support. Journal of Materials Processing Technology, 2004, 147, 370-376.	6.3	6
202	Dynamics and microstructure of charged soft nano-colloidal particles. Polymer, 2004, 45, 5515-5523.	3.8	29
203	Three-dimensional transient radiative transfer modeling using the finite-volume method. Journal of Quantitative Spectroscopy and Radiative Transfer, 2004, 86, 299-313.	2.3	7 3
204	Numerical investigation of particle migration in poiseuille flow of composite system. Composites Science and Technology, 2004, 64, 1001-1010.	7.8	39
205	Optimization of injection moulding conditions with user-definable objective functions based on a genetic algorithm. International Journal of Production Research, 2004, 42, 1365-1390.	7.5	17
206	An evolutionary approach for cooling system optimization in plastic injection moulding. International Journal of Production Research, 2004, 42, 2047-2061.	7.5	99
207	A semi-empirical approach for modeling charged soft microgel particles. Journal of Rheology, 2004, 48, 915-926.	2.6	34
208	Controllable Gelation of Methylcellulose by a Salt Mixture. Langmuir, 2004, 20, 6134-6138.	3.5	92
209	Microstructure and Rheology of Stimuli-Responsive Nanocolloidal SystemsEffect of Ionic Strength. Langmuir, 2004, 20, 11380-11386.	3.5	28
210	Three-Dimensional FE–NCV Modeling of Thermoplastic Composites Pultrusion. Journal of Thermoplastic Composite Materials, 2004, 17, 447-462.	4.2	12
211	Simulation of thermal debinding: effects of mass transport on equivalent stress. Computational Materials Science, 2004, 30, 496-503.	3.0	8
212	Determination of phenomenological constants of shear-induced particle migration model. Computational Materials Science, 2004, 30, 223-229.	3.0	16
213	Factors governing in situ fibre formation in LCP/PC blends∆. Composites Part A: Applied Science and Manufacturing, 2004, 35, 1033-1038.	7.6	3
214	Efficient algorithm for probabilistic analysis of complex function in engineering applications. Engineering Computations, 2004, 21, 540-559.	1.4	2
215	Numerical Modeling of Unidirectional Stratified Flow Between Parallel Plates. , 2004, , .		0
216	Automated rib location and optimization for plate structures. Structural and Multidisciplinary Optimization, 2003, 25, 35-45.	3.5	53

#	Article	IF	Citations
217	A computer-aided system for an optimal moulding conditions design using a simulation-based approach. International Journal of Advanced Manufacturing Technology, 2003, 22, 574-586.	3.0	22
218	Interfacial properties of polycarbonate/liquid-crystal polymer and polystyrene/high-impact polystyrene polymer pairs under shear deformation. Journal of Applied Polymer Science, 2003, 87, 258-269.	2.6	13
219	Effect of nano-silica filler on the rheological and morphological properties of polypropylene/liquid-crystalline polymer blends. Journal of Applied Polymer Science, 2003, 87, 1484-1492.	2.6	35
220	Energy model of the interfacial slip of polymer blends under steady shear. Journal of Applied Polymer Science, 2003, 89, 1464-1470.	2.6	17
221	Energy-based predictive criterion for LCP fibrillation in LCP/thermoplastic polymer blends under shear. Journal of Applied Polymer Science, 2003, 90, 3314-3324.	2.6	3
222	PP/LCP composites: effects of shear flow, extensional flow and nanofillers. Composites Science and Technology, 2003, 63, 1921-1929.	7.8	38
223	Numerical analysis of residual stress in hot-rolled steel strip on the run-out table. Journal of Materials Processing Technology, 2003, 132, 184-197.	6.3	52
224	Relaxation of liquid-crystalline polymer fibers in polycarbonate-liquid-crystalline polymer blend system. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 2307-2312.	2.1	12
225	Mechanical properties and morphology of LCP/ABS blends compatibilized with a styrene-maleic anhydride copolymer. Polymer International, 2003, 52, 733-739.	3.1	9
226	Effect of shear heating during injection molding on the morphology of PC/LCP blends. Acta Materialia, 2003, 51, 6269-6276.	7.9	24
227	Improved cure optimization in pultrusion with pre-heating and die-cooler temperature. Composites Part A: Applied Science and Manufacturing, 2003, 34, 1151-1159.	7.6	43
228	Interfacial slip between polymer melts studied by confocal microscopy and rheological measurements. Journal of Rheology, 2003, 47, 795-807.	2.6	35
229	Investigation on Thermal Debinding of Powder Injection Molding. Materials Science Forum, 2003, 437-438, 129-132.	0.3	0
230	Shear-Induced Particle Migration in Suspension in a Capillary Pressurized Driven Circular Tube Flow. Materials Science Forum, 2003, 437-438, 341-344.	0.3	0
231	Simulation of Particle Migration of Powder-Resin System in Injection Molding. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2003, 125, 538-547.	2.2	8
232	Shear-induced particle migration modelling in a concentrated suspension flow. Modelling and Simulation in Materials Science and Engineering, 2003, 11 , 503-522.	2.0	9
233	Experimental Investigation of Shear-Induced Particle Migration in Steady-State Isothermic Extrusion. Nihon Reoroji Gakkaishi, 2003, 31, 165-173.	1.0	6
234	Numerical and experimental investigation of thermal debinding. Powder Metallurgy, 2002, 45, 233-236.	1.7	2

#	Article	IF	Citations
235	Thermally Induced Association and Dissociation of Methylcellulose in Aqueous Solutions. Langmuir, 2002, 18, 7291-7298.	3.5	209
236	Feature-based CAD-CAE integration model for injection-moulded product design. International Journal of Production Research, 2002, 40, 3737-3750.	7.5	49
237	Morphology and mechanical properties of reactive compatibilized polystyrene/ethylene-vinyl acetate-vinyl alcohol blends. Journal of Applied Polymer Science, 2002, 85, 209-217.	2.6	5
238	Thermal debinding modeling of mass transport and deformation in powder-injection molding compact. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2002, 33, 477-488.	2.1	32
239	Specification Model: A First Step Towards Automatic Interpretation of Injection Moulding CAE Results. International Journal of Advanced Manufacturing Technology, 2002, 20, 833-843.	3.0	4
240	A CAD-CAE Integrated Injection Molding Design System. Engineering With Computers, 2002, 18, 80-92.	6.1	40
241	On the effects of secondary phase on thermal conductivity of AlN ceramic substrates using a microstructural modeling approach. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 335, 281-289.	5.6	36
242	Power law fluids and Bingham plastics flow models for ceramic tape casting. Journal of Materials Processing Technology, 2002, 120, 215-225.	6.3	30
243	Gas-assisted injection molding: the effects of process variables and gas channel geometry. Journal of Materials Processing Technology, 2002, 121, 27-35.	6.3	43
244	Curing optimization for pultruded composite sections. Composites Science and Technology, 2002, 62, 457-467.	7.8	49
245	Influence of the polarity of ethylene-vinyl acetate copolymers on the morphology and mechanical properties of their uncompatibilised blends with polystyrene. Polymer International, 2002, 51, 325-337.	3.1	15
246	Effects of shear rate, viscosity ratio and liquid crystalline polymer content on morphological and mechanical properties of polycarbonate and LCP blends. Polymer International, 2002, 51, 398-405.	3.1	27
247	Single parameter accelerated modified Newton–Raphson methods for rigid/plastic FE analysis. Journal of Materials Processing Technology, 2002, 123, 385-392.	6. 3	5
248	Gel Network Structure of Methylcellulose in Water. Langmuir, 2001, 17, 8062-8068.	3 . 5	226
249	Analysis of slab edging by a 3-D rigid viscoplastic FEM with the combination of shifted incomplete Cholesky decomposition and the conjugate gradient method. Finite Elements in Analysis and Design, 2001, 37, 145-158.	3.2	8
250	Three-dimensional finite-element/nodal-control-volume simulation of the pultrusion process with temperature-dependent material properties including resin shrinkage. Composites Science and Technology, 2001, 61, 1539-1547.	7.8	52
251	Title is missing!. Plasma Chemistry and Plasma Processing, 2001, 21, 401-420.	2.4	16
252	Two-dimensional simulation of mass transport in polymer removal from a powder injection molding compact by thermal debinding. Journal of Materials Research, 2001, 16, 2436-2451.	2.6	22

#	Article	IF	Citations
253	Modelling functional design information for injection mould design. International Journal of Production Research, 2001, 39, 2501-2515.	7. 5	7
254	Cavity balance for plastic injection molding. Polymer Engineering and Science, 2000, 40, 1273-1280.	3.1	23
255	Non-Newtonian fluid flow model for ceramic tape casting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 280, 282-288.	5.6	49
256	Performance characteristics of resizing algorithms for thickness optimization of plate structures. Finite Elements in Analysis and Design, 2000, 34, 159-174.	3.2	17
257	Simulation of heat transfer and cure in pultrusion with a general-purpose finite element package. Composites Science and Technology, 2000, 60, 857-864.	7.8	71
258	Numerical simulation of the mould-filling process in resin-transfer moulding. Composites Science and Technology, 2000, 60, 845-855.	7.8	51
259	Solution of the equations of rigid–plastic FE analysis by shifted incomplete Cholesky factorisation and the conjugate gradient method in metal forming processes. Journal of Materials Processing Technology, 2000, 102, 70-77.	6.3	12
260	Analysis of thermal residual stress in plastic injection molding. Journal of Materials Processing Technology, 2000, 101, 275-280.	6.3	68
261	A Proposed Process Control Chart for DC Plasma Spraying Process. Plasma Chemistry and Plasma Processing, 2000, 20, 325-342.	2.4	12
262	Simulation of polymer removal from a powder injection molding compact by thermal debinding. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2000, 31, 2597-2606.	2.2	19
263	Mass conservation in numerical simulation of resin flow. Composites Part A: Applied Science and Manufacturing, 2000, 31, 1061-1068.	7.6	36
264	A numerical approach to the modeling of polymer curing in fibre-reinforced composites. Composites Science and Technology, 1999, 59, 1003-1013.	7.8	70
265	Accelerated subspace iteration using adaptive multiple inverse iteration. Computers and Structures, 1998, 66, 45-57.	4.4	5
266	Inverse computational method for constitutive parameters obtained from torsion, plane-strain and axisymmetric compression tests. Journal of Materials Processing Technology, 1998, 83, 62-71.	6.3	14
267	Numerical Simulation of Residual Stresses Caused by Quenching Process in Aluminium Gas Cylinders. Journal of Engineering Materials and Technology, Transactions of the ASME, 1998, 120, 297-299.	1.4	2
268	Analytical Techniques for Bonded Repairs. Key Engineering Materials, 1997, 145-149, 543-552.	0.4	3
269	Plastic Zone Size Determination by Temperature Measurement. Journal of Engineering Materials and Technology, Transactions of the ASME, 1997, 119, 32-39.	1.4	5
270	A comparison of two procedures for computation of the thermal Stresses in not rolled beams. Steel Research = Archiv FÃ $\frac{1}{4}$ r Das EisenhÃ $\frac{1}{4}$ ttenwesen, 1997, 68, 359-363.	0.3	3

#	Article	IF	CITATIONS
271	Optimizing flow in plastic injection molding. Journal of Materials Processing Technology, 1997, 72, 333-341.	6.3	60
272	Computation of the Diffusional Transformation of Continuously Cooled Austenite for Predicting the Coefficient of Thermal Expansion in the Numerical Analysis of Thermal Stress ISIJ International, 1996, 36, 1413-1419.	1.4	24
273	An inverse computational method for determining the constitutive parameters using the hot torsion test results. Steel Research = Archiv FÃ $\frac{1}{4}$ r Das EisenhÃ $\frac{1}{4}$ ttenwesen, 1996, 67, 22-25.	0.3	13
274	Numerical results achieved with an inverse computational method for determining the constitutive parameters using the hot torsion test results. Steel Research = Archiv FÃ $\frac{1}{4}$ r Das EisenhÃ $\frac{1}{4}$ ttenwesen, 1996, 67, 39-43.	0.3	18
275	A THERMOMECHANICAL TECHNIQUE FOR MEASURING RESIDUAL STRESS. Experimental Techniques, 1996, 20, 25-27.	1.5	12
276	Thermal analysis of the hot torsion test taking into account radiation. Mechanics of Materials, 1996, 22, 1-9.	3.2	5
277	Evolved Heat as a Fatigue Characterization Parameter. Materials Science Forum, 1996, 210-213, 463-470.	0.3	5
278	Condensation algorithms for the regular mesh substructuring. International Journal for Numerical Methods in Engineering, 1995, 38, 469-488.	2.8	4
279	Accelerated reduction of subspace upper bound by multiple inverse iteration. Computing Systems in Engineering: an International Journal, 1995, 6, 67-72.	0.5	13
280	Stress analysis of plates with bonded unbalanced laminates. Composite Structures, 1995, 33, 173-190.	5.8	5
281	The Use of Piezoelectric Thin Film Sensors for Structural Integrity Monitoring. Journal of Intelligent Material Systems and Structures, 1994, 5, 683-693.	2.5	12
282	Evaluation of relaxation schemes for Newton-Raphson iteration in rigid-plastic finite-element analysis. Journal of Materials Processing Technology, 1994, 41, 361-373.	6.3	1
283	Acceleration of iterative procedures for the elastoâ—Šastic finite element method. Finite Elements in Analysis and Design, 1994, 18, 41-49.	3.2	0
284	Acceleration of the subspace iteration method by selective repeated inverse iteration. Finite Elements in Analysis and Design, 1994, 18, 309-317.	3.2	13
285	IMPROVEMENT OF THE FRACTURE TOUGHNESS OF AN ALUMINIUM ALLOY. Fatigue and Fracture of Engineering Materials and Structures, 1994, 17, 277-284.	3.4	9
286	Mixed mode fatigue crack growth with a sudden change in loading direction. Theoretical and Applied Fracture Mechanics, 1993, 19, 69-74.	4.7	10
287	FATIGUE CRACK GROWTH UNDER BIAXIAL LOADING. Fatigue and Fracture of Engineering Materials and Structures, 1993, 16, 429-440.	3.4	12
288	FATIGUE LIFE ENHANCEMENT OF BUTT WELDS USING A THERMO-MECHANICAL TECHNIQUE. Fatigue and Fracture of Engineering Materials and Structures, 1993, 16, 983-994.	3.4	7

#	Article	IF	Citations
289	Analytical formulae for calculating stresses in unidirectional/cross-ply unbalanced laminates. Composite Structures, 1993, 24, 333-343.	5.8	2
290	The effects of simultaneous overload and spot heating on crack growth retardation in fatigue. Engineering Fracture Mechanics, 1993, 44, 567-572.	4.3	19
291	A comparative study on the effects of interference fit and cold expansion on the fatigue life of cracked holes. Scripta Metallurgica Et Materialia, 1993, 28, 191-195.	1.0	6
292	An investigation of thin PVDF films as fluctuating-strain-measuring and damage-monitoring devices. Smart Materials and Structures, 1993, 2, 208-216.	3.5	19
293	Fatigue life enhancement of specimens with stress concentrators using a thermo-mechanical technique. Scripta Metallurgica Et Materialia, 1991, 25, 2849-2853.	1.0	3
294	The development of crack closure with crack extension. Scripta Metallurgica Et Materialia, 1991, 25, 2313-2318.	1.0	3
295	The use of velocity discontinuities to define shear failure trajectories in dynamic plastic deformation. International Journal of Impact Engineering, 1991, 11, 93-106.	5.0	11
296	Stress intensity factors for cracks in grooved rolls used for hot-rolling. Theoretical and Applied Fracture Mechanics, 1991, 16, 19-25.	4.7	0
297	The effect of intermittent heating on fatigue crack growth. Theoretical and Applied Fracture Mechanics, 1990, 14, 37-41.	4.7	12
298	A fatigue crack growth model based on the contact stress intensity factor approach. Theoretical and Applied Fracture Mechanics, 1989, 12, 149-154.	4.7	5
299	Finite element analysis of a desuperheater vessel steam inlet nozzle subjected to thermal loads. International Journal of Pressure Vessels and Piping, 1989, 39, 171-187.	2.6	1
300	The effect of residual stress and its redistribution of fatigue crack growth. Theoretical and Applied Fracture Mechanics, 1989, 12, 59-66.	4.7	47
301	Mixed mode fatigue crack growth and the strain energy density factor. Theoretical and Applied Fracture Mechanics, 1989, 12, 67-72.	4.7	13
302	The quantification of crack closure based on a contact stress intensity factor. Theoretical and Applied Fracture Mechanics, 1986, 6, 21-28.	4.7	6
303	The effect of contact stress intensity factors on fatigue crack propagation. Theoretical and Applied Fracture Mechanics, 1984, 1, 193-202.	4.7	8
304	DC-Biased AC-Electrokinetic Mixing: A Mechanistic Investigation. Advanced Materials Research, 0, 74, 109-112.	0.3	2
305	Flows in Microchannels and Cavities – Visco-Elasticity, Faradaic Charging and Surface Roughness Effects. Advanced Materials Research, 0, 74, 73-76.	0.3	0