
Juan Teodomiro LÃ³pez Navarrete

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5154715/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polymer solar cells with enhanced fill factors. Nature Photonics, 2013, 7, 825-833.	15.6	887
2	Bithiopheneimide–Dithienosilole/Dithienogermole Copolymers for Efficient Solar Cells: Information from Structure–Property–Device Performance Correlations and Comparison to Thieno[3,4- <i>c</i>]pyrrole-4,6-dione Analogues. Journal of the American Chemical Society, 2012, 134, 18427-18439.	6.6	257
3	Kinetically Blocked Stable Heptazethrene and Octazethrene: Closed-Shell or Open-Shell in the Ground State?. Journal of the American Chemical Society, 2012, 134, 14913-14922.	6.6	256
4	A simple interpretation of the vibrational spectra of undoped, doped and photoexcited polyacetylene: Amplitude mode theory in the GF formalism. Solid State Communications, 1988, 65, 625-630.	0.9	221
5	Stable Tetrabenzo-Chichibabin's Hydrocarbons: Tunable Ground State and Unusual Transition between Their Closed-Shell and Open-Shell Resonance Forms. Journal of the American Chemical Society, 2012, 134, 14513-14525.	6.6	218
6	(Semi)ladder-Type Bithiophene Imide-Based All-Acceptor Semiconductors: Synthesis, Structure–Property Correlations, and Unipolar n-Type Transistor Performance. Journal of the American Chemical Society, 2018, 140, 6095-6108.	6.6	178
7	Impact of Perfluorination on the Charge-Transport Parameters of Oligoacene Crystals. Journal of the American Chemical Society, 2009, 131, 1502-1512.	6.6	174
8	Pushing Extended <i>p</i> -Quinodimethanes to the Limit: Stable Tetracyano-oligo(<i>N</i> -annulated) Tj ETQqQ 2013, 135, 6363-6371.	0 0 rgBT 6.6	/Overlock 10 170
9	Microwave-assisted sidewall functionalization of single-wall carbon nanotubes by Diels–Alder cycloaddition. Chemical Communications, 2004, , 1734-1735.	2.2	149
10	On the Biradicaloid Nature of Long Quinoidal Oligothiophenes: Experimental Evidence Guided by Theoretical Studies. Angewandte Chemie - International Edition, 2007, 46, 9057-9061.	7.2	143
11	Tetrathiafulvalene Derivatives as NLO-phores:Â Synthesis, Electrochemistry, Raman Spectroscopy, Theoretical Calculations, and NLO Properties of Novel TTF-Derived Donor-i€-Acceptor Dyads. Journal of Organic Chemistry, 2001, 66, 8872-8882.	1.7	127
12	Quinonoid Oligothiophenes as Electron-Donor and Electron-Acceptor Materials. A Spectroelectrochemical and Theoretical Study. Journal of the American Chemical Society, 2002, 124, 12380-12388.	6.6	109
13	Vibrational spectra of charged defects in a series of α,α′-dimethyl end-capped oligothiophenes induced by chemical doping with iodine. Journal of Chemical Physics, 1998, 109, 10419-10429.	1.2	107
14	Nitro-Functionalized Oligothiophenes as a Novel Type of Electroactive Molecular Material:Â Spectroscopic, Electrochemical, and Computational Study. Journal of the American Chemical Society, 2003, 125, 2524-2534.	6.6	106
15	High Yield Ultrafast Intramolecular Singlet Exciton Fission in a Quinoidal Bithiophene. Journal of Physical Chemistry Letters, 2015, 6, 1375-1384.	2.1	106
16	Ladderâ€ŧype Heteroarenes: Up to 15 Rings with Five Imide Groups. Angewandte Chemie - International Edition, 2017, 56, 9924-9929.	7.2	105
17	Tuning the Supramolecular Chirality of One- and Two-Dimensional Aggregates with the Number of Stereogenic Centers in the Component Porphyrins. Journal of the American Chemical Society, 2010, 132, 9350-9362.	6.6	98
18	Inversion of Supramolecular Helicity in Oligoâ€ <i>p</i> â€phenyleneâ€Based Supramolecular Polymers: Influence of Molecular Atropisomerism. Angewandte Chemie - International Edition, 2014, 53, 1373-1377.	7.2	96

#	Article	IF	CITATIONS
19	Tuning First Molecular Hyperpolarizabilities through the Use of Proaromatic Spacers. Journal of the American Chemical Society, 2005, 127, 8835-8845.	6.6	95
20	Tetracyanoquaterrylene and Tetracyanohexarylenequinodimethanes with Tunable Ground States and Strong Nearâ€Infrared Absorption. Angewandte Chemie - International Edition, 2013, 52, 8561-8565.	7.2	94
21	Carbon-Bridged Oligo(phenylenevinylene)s: Stable ï€-Systems with High Responsiveness to Doping and Excitation. Journal of the American Chemical Society, 2012, 134, 19254-19259.	6.6	87
22	Alkoxyâ€Functionalized Thienylâ€Vinylene Polymers for Fieldâ€Effect Transistors and Allâ€Polymer Solar Cells. Advanced Functional Materials, 2014, 24, 2782-2793.	7.8	83
23	Thiophene–Diazine Molecular Semiconductors: Synthesis, Structural, Electrochemical, Optical, and Electronic Structural Properties; Implementation in Organic Fieldâ€Effect Transistors. Chemistry - A European Journal, 2009, 15, 5023-5039.	1.7	82
24	Structureâ ゙ Property Relationships in Pushâ ゙ Pull Amino/Cyanovinyl End-Capped Oligothiophenes:Â Quantum Chemical and Experimental Studies. Journal of Organic Chemistry, 2006, 71, 7509-7520.	1.7	81
25	Carbon dots obtained using hydrothermal treatment of formaldehyde. Cell imaging in vitro. Nanoscale, 2014, 6, 9071-9077.	2.8	79
26	Ab initio study of torsional potentials in 2,2'â€bithiophene and 3,4'―and 3,3'â€dimethylâ€2,2'â models of the backbone flexibility in polythiophene and poly(3â€methylthiophene). Journal of Chemical Physics, 1994, 101, 1369-1377.	€bithioph 1.2	ene as 78
27	Properties of Sizeable [<i>n</i>]Cycloparaphenylenes as Molecular Models of Singleâ€Wall Carbon Nanotubes Elucidated by Raman Spectroscopy: Structural and Electronâ€Transfer Responses under Mechanical Stress. Angewandte Chemie - International Edition, 2014, 53, 7033-7037.	7.2	77
28	Quinoidal Oligothiophenes: Towards Biradical Groundâ€ S tate Species. Chemistry - A European Journal, 2010, 16, 470-484.	1.7	74
29	Ambipolar Organic Fieldâ€Effect Transistors from Cross onjugated Aromatic Quaterthiophenes; Comparisons with Quinoidal Parent Materials. Advanced Functional Materials, 2009, 19, 386-394.	7.8	71
30	A molecular viewpoint of lattice dynamics and spectra of conducting polymers. Synthetic Metals, 1989, 28, D359-D368.	2.1	69
31	FT-Raman Studies of Charged Defects Created on Methyl End-Capped Oligothiophenes by Doping with NOBF4. Advanced Materials, 1998, 10, 1458-1461.	11.1	68
32	Ir and Raman spectra ofL-aspartic acid and isotopic derivatives. Biopolymers, 1994, 34, 1065-1077.	1.2	67
33	An interpretation of the vibrational spectra of insulating and electrically conducting poly(3â€methylthiophene) aided by a theoretical dynamical model. Journal of Chemical Physics, 1994, 100, 114-129.	1.2	66
34	Combined Spectroscopic and Theoretical Study of Narrow Band Gap Heterocyclic Co-oligomers Containing Alternating Aromatic Donor ando-Quinoid Acceptor Units. Journal of Physical Chemistry B, 2004, 108, 2516-2526.	1.2	66
35	Aromatic/Proaromatic Donors in 2â€Dicyanomethylenethiazole Merocyanines: From Neutral to Strongly Zwitterionic Nonlinear Optical Chromophores. Chemistry - A European Journal, 2011, 17, 826-838.	1.7	64
36	Efficiency of the π conjugation in a novel family of α,α′-bisphenyl end-capped oligothiophenes by means of Raman spectroscopy. Journal of Chemical Physics, 2002, 116, 10419-10427.	1.2	63

#	Article	IF	CITATIONS
37	Experimental and Theoretical Study of the Infrared and Raman Spectra of a Substituted Sexithiophene in Five Oxidation States. Journal of Physical Chemistry B, 2002, 106, 3597-3605.	1.2	63
38	Combined Spectroelectrochemical and Theoretical Study of a Vinylene-Bridged Sexithiophene Cooligomer: Analysis of the π-Electron Delocalization and of the Electronic Defects Generated upon Doping. Journal of Physical Chemistry B, 2002, 106, 3872-3881.	1.2	63
39	Enhanced Functionality for Donor–Acceptor Oligothiophenes by means of Inclusion of BODIPY: Synthesis, Electrochemistry, Photophysics, and Model Chemistry. Chemistry - A European Journal, 2011, 17, 498-507.	1.7	63
40	Antiaromatic bisindeno-[n]thienoacenes with small singlet biradical characters: syntheses, structures and chain length dependent physical properties. Chemical Science, 2014, 5, 4490-4503.	3.7	62
41	The first synthesis of a conjugated hybrid of C60–fullerene and a single-wall carbon nanotube. Carbon, 2007, 45, 2250-2252.	5.4	60
42	Theoretical evaluation of the nature and strength of the F···F intermolecular interactions present in fluorinated hydrocarbons. Theoretical Chemistry Accounts, 2011, 128, 541-553.	0.5	58
43	Vibrational study of aspartic acid and glutamic acid dipeptides. Journal of Molecular Structure, 1995, 348, 249-252.	1.8	57
44	Vibrational and Quantum-Chemical Study of Push–Pull Chromophores for Second-Order Nonlinear Optics from Rigidified Thiophene-Based I€-Conjugating Spacers. Chemistry - A European Journal, 2003, 9, 3670-3682.	1.7	57
45	Exploration of Ground and Excited Electronic States of Aromatic and QuinoidS,S-Dioxide Terthiophenes. Complementary Systems for Enhanced Electronic Organic Materials. Journal of the American Chemical Society, 2006, 128, 10134-10144.	6.6	55
46	The Frontiers of Quinoidal Stability in Long Oligothiophenes: Raman Spectra of Dicationic Polaron Pairs. Journal of the American Chemical Society, 2011, 133, 16350-16353.	6.6	55
47	The unusual electronic structure of ambipolar dicyanovinyl-substituted diketopyrrolopyrrole derivatives. Journal of Materials Chemistry C, 2014, 2, 6376.	2.7	55
48	Chain flexibility in polyheteroaromatic polymers part I. Electronic properties, structure and vibrational spectra of oligomers as models of polypyrrole and polythiophene. Synthetic Metals, 1990, 38, 299-312.	2.1	54
49	Synthesis and Doping of a Multifunctional Tetrathiafulvalene- Substituted Poly(isocyanide). Macromolecules, 2007, 40, 7521-7531.	2.2	54
50	Raman Detection of "Ambiguous―Conjugated Biradicals: Rapid Thermal Singletâ€ŧoâ€Triplet Intersystem Crossing in an Extended Viologen. Angewandte Chemie - International Edition, 2008, 47, 1443-1446.	7.2	53
51	Electronic Modulation of Dithienothiophene (DTT) as π-Center of D-π-D Chromophores on Optical and Redox Properties: Analysis by UVⰒVis⒒NIR and Raman Spectroscopies Combined with Electrochemistry and Quantum Chemical DFT Calculations. Journal of the American Chemical Society, 2004, 126, 13363-13376.	6.6	52
52	Vibrational spectra of [1H4]pyrazine and [2H4]pyrazine. Journal of the Chemical Society, Faraday Transactions 2, 1985, 81, 405.	1.1	51
53	Do [all]-S,S′-Dioxide Oligothiophenes Show Electronic and Optical Properties of Oligoenes and/or of Oligothiophenes?. Journal of the American Chemical Society, 2010, 132, 6231-6242.	6.6	51
54	Lattice dynamics and vibrational spectra of pristine and doped polyconjugated polyfuran. Journal of Chemical Physics, 1993, 98, 769-783.	1.2	50

#	Article	IF	CITATIONS
55	Alternated Quinoid/Aromatic Units in Terthiophenes Building Blocks for Electroactive Narrow Band Gap Polymers. Extended Spectroscopic, Solid State, Electrochemical, and Theoretical Study. Journal of Physical Chemistry B, 2005, 109, 16616-16627.	1.2	48
56	Electronic, Optical, and Vibrational Properties of Bridged Dithienylethylene-Based NLO Chromophores. Journal of Physical Chemistry C, 2008, 112, 3109-3120.	1.5	48
57	Turning on the biradical state of tetracyano-perylene and quaterrylenequinodimethanes by incorporation of additional thiophene rings. Chemical Science, 2014, 5, 3072-3080.	3.7	48
58	Spectroscopic and Theoretical Study of the Molecular and Electronic Structures of a Terthiophene-Based Quinodimethane. ChemPhysChem, 2004, 5, 529-539.	1.0	46
59	Vibrational and Quantum-Chemical Study of Nonlinear Optical Chromophores Containing Dithienothiophene as the Electron Relay. Chemistry - A European Journal, 2004, 10, 3805-3816.	1.7	44
60	Planarization, Fusion, and Strain of Carbon-Bridged Phenylenevinylene Oligomers Enhance ï€-Electron and Charge Conjugation: A Dissectional Vibrational Raman Study. Journal of the American Chemical Society, 2015, 137, 3834-3843.	6.6	44
61	Vibrational spectrum and internal rotation in 2-methylpyrazine. Journal of the Chemical Society, Faraday Transactions 2, 1988, 84, 53-65.	1.1	43
62	Synthesis of the Smallest Axially Chiral Molecule by Asymmetric Carbon–Fluorine Bond Activation. Angewandte Chemie - International Edition, 2012, 51, 2218-2220.	7.2	43
63	Computation and Spectroelectrochemistry as Complementary Tools for the Study of Electrochemically Induced Charged Defects in 4-[Bis(4-methylphenyl)amino]phenyl Oligothiophenes as Model Systems for Hole-Transporting Materials. Journal of Physical Chemistry B, 2003, 107, 2637-2644.	1.2	42
64	Magnetic Properties of Quinoidal Oligothiophenes: More Than Good Candidates for Ambipolar Organic Semiconductors?. Advanced Functional Materials, 2006, 16, 531-536.	7.8	42
65	Oligothiophene Tetracyanobutadienes: Alternative Donorâ^Acceptor Architectures for Molecular and Polymeric Materials. Chemistry of Materials, 2011, 23, 823-831.	3.2	42
66	Vibrational Spectroscopic Features of a Novel Family of Amorphous Molecular Materials Containing an Oligothiophene Moiety as Color-Tunable Emitting Materials. Journal of Physical Chemistry B, 2002, 106, 7163-7170.	1.2	41
67	Novel Thiophene–Phenylene–Thiophene Fused Bislactam-Based Donor–Acceptor Type Conjugate Polymers: Synthesis by Direct Arylation and Properties. Macromolecules, 2013, 46, 9220-9230.	2.2	41
68	Spectroscopic and Theoretical Study of Pushâ^'Pull Chromophores Containing Thiophene-Based Quinonoid Structures as Electron Spacers. Journal of Physical Chemistry B, 2003, 107, 12175-12183.	1.2	40
69	Multidisciplinary Physicochemical Analysis of Oligothiophenes End-Capped by Nitriles:Â Electrochemistry, UVâ^Visâ^Near-IR, IR, and Raman Spectroscopies and Quantum Chemistry. Journal of Physical Chemistry B, 2005, 109, 10115-10125.	1.2	40
70	Hexaazatriphenylene (HAT) versus triâ€HAT: The Bigger the Better?. Chemistry - A European Journal, 2011, 17, 10312-10322.	1.7	40
71	Selfâ€Assembly Studies of a Chiral Bisureaâ€Based Superhydrogelator. Chemistry - A European Journal, 2012, 18, 14725-14731.	1.7	40
72	Combined Quantum Chemical Density Functional Theory and Spectroscopic Raman and UVâ^'visâ^'NIR Study of Oligothienoacenes with Five and Seven Rings. Journal of Physical Chemistry A, 2006, 110, 5058-5065.	1.1	39

#	Article	IF	CITATIONS
73	Optical, Redox, and NLO Properties of Tricyanovinyl Oligothiophenes: Comparisons between Symmetric and Asymmetric Substitution Patterns. Chemistry - A European Journal, 2006, 12, 5458-5470.	1.7	37
74	α-Oligofurans show a sizeable extent of ï€-conjugation as probed by Raman spectroscopy. Chemical Communications, 2012, 48, 6732.	2.2	37
75	Molecular and Electronicâ€Structure Basis of the Ambipolar Behavior of Naphthalimide–Terthiophene Derivatives: Implementation in Organic Fieldâ€Effect Transistors. Chemistry - A European Journal, 2013, 19, 12458-12467.	1.7	37
76	Electronic and Molecular Structures of Trigonal Truxene-Core Systems Conjugated to Peripheral Fluorene Branches. Spectroscopic and Theoretical Study. Journal of Physical Chemistry B, 2007, 111, 4026-4035.	1.2	36
77	Raman Spectroscopy Shows Interchain through Space Charge Delocalization in a Mixed Valence Oligothiophene Cation and in Its π-Dimeric Biradicaloid Dication. Journal of the American Chemical Society, 2008, 130, 14028-14029.	6.6	36
78	Molecular tuning in highly fluorescent dithieno[3,2-b:2′,3′-d]pyrrole-based oligomers: effects of N-functionalization and terminal aryl unit. Physical Chemistry Chemical Physics, 2012, 14, 6101.	1.3	36
79	Influence of Processing Solvents on Optical Properties and Morphology of a Semicrystalline Low Bandgap Polymer in the Neutral and Charged States. Macromolecules, 2013, 46, 4924-4931.	2.2	36
80	Normal coordinate and rotational barrier calculations on 1,2-dihydroxybenzene. Vibrational Spectroscopy, 1993, 4, 321-334.	1.2	35
81	Force field and normal coordinate calculations for glutamic acid. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 1995, 51, 293-302.	2.0	35
82	Polarization, second-order nonlinear optical properties and electrochromism in 4H-pyranylidene chromophores with a quinoid/aromatic thiophene ring bridge. RSC Advances, 2015, 5, 231-242.	1.7	35
83	Vibrational Spectroscopic Study of a Series of α,αâ€ [~] -Diethyl End-Capped Oligothiophenes with Different Chain Lengths in the Neutral State. Journal of Physical Chemistry A, 1999, 103, 816-822.	1.1	34
84	Vibrational study of push–pull chromophores for second-order non-linear optics derived from rigidified thiophene l€-conjugating spacers. Journal of Molecular Structure, 2003, 651-653, 151-158.	1.8	34
85	Resonance Raman and FTIR spectra of pristine and doped polyconjugated polyfuran. Chemical Physics Letters, 1992, 191, 419-422.	1.2	33
86	Delocalization-to-Localization Charge Transition in Diferrocenyl-Oligothienylene-Vinylene Molecular Wires as a Function of the Size by Raman Spectroscopy. Journal of the American Chemical Society, 2012, 134, 5675-5681.	6.6	33
87	Evidence for Multicenter Bonding in Dianionic Tetracyanoethylene Dimers by Raman Spectroscopy. Angewandte Chemie - International Edition, 2013, 52, 6421-6425.	7.2	33
88	Magnetic and Conductive Properties of Quinoidal Oligothiophenes. Chemistry of Materials, 2006, 18, 1539-1545.	3.2	32
89	Thiophene- and Selenophene-Based Heteroacenes:  Combined Quantum Chemical DFT and Spectroscopic Raman and UVâ°'Visâ°'NIR Study. Journal of Physical Chemistry B, 2007, 111, 7488-7496.	1.2	32
90	Thermomagnetic Molecular System Based on TTF-PTM Radical: Switching the Spin and Charge Delocalization. Journal of Physical Chemistry Letters, 2013, 4, 2721-2726.	2.1	32

#	Article	IF	CITATIONS
91	Infrared and Raman spectra of L-asparagine and L-asparagine-d5 in the solid state. Journal of Raman Spectroscopy, 1995, 26, 1003-1008.	1.2	31
92	Octopolar Chromophores Based on Donor- and Acceptor-Substituted 1,3,5-Tris(phenylethynyl)benzenes:  Impact of meta-Conjugation on the Molecular and Electronic Structure by Means of Spectroscopy and Theory. Journal of Physical Chemistry B, 2006, 110, 19198-19206.	1.2	31
93	Relation between effective conjugation, vibrational force constants and electronic properties in polyconjugated materials. Solid State Communications, 1990, 74, 199-202.	0.9	30
94	Combined Theoretical and Vibrational Study of Dihexylbithienoquinonoid Derivatives with Regioregular Head-to-Head, Head-to-Tail, and Tail-to-Tail Orientations. Journal of Physical Chemistry A, 2000, 104, 661-672.	1.1	30
95	Phenyl- and Thienyl-Ended Symmetric Azomethines and Azines as Model Compounds for n-Channel Organic Field-Effect Transistors: An Electrochemical and Computational Study. Journal of Physical Chemistry C, 2014, 118, 3984-3993.	1.5	30
96	Chameleon-like behaviour of cyclo[n]paraphenylenes in complexes with C ₇₀ : on their impressive electronic and structural adaptability as probed by Raman spectroscopy. Faraday Discussions, 2014, 173, 157-171.	1.6	30
97	Incisive Structure⠴`Spectroscopic Correlation in Oligothiophenes Functionalized with (±) Inductive/Mesomeric Fluorine Groups:Â Joint Raman and DFT Study. Journal of the American Chemical Society, 2005, 127, 13364-13372.	6.6	29
98	Structural and spectroscopical study of glutamic acid in the nonzwitterionic form. Computational and Theoretical Chemistry, 1995, 330, 261-266.	1.5	28
99	Raman and Theoretical Study of the Solvent Effects on the Sizable Intramolecular Charge Transfer in the Pushâ^'Pull 5-(Dimethylamino)-5'-nitro-2,2'-bithiophene. Journal of Physical Chemistry A, 2005, 109, 8724-8731.	1.1	28
100	Zethrene biradicals: How pro-aromaticity is expressed in the ground electronic state and in the lowest energy singlet, triplet, and ionic states. Journal of Chemical Physics, 2014, 140, 054706.	1.2	28
101	Force field for in-plane vibrations of pyrazine. Spectrochimica Acta Part A: Molecular Spectroscopy, 1986, 42, 1343-1348.	0.1	27
102	Conformational Disorder and Mean Conjugation of Neutral α,αâ€~-Dimethyl End-Capped Oligothiophenes in Solution:Â A FT-Raman and FT-Infrared Spectroscopic Study. The Journal of Physical Chemistry, 1996, 100, 289-293.	2.9	27
103	Quantum chemical DFT and spectroscopic study of a push–pull chromophore for second-order nonlinear optics containing bithiophene as the electron relay. Computational and Theoretical Chemistry, 2004, 709, 187-193.	1.5	27
104	A β-Naphthaleneimide-Modified Terthiophene Exhibiting Charge Transfer and Polarization Through the Short Molecular Axis. Joint Spectroscopic and Theoretical Study. Journal of Physical Chemistry A, 2008, 112, 6732-6740.	1.1	27
105	Comparison of Thiophene–Pyrrole Oligomers with Oligothiophenes: A Joint Experimental and Theoretical Investigation of Their Structural and Spectroscopic Properties. Chemistry - A European Journal, 2010, 16, 6866-6876.	1.7	27
106	Symmetry Lowering in Triindoles: Impact on the Electronic and Photophysical Properties. Journal of Physical Chemistry C, 2014, 118, 5470-5477.	1.5	27
107	Transferable semiempirical quadratic force fields: The case of polythiophene and shorter oligomers. Journal of Computational Chemistry, 1994, 15, 405-423.	1.5	26
108	Vibrational spectroscopic study of 5,5″-bis(dicyanomethylene)-5,5″-dihydro-î"2,2′:5′,2″-terthiophen heteroquinonoid structure as a model of doped polythiophene. Journal of Chemical Physics, 1998, 109, 2543-2548.	ne bearing a 1.2	a 26

#	Article	IF	CITATIONS
109	Tuning of Electronic Properties in Thienyl-Phosphole π-Conjugated Systems through P-Functionalization Monitored by Raman Spectroscopy. Chemistry - A European Journal, 2006, 12, 3759-3767.	1.7	26
110	Ultrafast and High-Contrast Electrochromism on Bendable Transparent Carbon Nanotube Electrodes. Journal of Physical Chemistry Letters, 2010, 1, 1367-1371.	2.1	26
111	On the handedness of helical aggregates of C ₃ tricarboxamides: a multichiroptical characterization. Chemical Communications, 2015, 51, 9781-9784.	2.2	26
112	Application of Raman spectroscopy and quantum chemistry for featuring the structure of positively charged species in macrocyclici€-conjugated diacetylene-bridged oligothiophenes. Journal of Raman Spectroscopy, 2004, 35, 592-599.	1.2	25
113	Hybrid Organic Semiconductors Including Chalcogen Atoms in π-Conjugated Skeletons. Tuning of Optical, Redox, and Vibrational Properties by Heavy Atom Conjugation. Journal of Physical Chemistry A, 2006, 110, 7422-7430.	1.1	25
114	Linear and Nonlinear Optical Properties of Pyridine-Based Octopolar Chromophores Designed for Chemical Sensing. Joint Spectroscopic and Theoretical Study. Journal of Physical Chemistry C, 2007, 111, 18778-18784.	1.5	25
115	Neutral and Oxidized Triisopropylsilyl End apped Oligothienoacenes: A Combined Electrochemical, Spectroscopic, and Theoretical Study. Chemistry - A European Journal, 2010, 16, 5481-5491.	1.7	25
116	Enantiopure, Monodisperse Allenoâ€acetylenic Cyclooligomers: Effect of Symmetry and Conformational Flexibility on the Chiroptical Properties of Carbonâ€Rich Compounds. Chemistry - A European Journal, 2011, 17, 3876-3885.	1.7	25
117	Push–pull systems bearing a quinoid/aromatic thieno[3,2-b]thiophene moiety: synthesis, ground state polarization and second-order nonlinear properties. Organic and Biomolecular Chemistry, 2013, 11, 6338.	1.5	25
118	A Combined Spectroscopic and Theoretical Study of a Series of Aminomethyl End-Capped Oligothiophenes with Potential Applications in Thin Film Devices. Journal of Physical Chemistry A, 2000, 104, 735-740.	1.1	24
119	Combined Raman and Computational Study of a Novel Series of Macrocyclic π-Conjugated Diacetylene-Bridged α-Linked Oligothiophenes. Journal of Physical Chemistry B, 2004, 108, 3158-3167.	1.2	24
120	Infrared and Raman spectra of a new radical cation charged defect created on a well-barrier-well thiophene-based oligomer. Journal of Raman Spectroscopy, 2000, 31, 565-570.	1.2	23
121	Understanding Optoelectronic Properties of Cyano-Terminated Oligothiophenes in the Context of Intramolecular Charge Transfer. Journal of Physical Chemistry B, 2011, 115, 10573-10585.	1.2	23
122	Mode Robustness in Raman Optical Activity. Journal of Chemical Theory and Computation, 2014, 10, 5520-5527.	2.3	23

#	Article	IF	CITATIONS
127	Vibrational Circular Dichroism Shows Reversible Helical Handedness Switching in Peptidomimetic I-Valine Fibrils. Journal of Physical Chemistry Letters, 2012, 3, 2120-2124.	2.1	21
128	Electropolymerized Three-Dimensional Randomly Branched EDOT-Containing Copolymers. Langmuir, 2013, 29, 15463-15473.	1.6	21
129	Effect of the Linkage Position on the Conjugation Length of Truxene-Based Porous Polymers: Implications for Their Sensing Performance of Nitroaromatics. Chemistry of Materials, 2019, 31, 6971-6978.	3.2	21
130	Tetrathiafulvalene-Based Materials for Organic Field Effect Transistors. Inspection of Their Semiconductor Properties by Means of Molecular Spectroscopy and Quantum Chemistry. Journal of Physical Chemistry C, 2007, 111, 10110-10118.	1.5	20
131	The longest quinoidal oligothiophene: A Raman story. Chemical Record, 2011, 11, 45-53.	2.9	20
132	Electronic structure and lattice dynamics of polyfuran. Synthetic Metals, 1991, 41, 789-792.	2.1	19
133	Ferrocenylâ€Ended Thieno–Vinylene Oligomers: Donor–Acceptor Polarization and Mixedâ€Valence Properties with Emphasis on the Raman Mapping of Localizedâ€toâ€Delocalized Transitions. Chemistry - A European Journal, 2009, 15, 2548-2559.	1.7	19
134	Optical absorption and emission properties of end-capped oligothienoacenes: A joint theoretical and experimental study. Organic Electronics, 2010, 11, 1701-1712.	1.4	19
135	Ï€ Electron delocalization in pristine polyfuran: from the oligomers to the polymer. Acta Polymerica, 1996, 47, 62-65.	1.4	18
136	â€~In situ' spectroelectrochemical study of a series of α,α′-dimethyl end-capped oligothiophene films. Synthetic Metals, 1998, 95, 93-100.	2.1	18
137	Synthesis and Characterization of a Novel Terthiophene-Based Quinodimethane Bearing a 3,4-Ethylenedioxythiophene Central Unit. Journal of Physical Chemistry B, 2005, 109, 22308-22318.	1.2	18
138	Oligothiophene- and Oligopyrrole-Mediated Aggregation of Gold Nanoparticles. Journal of Physical Chemistry C, 2007, 111, 5886-5892.	1.5	18
139	Linear and Nonlinear Optical Properties of Ramified Hexaazatriphenylenes: Charge Transfer Contributions to the Octupolar Response. Journal of Physical Chemistry C, 2013, 117, 626-632.	1.5	18
140	Triindole-Bridge-Triindole Dimers as Models for Two Dimensional Microporous Polymers. Organic Letters, 2015, 17, 2258-2261.	2.4	18
141	Long-range interactions and molecular dynamics of polyenes: Polyacetylene. Synthetic Metals, 1989, 32, 151-169.	2.1	17
142	Oxidation of Endâ€Capped Pentathienoacenes and Characterization of Their Radical Cations. Chemistry - A European Journal, 2009, 15, 12346-12361.	1.7	17
143	Effect of ring fusion on the amplified spontaneous emission properties of oligothiophenes. Journal of Materials Chemistry, 2009, 19, 6556.	6.7	17
144	Solvent effects on electronic properties, geometries and internal rotation barriers of bithiophenes. An ab initio self-consistent reaction field theoretical study. Synthetic Metals, 1996, 76, 221-224.	2.1	16

#	Article	IF	CITATIONS
145	Synthesis and Characterization of Three Novel Perfluoro-oligothiophenes Ranging in Length from the Trimer to the Pentamer. Journal of Physical Chemistry B, 2005, 109, 20737-20745.	1.2	16
146	Electronic and vibrational circular dichroism spectroscopies for the understanding of chiral organization in porphyrin aggregates. Chemical Communications, 2012, 48, 9147.	2.2	16
147	Infrared and multiâ€wavelength Raman spectroscopy of regioâ€regular P3HT and its deutero derivatives. Journal of Raman Spectroscopy, 2018, 49, 569-580.	1.2	16
148	Vibrational spectrum and internal rotation in 2,5-dimethylpyrazine. Journal of Molecular Structure, 1987, 162, 263-272.	1.8	15
149	On the stability of doped conducting polymers: electrostatic contributions and sterical effects. Chemical Physics Letters, 1990, 175, 125-129.	1.2	15
150	Delocalization length, electronic properties and vibrational spectra of neutral α,α′ -dimethyl end-capped oligothiophenes. Synthetic Metals, 1996, 76, 277-280.	2.1	15
151	Regioselective hydroxylation of phenols by simultaneous photochemical generation of phenol cation-radical and hydroxyl radical. Tetrahedron, 2006, 62, 2927-2935.	1.0	15
152	Functionalized branched EDOT-terthiophene copolymer films by electropolymerization and post-polymerization "click―reactions. Beilstein Journal of Organic Chemistry, 2015, 11, 335-347.	1.3	15
153	On the problem of π electron delocalisation across sp3 carbon atoms introduced as defects in polyacetylene. Solid State Communications, 1987, 64, 1183-1186.	0.9	14
154	Scaled Quantum-Mechanical Force Field and Vibrational Spectra of 3-Methylthiophene. The Journal of Physical Chemistry, 1996, 100, 2907-2914.	2.9	14
155	Electrochemical doping in a series of α, α′-dimethyl end-capped oligothienyls An FT-Raman confirmation of a radical cation generation. Optical Materials, 1998, 9, 82-87.	1.7	14
156	Spectroelectrochemical Raman Study of a Novel Well-Barrier-Well Vinylene-Bridged-Octithiophene Oligomer:Â An Analysis of the Conjugation Length and of the Electronic Defects Created upon Doping. Journal of Physical Chemistry A, 2000, 104, 10656-10661.	1.1	14
157	Helically Annelated and Cross-Conjugated Î ² -Oligothiophenes:Â A Fourier Transform Raman Spectroscopic and Quantum Chemical Density Functional Theory Study. Journal of Physical Chemistry C, 2007, 111, 4854-4860.	1.5	14
158	Synthesis, Spectroscopy, Nonlinear Optics, and Theoretical Investigations of Thienylethynyl Octopoles with a Tunable Core. Chemistry - A European Journal, 2009, 15, 8223-8234.	1.7	14
159	Substituent and counterion effects on the formation of π-dimer dications of end-capped heptathienoacenes. Chemical Communications, 2011, 47, 12622.	2.2	14
160	Two-Photon Mediated Three-Photon Fluorescence: Lessons from a Quinoidal Oligothiophene Dimer. Journal of Physical Chemistry Letters, 2011, 2, 2179-2183.	2.1	13
161	Ï€-conjugation and charge polarization in fluorene-dibenzothiophene- <i>S,S</i> -dioxide co-oligomers by Raman spectroscopy and quantum chemistry. Journal of Chemical Physics, 2011, 134, 044520.	1.2	13
162	A combined MD/QM and experimental exploration of conformational richness in branched oligothiophenes. Physical Chemistry Chemical Physics, 2014, 16, 24841-24852.	1.3	13

#	Article	IF	CITATIONS
163	Robust Ethylenedioxythiophene–Vinylene Oligomers from Fragile Thiophene–Vinylene Cores: Synthesis and Optical, Chemical and Electrochemical Properties of Multicharged Shapes. Chemistry - A European Journal, 2015, 21, 1713-1725.	1.7	13
164	A study by Raman spectroscopy and the semiempirical AM1 method on several 1,2-dihydroxybenzene solutions. Spectrochimica Acta Part A: Molecular Spectroscopy, 1993, 49, 1759-1767.	0.1	12
165	Resonance raman spectra and lattice dynamics calculations of pristine and doped polyconjugated polyfuran. Synthetic Metals, 1993, 57, 4467-4472.	2.1	12
166	Vibrational spectra of [15N]glutamic acid and [2H4]glutamic acid. Journal of Raman Spectroscopy, 1994, 25, 861-867.	1.2	12
167	Combined Raman, electrochemical and DFT studies on a series of î±, α′-thiophene-phosphole oligomers and their corresponding polymers. Synthetic Metals, 2005, 153, 249-252.	2.1	12
168	Structural implications of ring shape, dimension, and metal atom insertion in nanosized cyclic oligothiophenes: Joint Raman and density functional theory study. Journal of Chemical Physics, 2006, 125, 044518.	1.2	12
169	Electrochemical, Magnetic, and Electrical Properties of α,ï‰-Capped Sexithiophene Films. Part 3. Conduction in Poly(bis-terthienyl-B)s (B = Ethane, Disulfide, Diacetylene, Acetylene, Ethylene). Chemistry of Materials, 2008, 20, 6847-6856.	3.2	12
170	Organic Materials in the Undergraduate Laboratory: Microscale Synthesis and Investigation of a Donor–Acceptor Molecule. Journal of Chemical Education, 2012, 89, 1461-1465.	1.1	12
171	Multistep Ï€ Dimerization of Tetrakis(<i>n</i> â€decyl)heptathienoacene Radical Cations: A Combined Experimental and Theoretical Study. Chemistry - A European Journal, 2014, 20, 10351-10359.	1.7	12
172	Backbone Configuration and Electronic Property Tuning of Imideâ€Functionalized Ladderâ€Type Heteroarenesâ€Based Polymer Acceptors for Efficient Allâ€Polymer Solar Cells. Advanced Functional Materials, 2022, 32, .	7.8	12
173	Theoretical understanding of the increment of β upon protonation of pyridine peripheral octupolar molecules: Toward nonlinear optical sensors. Journal of Chemical Physics, 2007, 127, 164704.	1.2	11
174	FT Raman and DFT Study on a Series of Allâ€ <i>anti</i> Oligothienoacenes Endâ€Capped with Triisopropylsilyl Groups. ChemPhysChem, 2009, 10, 3069-3076.	1.0	11
175	Sensing properties of organised films based on a bithiophene derivative. Sensors and Actuators B: Chemical, 2009, 141, 625-633.	4.0	11
176	SEIRA and SERS Effects in Cyclopentabithiophenethiol-Capped Gold Nanoparticles. Journal of Physical Chemistry C, 2010, 114, 12900-12904.	1.5	11
177	Conformational Control of the Electronic Properties of an αâ€Î² Terthiophene: Lessons from a Precursor Towards Dendritic Hyperbranched Oligo―and Polyâ€Thiophenes. ChemPhysChem, 2012, 13, 3893-3900.	1.0	11
178	Amplified Spontaneous Emission in Pentathienoacene Dioxides by Direct Optical Pump and by Energy Transfer: Correlation with Photophysical Parameters. Advanced Optical Materials, 2013, 1, 588-599.	3.6	11
179	Combined Raman spectroscopic and Rietveld analyses as a useful and nondestructive approach to studying flint raw materials at prehistoric archaeological sites. Archaeological and Anthropological Sciences, 2015, 7, 235-243.	0.7	11
180	Internal Rotation and vibrational properties of polyfuran oligomers. Journal of Molecular Structure, 1990, 219, 397-402.	1.8	10

#	Article	IF	CITATIONS
181	Vibrational Spectra and lattice dynamics calculations of poly (p-phenylene): oligomers and polymer. Synthetic Metals, 1993, 57, 4461-4466.	2.1	10
182	A semiempirical approach for the calculation of the vibrational spectra of conducting polymers: the case of polyselenophene. Journal of Molecular Structure, 1995, 348, 91-94.	1.8	10
183	Lattice dynamics and vibrational spectra of polyfuran: effective conjugation coordinate and photoexcited spectrum. Synthetic Metals, 1995, 69, 391-392.	2.1	10
184	UV–Vis, IR, Raman and theoretical characterization of a novel quinoid oligothiophene molecular material. Journal of Molecular Structure, 2003, 651-653, 665-673.	1.8	10
185	Exploration of the electronic structure of dendrimerlike acetylene-bridged oligothiophenes by correlating Raman spectroscopy, electrochemistry, and theory. Journal of Chemical Physics, 2004, 120, 11874-11881.	1.2	10
186	Branched polythiophenes by Ni-catalyzed Kumada coupling. Polymer Chemistry, 2014, 5, 6824-6833.	1.9	10
187	Lattice dynamics and vibrational spectra of pristine, doped, and photoexcited poly(3-methylthiophene). Synthetic Metals, 1992, 51, 211-218.	2.1	9
188	Vibrational spectra and assignments of amino acid L-asparagine. Journal of Molecular Structure, 1995, 349, 57-60.	1.8	9
189	Ab initio self-consistent reaction field calculations on amino acids: asparagine zwitterions in polar medium and gas phase. Theoretical Chemistry Accounts, 1997, 98, 5-15.	0.5	9
190	Raman spectra and conformational properties of hexyl- and methylsulphanyl-substituted oligothiophenes. Synthetic Metals, 2000, 108, 27-31.	2.1	9
191	Theoretical description of the Raman spectrum of a vinylene-bridged quaterthiophene oligomer. Journal of Molecular Structure, 2003, 651-653, 657-664.	1.8	9
192	Radical cations of end-capped tetrathienoacenes and their π-dimerization controlled by the nature of α-substituents and counterion concentration. RSC Advances, 2013, 3, 25644.	1.7	9
193	Impact of the Synergistic Collaboration of Oligothiophene Bridges and Ruthenium Complexes on the Optical Properties of Dumbbell‣haped Compounds. Chemistry - A European Journal, 2013, 19, 1476-1488.	1.7	9
194	Unfolding Pathway of a Globular Protein by Surfactants Monitored with Raman Optical Activity. Journal of Physical Chemistry Letters, 2014, 5, 8-13.	2.1	9
195	FTIR spectra (frequency and intensity) of poly-(para-phenylenes). Mikrochimica Acta, 1988, 94, 247-249.	2.5	8
196	Vibrational spectrum and internal rotation in 2,3-dimethylpyrazine. Journal of Molecular Structure, 1989, 192, 107-115.	1.8	8
197	Harmonic force filed for amino acid L-glutamine by MNDO semiempirical method. Journal of Molecular Structure, 1993, 294, 49-52.	1.8	8
198	Force field and normal coordinate calculations of the amino acid l-asparagine. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 1995, 51, 2347-2356.	2.0	8

#	Article	IF	CITATIONS
199	Vibrational Spectroscopy study of doping induced charged defects in a series of α,α'-Dimethyl end-capped Oligothiophenes. Synthetic Metals, 1997, 84, 571-572.	2.1	8
200	Spectroelectrochemical Raman study of a new series of thiophene/phenylene co-oligomers. Synthetic Metals, 2001, 119, 305-306.	2.1	8
201	Carbonylâ€Functionalized Quaterthiophenes: A Study of the Vibrational Raman and Electronic Absorption/Emission Properties Guided by Theoretical Calculations. ChemPhysChem, 2012, 13, 168-176.	1.0	8
202	The first chiral Raman spectrum report of a protein: a perspective of 20 years. Chemical Communications, 2013, 49, 8893.	2.2	8
203	Interplay of α,α―versus α,βâ€Conjugation in the Excited States and Charged Defects of Branched Oligothiophenes as Models for Dendrimeric Materials. Chemistry - A European Journal, 2013, 19, 17165-17171.	1.7	8
204	Raman Spectroscopic Characterization of Polyselenophenes and Poly(3,4â€ethylenenedioxyselenophene)s. Israel Journal of Chemistry, 2014, 54, 759-766.	1.0	8
205	A MINDO/3 harmonic force field for pyrazine. In-plane Ag and B3u vibrations. Journal of Molecular Structure, 1986, 142, 295-298.	1.8	7
206	Ab initio theoretical study of thiophene derivatives: 2-methylthiophene and 3-methylthiophene. Journal of Molecular Structure, 1997, 410-411, 311-314.	1.8	7
207	Infrared spectra of two sexithiophenes in neutral and doped states: a theoretical and spectroscopic study. Vibrational Spectroscopy, 2002, 30, 175-189.	1.2	7
208	Spectroscopic and DFT studies of donor-acceptor molecules containing phenylquinoline and phenothiazine moieties in various redox states. International Journal of Quantum Chemistry, 2005, 104, 635-644.	1.0	7
209	Vibrational fingerprint of the structural tuning in push-pull organic chromophores with quinoid or proaromatic spacers. Journal of Chemical Physics, 2007, 126, 074701.	1.2	7
210	Aggregation Behavior of a Conjugated C ₃ -Symmetric Molecule: A Description Based on Chiro-Optical Experimental and Theoretical Spectroscopies. Journal of Physical Chemistry B, 2010, 114, 5710-5717.	1.2	7
211	Designing new symmetrical facial oligothiophene amphiphiles. Organic and Biomolecular Chemistry, 2013, 11, 8435.	1.5	7
212	Density functional study on the structures and vibrational spectra of the radical cation and dication of α,α′-bis(aminomethyl)quaterthiophene. Journal of Molecular Structure, 2000, 521, 249-260.	1.8	6
213	A Practical Spectroscopic and Theoretical Approach To Study the Electrochromism in Molecular-Based Materials:  The Case of a Family of Dendrimerlike Poly(6-azulenylethenyl)benzenes. Journal of Physical Chemistry B, 2004, 108, 18463-18471.	1.2	6
214	FT-Raman spectroscopic study, aided by quantum chemical DFT calculations, of a series of oligothiophenes end-capped by nitriles. Journal of Molecular Structure, 2005, 744-747, 403-409.	1.8	6
215	Fourier Transform Raman and DFT Study of Three Annulated Oligothiophenes with Different Molecular Shapes. ChemPhysChem, 2007, 8, 745-750.	1.0	6
216	Electronic Studies on Oligothienylenevinylenes: Understanding the Nature of Their Ground and Excited Electronic States. ChemPhysChem, 2009, 10, 1901-1910.	1.0	6

#	Article	IF	CITATIONS
217	Diradicals acting through diamagnetic phenylene vinylene bridges: Raman spectroscopy as a probe to characterize spin delocalization. Journal of Chemical Physics, 2014, 140, 164903.	1.2	6
218	Fluorene-Based Donor-Acceptor Copolymers Containing Functionalized Benzotriazole Units: Tunable Emission and their Electrical Properties. Polymers, 2020, 12, 256.	2.0	6
219	Conformations and vibrational spectra of methyl-pyrazines. Journal of Molecular Structure, 1986, 142, 423-426.	1.8	5
220	Vibrational spectrum and internal rotation in 2,6-dimethylpyrazine. Journal of Molecular Structure, 1989, 197, 87-95.	1.8	5
221	Conformational and vibrational study on 1,2-dihydroxybenzene. Journal of Molecular Structure, 1993, 293, 59-62.	1.8	5
222	Combined theoretical and spectroscopic Raman study of 3,4-ethylenedioxy and S,S-dioxide substituted terthiophenes and their parent polymers. Journal of Molecular Structure, 2005, 744-747, 551-556.	1.8	5
223	Pushâ^'Pull Bithienyl Chromophore with an Unusual Transverse Path of Conjugation. Journal of Physical Chemistry A, 2007, 111, 841-851.	1.1	5
224	A Raman approach to pseudo-cross-conjugation in mesomeric betaines. Journal of Raman Spectroscopy, 2009, 40, 238-239.	1.2	5
225	Quantum mechanical study and vibrational spectra of indazolium-3-carboxylate and its decarboxylation product, the N-heterocyclic carbene indazol-3-ylidene. Physical Chemistry Chemical Physics, 2009, 11, 341-348.	1.3	5
226	On the Origin of the Chiro-Optical Activity in Supramolecular Assemblies: A Quantum Chemical Study of C ₃ Octopolar Systems. Journal of Chemical Theory and Computation, 2011, 7, 3314-3322.	2.3	5
227	Controlling the Macroscopic Chirality of Organic Materials Based on 1,3,5â€Trialkynylbenzenes. European Journal of Organic Chemistry, 2012, 2012, 1577-1582.	1.2	5
228	Harmonic force field for the glycine molecule by semiempirical methods. Journal of Molecular Structure, 1992, 268, 249-261.	1.8	4
229	Vibrational analysis as a function of the chain-length of well-barrier-well ï€-conjugated thiophene-based oligomers. Synthetic Metals, 1997, 84, 591-592.	2.1	4
230	Vibrational spectra and ab initio dft calculations of 3,3′-and 4,4′-dimethyl substituted 2,2′-bithiophene Synthetic Metals, 1999, 101, 590-591.	2.1	4
231	Intramolecular charge transfer in push-pull oligothiophenes from their vibrational spectra. Synthetic Metals, 2001, 119, 551-552.	2.1	4
232	A Raman and Computational Study of Two Dithienyl Naphthodithiophenes:Â Synthesis and Characterization of New Polymers Showing Low Band Gap Optical and Electroactive Features. Journal of Physical Chemistry B, 2004, 108, 7611-7619.	1.2	4
233	Vibrational dynamics study of the effect of the substituents on the π-conjugation of different bithiophene molecules. Journal of Molecular Structure, 2005, 744-747, 393-401.	1.8	4
234	Electronic spectroscopy study and molecular docking simulation of the interaction of terthiophene with DNA. Journal of Molecular Structure, 2007, 834-836, 176-181.	1.8	4

#	Article	IF	CITATIONS
235	Poly(3-hexylthiophene-2.5-diyl): Evidence of different polymer chain conformations in the solid state from a combined study of regioregularity control and Raman spectroscopy. Journal of Molecular Structure, 2020, 1221, 128882.	1.8	4
236	Lattice dynamics and infrared spectra of doping induced and photoexcited poly (acetylene). Solid State Communications, 1988, 65, 409-414.	0.9	3
237	Comparison between semiempirical and experimental force fields of oligothiophenes as an approach for the calculations of the vibrational spectrum of the polymer. Journal of Molecular Structure, 1993, 294, 37-40.	1.8	3
238	Infrared and Raman spectra of two well-barrier-well 1,2-di(α,α′-oligothienyl)ethanes. Journal of Raman Spectroscopy, 1997, 28, 855-865.	1.2	3
239	FT-IR and FT-Raman spectra of a series of oxidized α,α′-diethyl end-capped oligothienyls: a spectroscopic study of conjugational model defects. Optical Materials, 1999, 12, 321-325.	1.7	3
240	Vibrational spectra of charged defects in a series of α,α′-bis(aminomethyl) end-capped oligothiophenes induced by chemical doping with iodine. Journal of Molecular Structure, 2000, 521, 239-247.	1.8	3
241	Vibrational and theoretical DFT study of two regioregular methyl-disubstituted bithiophenes. Journal of Molecular Structure, 2001, 563-564, 539-544.	1.8	3
242	Synthesis, spectroscopy and quantum chemical DFT studies on new pleiadene-based materials. Synthetic Metals, 2005, 153, 245-248.	2.1	3
243	Perfluorination of tetracene: effects on the optical gap and electron-acceptor properties. An electrochemical, theoretical DFT, and Raman spectroscopic study. , 2006, , .		3
244	Mesomeric betaine chemistry in solution: Solvent effect on the structure and spectra of uracilyl–pyridinium betaine. Chemical Physics, 2010, 371, 1-9.	0.9	3
245	A theoretical investigation of α,α′-dimethyl end-capped oligothiophenes: Structures, vibrational spectra and conjugational defects. Synthetic Metals, 1997, 85, 1157-1158.	2.1	2
246	A theoretical investigation of α,α′-dimethyl end-capped oligothiophenes: structures, vibrational spectra and conjugation defects. Synthetic Metals, 1997, 89, 159-160.	2.1	2
247	Theoretical and vibrational study of electron-acceptor oligothienoquinonoids with well defined substitution patterns. Synthetic Metals, 2001, 119, 553-554.	2.1	2
248	Study of the ac conductivity of α, α′-dimethyl sexithiophene in pristine and doped states. Journal of Non-Crystalline Solids, 2004, 342, 146-151.	1.5	2
249	Vibrational spectra of nonlinear optical chromophores based on octopolar C3-symmetric 1,3,5 trisalkynylbenzenes. Journal of Molecular Structure, 2007, 834-836, 369-373.	1.8	2
250	Diferrocenyl oligothiophene wires: Raman and quantum chemical study of valence-trapped cations. Journal of Chemical Physics, 2011, 135, 234705.	1.2	2
251	Interpretation of the infrared and Raman spectra of zwitterionic push–pull dyes based on quinoidal thiazole. Journal of Molecular Structure, 2013, 1044, 55-60.	1.8	2
252	EDOT-Based Copolymers with Pendant Anthraquinone Units: Analysis of Their Optoelectronic Properties within the Double-Cable Context. Journal of Physical Chemistry C, 2014, 118, 9899-9910.	1.5	2

#	Article	IF	CITATIONS
253	Understanding the Origin of the VCD Signals on the Basis of a Nonredundant Coordinate Definition. Journal of Chemical Theory and Computation, 2015, 11, 2633-2641.	2.3	2
254	Interpretation of vibrational spectra of pristine, doped and photoinduced polyacetylene Journal of Molecular Structure, 1988, 174, 375-382.	1.8	1
255	Infrared and Raman Spectra of a Well-Barrier-Well 1,2-Di(α,α′-Bithienyl)Vinylene. Synthetic Metals, 1999, 101, 548.	2.1	1
256	Vibrational and electronic spectroscopic study of two oligothiophene materials bearing a heteroquinonoid structure Synthetic Metals, 1999, 101, 549-550.	2.1	1
257	NLO properties of dithienothiophene-based chromophores: a comparison study between the donor/donor and donor/acceptor substitution patterns. , 2007, , .		1
258	Vibrational spectra of oligothienyl-vinylenes with donor-Ï€-donor and donor-Ï€-acceptor substitution patterns. Journal of Molecular Structure, 2007, 834-836, 374-379.	1.8	1
259	Conformational and vibrational properties of poly (3-methylthiophene). Synthetic Metals, 1991, 43, 3501-3504.	2.1	0
260	Solvent effects on the structure and spectra of glutamine studied by the SCRF theory. Journal of Molecular Structure, 1997, 410-411, 353-356.	1.8	0
261	Spectroelectrochemical Raman Study of two α,α'-End Capped Sexithiophenes: The Effect of the Introduction of a Polarisable Sulfur Atom in the Side Chain. Materials Research Society Symposia Proceedings, 2000, 660, .	0.1	0
262	Spectroelectrochemical Raman Study of two α,α'-End Capped Sexithiophenes: The Effect of the Introduction of a Polarisable Sulfur Atom in the Side Chain. Materials Research Society Symposia Proceedings, 2000, 660, 1.	0.1	0
263	Raman Spectra and Quantum Chemistry Calculations of Fluorene-Dibenzothiophene-S,S- dioxide Oligomers. , 2010, , .		Ο