
Matthew M Coggon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5154386/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Airborne Emission Rate Measurements Validate Remote Sensing Observations and Emission Inventories of Western U.S. Wildfires. Environmental Science & Technology, 2022, 56, 7564-7577.	10.0	15
2	Identifying Volatile Chemical Product Tracer Compounds in U.S. Cities. Environmental Science & Technology, 2021, 55, 188-199.	10.0	60
3	Airborne extractive electrospray mass spectrometry measurements of the chemical composition of organic aerosol. Atmospheric Measurement Techniques, 2021, 14, 1545-1559.	3.1	20
4	Observations Confirm that Volatile Chemical Products Are a Major Source of Petrochemical Emissions in U.S. Cities. Environmental Science & Technology, 2021, 55, 4332-4343.	10.0	57
5	Volatile organic compound emissions from solvent- and water-borne coatings – compositional differences and tracer compound identifications. Atmospheric Chemistry and Physics, 2021, 21, 6005-6022.	4.9	24
6	Variability and Time of Day Dependence of Ozone Photochemistry in Western Wildfire Plumes. Environmental Science & Technology, 2021, 55, 10280-10290.	10.0	31
7	Secondary organic aerosols from anthropogenic volatile organic compounds contribute substantially to air pollution mortality. Atmospheric Chemistry and Physics, 2021, 21, 11201-11224.	4.9	60
8	Volatile chemical product emissions enhance ozone and modulate urban chemistry. Proceedings of the United States of America, 2021, 118, .	7.1	103
9	Chemical Tomography in a Fresh Wildland Fire Plume: A Large Eddy Simulation (LES) Study. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035203.	3.3	16
10	Rapid cloud removal of dimethyl sulfide oxidation products limits SO ₂ and cloud condensation nuclei production in the marine atmosphere. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	28
11	Nighttime and daytime dark oxidation chemistry in wildfire plumes: an observation and model analysis of FIREX-AQ aircraft data. Atmospheric Chemistry and Physics, 2021, 21, 16293-16317.	4.9	34
12	Novel Analysis to Quantify Plume Crosswind Heterogeneity Applied to Biomass Burning Smoke. Environmental Science & Technology, 2021, 55, 15646-15657.	10.0	11
13	Ozone chemistry in western U.S. wildfire plumes. Science Advances, 2021, 7, eabl3648.	10.3	45
14	Formaldehyde evolution in US wildfire plumes during the Fire Influence on Regional to Global Environments and Air Quality experiment (FIREX-AQ). Atmospheric Chemistry and Physics, 2021, 21, 18319-18331.	4.9	24
15	Urban Oxidation Flow Reactor Measurements Reveal Significant Secondary Organic Aerosol Contributions from Volatile Emissions of Emerging Importance. Environmental Science & Technology, 2020, 54, 714-725.	10.0	44
16	Biomass-burning-derived particles from a wide variety of fuels – Part 2: Effects of photochemical aging on particle optical and chemical properties. Atmospheric Chemistry and Physics, 2020, 20, 8511-8532.	4.9	41
17	Oxygenated Aromatic Compounds are Important Precursors of Secondary Organic Aerosol in Biomass-Burning Emissions. Environmental Science & Technology, 2020, 54, 8568-8579.	10.0	72
18	The nitrogen budget of laboratory-simulated western US wildfires during the FIREX 2016 Fire Lab study. Atmospheric Chemistry and Physics, 2020, 20, 8807-8826	4.9	45

MATTHEW M COGGON

#	Article	IF	CITATIONS
19	Marine Boundary Layer Clouds Associated with Coastally Trapped Disturbances: Observations and Model Simulations. Journals of the Atmospheric Sciences, 2019, 76, 2963-2993.	1.7	4
20	Secondary organic aerosol formation from the laboratory oxidation of biomass burning emissions. Atmospheric Chemistry and Physics, 2019, 19, 12797-12809.	4.9	67
21	Nighttime Chemical Transformation in Biomass Burning Plumes: A Box Model Analysis Initialized with Aircraft Observations. Environmental Science & Technology, 2019, 53, 2529-2538.	10.0	68
22	OH chemistry of non-methane organic gases (NMOGs) emitted from laboratory and ambient biomass burning smoke: evaluating the influence of furans and oxygenated aromatics on ozone and secondary NMOG formation. Atmospheric Chemistry and Physics, 2019, 19, 14875-14899.	4.9	92
23	Effects of Biomass Burning on Stratocumulus Droplet Characteristics, Drizzle Rate, and Composition. Journal of Geophysical Research D: Atmospheres, 2019, 124, 12301-12318.	3.3	18
24	Diurnal Variability and Emission Pattern of Decamethylcyclopentasiloxane (D ₅) from the Application of Personal Care Products in Two North American Cities. Environmental Science & Technology, 2018, 52, 5610-5618.	10.0	72
25	Non-methane organic gas emissions from biomass burning: identification, quantification, and emission factors from PTR-ToF during the FIREX 2016 laboratory experiment. Atmospheric Chemistry and Physics, 2018, 18, 3299-3319.	4.9	233
26	A multi-year data set on aerosol-cloud-precipitation-meteorology interactions for marine stratocumulus clouds. Scientific Data, 2018, 5, 180026.	5.3	29
27	Primary emissions of glyoxal and methylglyoxal from laboratory measurements of open biomass burning. Atmospheric Chemistry and Physics, 2018, 18, 15451-15470.	4.9	28
28	Biomass Burning Plumes in the Vicinity of the California Coast: Airborne Characterization of Physicochemical Properties, Heating Rates, and Spatiotemporal Features. Journal of Geophysical Research D: Atmospheres, 2018, 123, 13,560.	3.3	25
29	High- and low-temperature pyrolysis profiles describe volatile organic compound emissions from western US wildfire fuels. Atmospheric Chemistry and Physics, 2018, 18, 9263-9281.	4.9	102
30	Calculation of the sensitivity of proton-transfer-reaction mass spectrometry (PTR-MS) for organic trace gases using molecular properties. International Journal of Mass Spectrometry, 2017, 421, 71-94.	1.5	101
31	Proton-Transfer-Reaction Mass Spectrometry: Applications in Atmospheric Sciences. Chemical Reviews, 2017, 117, 13187-13229.	47.7	282
32	Emissions of volatile organic compounds (VOCs) from concentrated animal feeding operations (CAFOs): chemical compositions and separation of sources. Atmospheric Chemistry and Physics, 2017, 17, 4945-4956.	4.9	53
33	Formation of highly oxygenated low-volatility products from cresol oxidation. Atmospheric Chemistry and Physics, 2017, 17, 3453-3474.	4.9	89
34	The Caltech Photooxidation Flow Tube reactor: design, fluid dynamics and characterization. Atmospheric Measurement Techniques, 2017, 10, 839-867.	3.1	39
35	Evaluation of NO ⁺ reagent ion chemistry for online measurements of atmospheric volatile organic compounds. Atmospheric Measurement Techniques, 2016, 9, 2909-2925.	3.1	48
36	Contrasting cloud composition between coupled and decoupled marine boundary layer clouds. Journal of Geophysical Research D: Atmospheres, 2016, 121, 11,679.	3.3	21

#	Article	IF	CITATIONS
37	A note on the effects of inorganic seed aerosol on the oxidation state of secondary organic aerosol— <i>α</i> â€Pinene ozonolysis. Journal of Geophysical Research D: Atmospheres, 2016, 121, 12,476.	3.3	14
38	Emissions of nitrogenâ€containing organic compounds from the burning of herbaceous and arboraceous biomass: Fuel composition dependence and the variability of commonly used nitrile tracers. Geophysical Research Letters, 2016, 43, 9903-9912.	4.0	79
39	Real-Time Studies of Iron Oxalate-Mediated Oxidation of Glycolaldehyde as a Model for Photochemical Aging of Aqueous Tropospheric Aerosols. Environmental Science & Technology, 2016, 50, 12241-12249.	10.0	42
40	Stratocumulus Cloud Clearings and Notable Thermodynamic and Aerosol Contrasts across the Clear–Cloudy Interface. Journals of the Atmospheric Sciences, 2016, 73, 1083-1099.	1.7	24
41	Atmospheric fates of Criegee intermediates in the ozonolysis of isoprene. Physical Chemistry Chemical Physics, 2016, 18, 10241-10254.	2.8	179
42	Vapor wall deposition in Teflon chambers. Atmospheric Chemistry and Physics, 2015, 15, 4197-4214.	4.9	125
43	Secondary Organic Aerosol Composition from C ₁₂ Alkanes. Journal of Physical Chemistry A, 2015, 119, 4281-4297.	2.5	53
44	Formation of Low Volatility Organic Compounds and Secondary Organic Aerosol from Isoprene Hydroxyhydroperoxide Low-NO Oxidation. Environmental Science & Technology, 2015, 49, 10330-10339.	10.0	172
45	Isoprene NO ₃ Oxidation Products from the RO ₂ + HO ₂ Pathway. Journal of Physical Chemistry A, 2015, 119, 10158-10171.	2.5	86
46	Impact of emissions from shipping, land, and the ocean on stratocumulus cloud water elemental composition during the 2011 E-PEACE field campaign. Atmospheric Environment, 2014, 89, 570-580.	4.1	48
47	Sources of nitrate in stratocumulus cloud water: Airborne measurements during the 2011 E-PEACE and 2013 NiCE studies. Atmospheric Environment, 2014, 97, 166-173.	4.1	52
48	Observations of continental biogenic impacts on marine aerosol and clouds off the coast of California. Journal of Geophysical Research D: Atmospheres, 2014, 119, 6724-6748.	3.3	33
49	Secondary organic aerosol yields of 12-carbon alkanes. Atmospheric Chemistry and Physics, 2014, 14, 1423-1439.	4.9	100
50	Role of ozone in SOA formation from alkane photooxidation. Atmospheric Chemistry and Physics, 2014, 14, 1733-1753.	4.9	43
51	Organic aerosol formation from the reactive uptake of isoprene epoxydiols (IEPOX) onto non-acidified inorganic seeds. Atmospheric Chemistry and Physics, 2014, 14, 3497-3510.	4.9	201
52	Reactive Uptake and Photo-Fenton Oxidation of Glycolaldehyde in Aerosol Liquid Water. Environmental Science & Technology, 2013, 47, 4307-4316.	10.0	47
53	On the Mixing and Evaporation of Secondary Organic Aerosol Components. Environmental Science & Technology, 2013, 47, 6173-6180.	10.0	46
54	Observations of Sharp Oxalate Reductions in Stratocumulus Clouds at Variable Altitudes: Organic Acid and Metal Measurements During the 2011 E-PEACE Campaign. Environmental Science & Technology, 2013, 47, 7747-7756.	10.0	84

MATTHEW M COGGON

#	Article	IF	CITATIONS
55	Correction to Reactive Uptake and Photo-Fenton Oxidation of Glycolaldehyde in Aerosol Liquid Water. Environmental Science & Technology, 2013, 47, 10093-10093.	10.0	3
56	Secondary Organic Aerosol Coating Formation and Evaporation: Chamber Studies Using Black Carbon Seed Aerosol and the Single-Particle Soot Photometer. Aerosol Science and Technology, 2013, 47, 326-347.	3.1	42
57	Eastern Pacific Emitted Aerosol Cloud Experiment. Bulletin of the American Meteorological Society, 2013, 94, 709-729.	3.3	89
58	Secondary organic aerosol formation from biomass burning intermediates: phenol and methoxyphenols. Atmospheric Chemistry and Physics, 2013, 13, 8019-8043.	4.9	181
59	Hygroscopic properties of smoke-generated organic aerosol particles emitted in the marine atmosphere. Atmospheric Chemistry and Physics, 2013, 13, 9819-9835.	4.9	30
60	Characterisation and airborne deployment of a new counterflow virtual impactor inlet. Atmospheric Measurement Techniques, 2012, 5, 1259-1269.	3.1	68
61	Ship impacts on the marine atmosphere: insights into the contribution of shipping emissions to the properties of marine aerosol and clouds. Atmospheric Chemistry and Physics, 2012, 12, 8439-8458.	4.9	75
62	Bioavailability of jarosite for stimulating acid mine drainage attenuation. Geochimica Et Cosmochimica Acta, 2012, 78, 65-76.	3.9	23