
Henning Seedorf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5154308/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mutual Exclusion of <i>Methanobrevibacter</i> Species in the Human Gut Microbiota Facilitates Directed Cultivation of a <i>Candidatus</i> Methanobrevibacter Intestini Representative. Microbiology Spectrum, 2022, 10, .	3.0	6
2	Host Age Prediction from Fecal Microbiota Composition in Male C57BL/6J Mice. Microbiology Spectrum, 2022, 10, .	3.0	7
3	Longitudinal Changes in Diet Cause Repeatable and Largely Reversible Shifts in Gut Microbial Communities of Laboratory Mice and Are Observed across Segments of the Entire Intestinal Tract. International Journal of Molecular Sciences, 2021, 22, 5981.	4.1	10
4	Extended-Spectrum β-Lactamase-Producing and <i>mcr-1</i> -Positive Escherichia coli from the Gut Microbiota of Healthy Singaporeans. Applied and Environmental Microbiology, 2021, 87, e0048821.	3.1	10
5	Emergence of tigecycline- and eravacycline-resistant Tet(X4)-producing Enterobacteriaceae in the gut microbiota of healthy Singaporeans. Journal of Antimicrobial Chemotherapy, 2020, 75, 3480-3484.	3.0	34
6	Insights into the microbiome of farmed Asian sea bass (Lates calcarifer) with symptoms of tenacibaculosis and description of Tenacibaculum singaporense sp. nov Antonie Van Leeuwenhoek, 2020, 113, 737-752.	1.7	28
7	Cultivation and description of Duncaniella dubosii sp. nov., Duncaniella freteri sp. nov. and emended description of the species Duncaniella muris. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 3105-3110.	1.7	23
8	Muribaculum gordoncarteri sp. nov., an anaerobic bacterium from the faeces of C57BL/6J mice. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 4725-4729.	1.7	19
9	Complete Genome Sequence of Duncaniella muris Strain B8, Isolated from the Feces of C57/BL6 Mice. Microbiology Resource Announcements, 2019, 8, .	0.6	7
10	Nutrient-based diet modifications impact on the gut microbiome of the Javan slow loris (Nycticebus) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf 24
11	Complete Genome Sequence of Sponge-Associated Tenacibaculum mesophilum DSM 13764 ^T . Microbiology Resource Announcements, 2019, 8, .	0.6	2
12	Schaedlerella arabinosiphila gen. nov., sp. nov., a D-arabinose-utilizing bacterium isolated from faeces of C57BL/6J mice that is a close relative of Clostridium species ASF 502. International Journal of Systematic and Evolutionary Microbiology, 2019, 69, 3616-3622.	1.7	12
13	Comparative Genomic Analysis of Members of the Genera <i>Methanosphaera</i> and <i>Methanobrevibacter</i> Reveals Distinct Clades with Specific Potential Metabolic Functions. Archaea, 2018, 2018, 1-9.	2.3	17
14	The Draft Genome of the Non-Host-Associated <i>Methanobrevibacter arboriphilus</i> Strain DH1 Encodes a Large Repertoire of Adhesin-Like Proteins. Archaea, 2017, 2017, 1-9.	2.3	7
15	Draft Genome Sequences of Methanobrevibacter curvatus DSM11111, Methanobrevibacter cuticularis DSM11139, Methanobrevibacter filiformis DSM11501, and Methanobrevibacter oralis DSM7256. Genome Announcements, 2016, 4, .	0.8	3
16	Natural variation in methane emission of sheep fed on a lucerne pellet diet is unrelated to rumen ciliate community type. Microbiology (United Kingdom), 2016, 162, 459-465.	1.8	7

17	Phylogeny of Intestinal Ciliates, Including Charonina ventriculi, and Comparison of Microscopy and 18S rRNA Gene Pyrosequencing for Rumen Ciliate Community Structure Analysis. Applied and Environmental Microbiology, 2015, 81, 2433-2444.	3.1	65
18	Characterizing the Interactions between a Naturally Primed Immunoglobulin A and Its Conserved Bacteroides thetaiotaomicron Species-specific Epitope in Gnotobiotic Mice. Journal of Biological Chemistry, 2015, 290, 12630-12649.	3.4	52

HENNING SEEDORF

#	Article	IF	CITATIONS
19	Few Highly Abundant Operational Taxonomic Units Dominate within Rumen Methanogenic Archaeal Species in New Zealand Sheep and Cattle. Applied and Environmental Microbiology, 2015, 81, 986-995.	3.1	72
20	Two Different Bacterial Community Types Are Linked with the Low-Methane Emission Trait in Sheep. PLoS ONE, 2014, 9, e103171.	2.5	246
21	Bacteria from Diverse Habitats Colonize and Compete in the Mouse Gut. Cell, 2014, 159, 253-266.	28.9	324
22	Methane yield phenotypes linked to differential gene expression in the sheep rumen microbiome. Genome Research, 2014, 24, 1517-1525.	5.5	332
23	RIM-DB: a taxonomic framework for community structure analysis of methanogenic archaea from the rumen and other intestinal environments. PeerJ, 2014, 2, e494.	2.0	140
24	The Long-Term Stability of the Human Gut Microbiota. Science, 2013, 341, 1237439.	12.6	1,696
25	Simultaneous Amplicon Sequencing to Explore Co-Occurrence Patterns of Bacterial, Archaeal and Eukaryotic Microorganisms in Rumen Microbial Communities. PLoS ONE, 2013, 8, e47879.	2.5	304
26	More Than 200 Genes Required for Methane Formation from H ₂ and CO ₂ and Energy Conservation Are Present in <i>Methanothermobacter marburgensis</i> and <i>Methanothermobacter thermautotrophicus</i> . Archaea, 2011, 2011, 1-23.	2.3	107
27	Complete Genome Sequence of <i>Methanothermobacter marburgensis</i> , a Methanoarchaeon Model Organism. Journal of Bacteriology, 2010, 192, 5850-5851.	2.2	32
28	Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5859-5864.	7.1	612
29	Methanogenic archaea: ecologically relevant differences in energy conservation. Nature Reviews Microbiology, 2008, 6, 579-591.	28.6	1,674
30	The genome of <i>Clostridium kluyveri</i> , a strict anaerobe with unique metabolic features. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2128-2133.	7.1	409
31	Coupled Ferredoxin and Crotonyl Coenzyme A (CoA) Reduction with NADH Catalyzed by the Butyryl-CoA Dehydrogenase/Etf Complex from <i>Clostridium kluyveri</i> . Journal of Bacteriology, 2008, 190, 843-850.	2.2	379
32	Re -Citrate Synthase from Clostridium kluyveri Is Phylogenetically Related to Homocitrate Synthase and Isopropylmalate Synthase Rather Than to Si -Citrate Synthase. Journal of Bacteriology, 2007, 189, 4299-4304.	2.2	63
33	Structure of coenzyme F420H2 oxidase (FprA), a di-iron flavoprotein from methanogenic Archaea catalyzing the reduction of O2 to H2O. FEBS Journal, 2007, 274, 1588-1599.	4.7	65
34	The Genome Sequence of Methanosphaera stadtmanae Reveals Why This Human Intestinal Archaeon Is Restricted to Methanol and H 2 for Methane Formation and ATP Synthesis. Journal of Bacteriology, 2006, 188, 642-658.	2.2	245
35	Si-face stereospecificity at C5 of coenzyme F420 for F420H2 oxidase from methanogenic Archaea as determined by mass spectrometry. FEBS Journal, 2005, 272, 5337-5342.	4.7	6
36	F420H2 oxidase (FprA) from Methanobrevibacter arboriphilus, a coenzyme F420-dependent enzyme involved in O2 detoxification. Archives of Microbiology, 2004, 182, 126-37.	2.2	100

#	Article	IF	CITATIONS
37	Conformational Similarities in the Î ² -Ionone Ring Region of the Rhodopsin Chromophore in Its Ground State and after Photoactivation to the Metarhodopsin-I Intermediate. Biochemistry, 2003, 42, 13371-13378.	2.5	46