List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5154116/publications.pdf Version: 2024-02-01

AIREDT F VEE

#	Article	IF	CITATIONS
1	Nanopillar Templating Augments the Stiffness and Strength in Biopolymer Films. ACS Nano, 2022, 16, 3311-3322.	14.6	5
2	Why Enhanced Subnanosecond Relaxations Are Important for Toughness in Polymer Glasses. Macromolecules, 2021, 54, 2518-2528.	4.8	12
3	Importance of Sub-Nanosecond Fluctuations on the Toughness of Polycarbonate Glasses. Macromolecules, 2020, 53, 6672-6681.	4.8	12
4	Synergistic Antimicrobial Activity of a Nanopillar Surface on a Chitosan Hydrogel. ACS Applied Bio Materials, 2020, 3, 8040-8048.	4.6	13
5	Biomimetic Nanopillared Surfaces Inhibit Drug Resistant Filamentous Fungal Growth. ACS Applied Bio Materials, 2019, 2, 3159-3163.	4.6	11
6	Nanopillared Surfaces Disrupt <i>Pseudomonas aeruginosa</i> Mechanoresponsive Upstream Motility. ACS Applied Materials & Interfaces, 2019, 11, 10532-10539.	8.0	17
7	Collagen density modulates triple-negative breast cancer cell metabolism through adhesion-mediated contractility. Scientific Reports, 2018, 8, 17094.	3.3	51
8	Metabolism Modulation of Cancer Cells on Varying Substrate Stiffnesses. Biophysical Journal, 2018, 114, 19a.	0.5	1
9	Conformal reversal imprint lithography for polymer nanostructuring over large curved geometries. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2017, 35, 021602.	1.2	5
10	Correlation of focal adhesion assembly and disassembly with cell migration on nanotopography. Integrative Biology (United Kingdom), 2017, 9, 145-155.	1.3	39
11	Focal Adhesion Formation and Reorganization on Nanopatterned Surfaces. Biophysical Journal, 2016, 110, 133a.	0.5	0
12	Nanopatterned polymer surfaces with bactericidal properties. Biointerphases, 2015, 10, 021010.	1.6	219
13	Expression of Oct4 in human embryonic stem cells is dependent on nanotopographical configuration. Acta Biomaterialia, 2013, 9, 6369-6380.	8.3	58
14	Probing near-surface nanoscale mechanical properties of low modulus materials using a quartz crystal resonator atomic force microscope. Nanotechnology, 2011, 22, 295709.	2.6	3
15	Relaxation Kinetics of Nanostructures on Polymer Surface: Effect of Stress, Chain Mobility, and Spatial Confinement. Macromolecules, 2010, 43, 409-417.	4.8	27
16	Microdeformation and Fracture Mechanisms in Polyamide-6/Organoclay Nanocomposites. Macromolecules, 2008, 41, 193-202.	4.8	70
17	Pore Sealing by NH[sub 3] Plasma Treatment of Porous Low Dielectric Constant Films. Journal of the Electrochemical Society, 2007, 154, G85.	2.9	33
18	Nanovoid relaxation in a series of copolyester glasses under cyclic loading using synchronous PALS. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 1410-1417.	2.1	3

#	Article	IF	CITATIONS
19	Nanopattern-induced changes in morphology and motility of smooth muscle cells. Biomaterials, 2005, 26, 5405-5413.	11.4	592
20	Epoxy Nanocomposites with Highly Exfoliated Clay:  Mechanical Properties and Fracture Mechanisms. Macromolecules, 2005, 38, 788-800.	4.8	511
21	Toughening of Cubic Silsesquioxane Epoxy Nanocomposites Using Coreâ^'Shell Rubber Particles:Â A Three-Component Hybrid System. Macromolecules, 2004, 37, 3267-3276.	4.8	153
22	Design of Mechanically Robust High-Tg Polymers:  Mechanical Properties of Glassy Poly(ester) Tj ETQq0 0 0	rgBT /Ove 4.8	rlo <u>ck</u> 10 Tf 50
23	Organic/Inorganic Hybrid Composites from Cubic Silsesquioxanes. Epoxy Resins of Octa(dimethylsiloxyethylcyclohexylepoxide) Silsesquioxane. Macromolecules, 2003, 36, 5666-5682.	4.8	257
24	Temperature-Dependent Transition of Deformation Mode in Poly(1,4-cyclohexylenedimethylene) Tj ETQq0 0 0 rg	BT/Qverlc	ock 10 Tf 50 5
25	Design of Mechanically Robust High-TgPolymers:Â Synthesis and Dynamic Mechanical Relaxation Behavior of Glassy Poly(ester carbonate)s with Cyclohexylene Rings in the Backbone. Macromolecules, 2003, 36, 9411-9420.	4.8	20
26	Effect of the Scale of Local Segmental Motion on Nanovoid Growth in Polyester Copolymer Glasses. Macromolecules, 2003, 36, 2793-2801.	4.8	11
27	Design of Mechanically Robust High-TgPolymers:Â Physical Properties of Glassy Poly(ester carbonate)s with Cyclohexylene Rings in the Backbone. Macromolecules, 2003, 36, 9421-9429.	4.8	24
28	Effect of Linkage Groups on Motional Cooperativity in the Secondary Relaxations of Some Glassy Polymers. Macromolecules, 2002, 35, 425-432.	4.8	8
29	Moisture diffusion and hygrothermal aging in bismaleimide matrix carbon fiber composites—part I: uni-weave composites. Composites Science and Technology, 2002, 62, 2099-2110.	7.8	143
30	Moisture diffusion and hygrothermal aging in bismaleimide matrix carbon fiber composites: part II—woven and hybrid composites. Composites Science and Technology, 2002, 62, 2111-2119.	7.8	94
31	Effect of temperature on moisture absorption in a bismaleimide resin and its carbon fiber composites. Polymer, 2002, 43, 3987-3997.	3.8	205
32	Organic/Inorganic Hybrid Composites from Cubic Silsesquioxanes. Journal of the American Chemical Society, 2001, 123, 11420-11430.	13.7	460
33	Correlations of the Boson Peak with Positron Annihilation in Series of Polycarbonate Copolymers. Macromolecules, 2001, 34, 4082-4088.	4.8	14
34	Determination of Pore Size in Mesoporous Thin Films from the Annihilation Lifetime of Positronium. Journal of Physical Chemistry B, 2001, 105, 4657-4662.	2.6	266
35	Effect of the Local Motions of Chemical Linkages on Segmental Mobility in Poly(ester carbonate) Block Copolymers. Macromolecules, 2001, 34, 2559-2568.	4.8	6
36	Inorganic particle toughening I: micro-mechanical deformations in the fracture of glass bead filled epoxies. Polymer, 2001, 42, 577-588.	3.8	132

#	Article	IF	CITATIONS
37	Inorganic particle toughening II: toughening mechanisms of glass bead filled epoxies. Polymer, 2001, 42, 589-597.	3.8	120
38	Moisture absorption and hygrothermal aging in a bismaleimide resin. Polymer, 2001, 42, 7327-7333.	3.8	135
39	Controlling molecular mobility and ductile-brittle transitions of polycarbonate copolymers. Journal of Polymer Science, Part B: Polymer Physics, 2001, 39, 1730-1740.	2.1	18
40	Fracture behavior of glass bead filled epoxies: Cleaning process of glass beads. Journal of Applied Polymer Science, 2001, 79, 1371-1383.	2.6	39
41	Effect of rubber interlayers on the fracture of glass bead/epoxy composites. Journal of Materials Science, 2001, 36, 7-20.	3.7	28
42	Probing diffusion barrier integrity on porous silica low-k thin films using positron annihilation lifetime spectroscopy. Journal of Applied Physics, 2001, 89, 5138-5144.	2.5	59
43	Fracture behavior of glass bead filled epoxies: Cleaning process of glass beads. Journal of Applied Polymer Science, 2001, 79, 1371-1383.	2.6	1
44	Correlation of Positron Annihilation and Other Dynamic Properties in Small Molecule Glass-Forming Substances. Physical Review Letters, 2001, 87, 215901.	7.8	82
45	Contributions of the nanovoid structure to the kinetics of moisture transport in epoxy resins. Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 776-791.	2.1	139
46	A discussion of the molecular mechanisms of moisture transport in epoxy resins. Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 792-802.	2.1	243
47	Role of inherent matrix toughness on fracture of glass bead filled epoxies. Polymer, 2000, 41, 8375-8385.	3.8	70
48	Micro-mechanical deformation mechanisms in the fracture of hybrid-particulate composites based on glass beads, rubber and epoxies. Polymer Engineering and Science, 2000, 40, 2457-2470.	3.1	25
49	Effects of rate on crack growth in a rubber-modified epoxy. Acta Materialia, 2000, 48, 3581-3592.	7.9	39
50	Fracture of glass bead/epoxy composites: on micro-mechanical deformations. Polymer, 2000, 41, 8363-8373.	3.8	145
51	Local Chain Dynamics in Poly(fluorocarbonate)s. Macromolecules, 2000, 33, 6849-6852.	4.8	17
52	Effect of Local Conformational Transition on Craze Initiation in Polyestercarbonates Containing Cyclohexylene Linkages. Macromolecules, 2000, 33, 1338-1344.	4.8	31
53	Local Chain Dynamics in Poly(ester carbonate)s. Macromolecules, 2000, 33, 6853-6855.	4.8	5
54	Determination of pore-size distribution in low-dielectric thin films. Applied Physics Letters, 2000, 76, 1282-1284.	3.3	188

#	Article	IF	CITATIONS
55	Contributions of the nanovoid structure to the kinetics of moisture transport in epoxy resins. Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 776.	2.1	13
56	Positronium annihilation in mesoporous thin films. Physical Review B, 1999, 60, R5157-R5160.	3.2	260
57	The Molecular Basis for the Relationship between the Secondary Relaxation and Mechanical Properties of a Series of Polyester Copolymer Glasses. Macromolecules, 1999, 32, 5944-5955.	4.8	116
58	Molecular dynamics study of isobaric and isochoric glass transitions in a model amorphous polymer. Journal of Chemical Physics, 1999, 110, 7058-7069.	3.0	36
59	A Dielectric Relaxation Study of the γ-Relaxation in Tetramethylbisphenol A Polycarbonate Plasticized by Tris(2-ethylhexyl) Phosphate. Macromolecules, 1999, 32, 7921-7924.	4.8	24
60	Development of a process zone in rubber-modified epoxy polymers. International Journal of Fracture, 1998, 92, 271-286.	2.2	32
61	Contributions of the nanovoid structure to the moisture absorption properties of epoxy resins. Journal of Polymer Science, Part B: Polymer Physics, 1998, 36, 3035-3048.	2.1	173
62	Two-dimensional transferred-echo double resonance study of molecular motion in a fluorinated polycarbonate. Solid State Nuclear Magnetic Resonance, 1998, 12, 87-95.	2.3	16
63	Constitutive modeling of polymeric foam material subjected to dynamic crash loading. International Journal of Impact Engineering, 1998, 21, 369-386.	5.0	237
64	Highly Porous Polyhedral Silsesquioxane Polymers. Synthesis and Characterization. Journal of the American Chemical Society, 1998, 120, 8380-8391.	13.7	373
65	Bundle Description of Packing and Dynamics in Polycarbonate Homopolymers, Copolymers, and Blends. Macromolecules, 1998, 31, 3016-3020.	4.8	20
66	Enhancing Plastic Yielding in Polyestercarbonate Glasses by 1,4-Cyclohexylene Linkage Addition. Macromolecules, 1998, 31, 7865-7870.	4.8	57
67	Molecular Structure Effects on the Secondary Relaxation and Impact Strength of a Series of Polyester Copolymer Glasses. Macromolecules, 1998, 31, 5371-5382.	4.8	98
68	Stress Evolution during Thermoset Cure. Materials Research Society Symposia Proceedings, 1998, 515, 195.	0.1	5
69	Contributions of the nanovoid structure to the moisture absorption properties of epoxy resins. Journal of Polymer Science, Part B: Polymer Physics, 1998, 36, 3035-3048.	2.1	1
70	Interface and Surface Effects on the Glass Transition in Thin Polystyrene Films. Physical Review Letters, 1997, 78, 1524-1527.	7.8	531
71	Chain Packing and Dynamics in Polycarbonate Block Copolymers. Macromolecules, 1997, 30, 6302-6306.	4.8	16
72	Extended ensemble molecular dynamics method for constant strain rate uniaxial deformation of polymer systems. Journal of Chemical Physics, 1997, 107, 4396-4407.	3.0	50

#	Article	IF	CITATIONS
73	Interactions of a liquid crystalline polymer with polycarbonate and poly(ethylene terephthalate). Journal of Materials Science, 1997, 32, 3961-3970.	3.7	12
74	Evolution of structure and properties of a liquid crystalline epoxy during curing. Journal of Polymer Science, Part B: Polymer Physics, 1997, 35, 2363-2378.	2.1	41
75	Measurement of Hole Volume in Amorphous Polymers Using Positron Spectroscopy. Macromolecules, 1996, 29, 8507-8516.	4.8	111
76	Mode II fracture of composites interlayered with nylon particles. Composites Science and Technology, 1996, 56, 1223-1240.	7.8	71
77	Micromechanical modeling of crack-tip rubber particle cavitational process in polymer toughening. Polymer Engineering and Science, 1996, 36, 2320-2326.	3.1	30
78	Changes of the hole volume in model epoxy networks. Polymer, 1995, 36, 3997-4003.	3.8	29
79	Influence of cyclic fatigue on the mechanical properties of amorphous polycarbonate. Polymer, 1995, 36, 759-765.	3.8	37
80	Evolution of nanometer voids in polycarbonate under mechanical stress and thermal expansion using positron spectroscopy. Journal of Polymer Science, Part B: Polymer Physics, 1995, 33, 77-84.	2.1	64
81	Positronium Formation as a Probe of Polymer Surfaces and Thin Films. Physical Review Letters, 1995, 74, 4947-4950.	7.8	145
82	Characterization of Absorbed Water in Perdeuterated Polycarbonate by Residual-Proton NMR. Macromolecules, 1995, 28, 6477-6480.	4.8	6
83	Fatigue craze initiation in polycarbonate: study by small-angle X-ray scattering. Polymer, 1994, 35, 4287-4292.	3.8	17
84	Mechanical properties of in situ composites based on polycarbonate and a liquid crystalline polymer. Polymer, 1994, 35, 3463-3469.	3.8	30
85	Fracture toughness and fracture mechanisms of polybutylene-terephthalate/polycarbonate/ impact-modifier blends. Journal of Materials Science, 1994, 29, 4510-4522.	3.7	52
86	Elastic modulus ofin-situ composites of a liquid crystalline polymer and polycarbonate. Polymer Composites, 1994, 15, 156-162.	4.6	25
87	Positronium formation in semicrystalline poly(ethylene terephthalate). Polymer, 1994, 35, 14-17.	3.8	29
88	Phase transformations of a liquid crystalline epoxy during curing. Polymer, 1994, 35, 2679-2682.	3.8	63
89	Fatigue craze initiation in polycarbonate: study by transmission electron microscopy. Polymer, 1994, 35, 3604-3611.	3.8	22
90	Correlation between the Shear Yielding Behavior and Secondary Relaxations of Bisphenol A Polycarbonate and Related Copolymers. Macromolecules, 1994, 27, 2761-2768.	4.8	67

#	Article	IF	CITATIONS
91	The preparation and morphology of PPO–epoxy blends. Journal of Applied Polymer Science, 1993, 48, 1051-1060.	2.6	61
92	Effect of drawing on structure and properties of a liquid crystalline polymer and polycarbonatein-situ composite. Polymer Engineering and Science, 1993, 33, 789-798.	3.1	77
93	Toughening mechanisms in thermoplastic-modified epoxies: 1. Modification using poly(phenylene) Tj ETQq1 1	0.784314 r 3.8	gBT /Overloci
94	Scale of cooperative $\hat{1}^3$ -relaxation of bisphenol A polycarbonate. Macromolecules, 1992, 25, 6800-6809.	4.8	38
95	Effect of cyclic stress on enthalpy relaxation in polycarbonate. Journal of Polymer Science, Part B: Polymer Physics, 1992, 30, 221-230.	2.1	23
96	Effect of cyclic stress on structural changes in polycarbonate as probed by positron annihilation lifetime spectroscopy. Journal of Polymer Science, Part B: Polymer Physics, 1992, 30, 231-238.	2.1	24
97	Interfacial adhesion and toughening mechanisms in an alloy of polycarbonate/polyethylene. Polymer, 1992, 33, 4868-4871.	3.8	59
98	Secondary relaxation motion in bisphenol A polycarbonate. Macromolecules, 1991, 24, 1905-1913.	4.8	108
99	Antiplasticization effects on a secondary relaxation in plasticized glassy polycarbonates. Macromolecules, 1991, 24, 61-67.	4.8	79
100	Syntheses of alternating multiblock copolycarbonates with controlled block lengths. Macromolecules, 1991, 24, 1590-1594.	4.8	6
101	Structural changes in glassy polycarbonate induced by cyclic stresses. Journal of Non-Crystalline Solids, 1991, 131-133, 492-496.	3.1	5
102	Prediction of physical aging in controlled-release coatings: the application of the relaxation coupling model to glassy cellulose acetate. Pharmaceutical Research, 1991, 08, 698-705.	3.5	15
103	Preparation and characterization of maleimide-terminated poly(arylene ether sulfone) oligomers of various molecular weights. Journal of Applied Polymer Science, 1991, 43, 1849-1858.	2.6	22
104	Curing reaction and product properties of polysulfones terminated with active functional groups. Journal of Applied Polymer Science, 1991, 43, 1865-1874.	2.6	8
105	Some connections between viscoelastic properties of PVC and plasticized PVC and molecular kinetics. Journal of Polymer Science, Part B: Polymer Physics, 1991, 29, 1493-1501.	2.1	24
106	Mechanical modeling of initiation of localized yielding under plane stress conditions in rigid-rigid polymer alloys. Polymer Engineering and Science, 1991, 31, 793-802.	3.1	26
107	Structural Changes in Glassy Polycarbonate Due to Cyclic Loading. Materials Research Society Symposia Proceedings, 1990, 215, 61.	0.1	0
108	The effect of physical aging on the dissolution rate of anionic polyelectrolytes. Pharmaceutical Research, 1990, 07, 648-653.	3.5	23

#	Article	IF	CITATIONS
109	A method of forming composite structures usingin situ-formed liquid crystal polymer fibers in a thermoplastic matrix. Polymer Composites, 1990, 11, 10-18.	4.6	87
110	Toughening mechanisms in core-shell rubber modified polycarbonate. Polymer, 1990, 31, 2267-2277.	3.8	204
111	Toughening mechanisms in a multi-phase alloy of nylon 6,6/polyphenylene oxide. Journal of Materials Science, 1989, 24, 1447-1457.	3.7	123
112	Toughening mechanisms in a multi-phase alloy of nylon 6,6/polyphenylene oxide. Journal of Materials Science, 1989, 24, 1447-1457.	3.7	3
113	Deformation behaviour of a polycarbonate plate with a circular hole: finite elements model and experimental observations. Polymer, 1988, 29, 1619-1624.	3.8	29
114	Strain and temperature accelerated relaxation in polycarbonate. Journal of Polymer Science, Part B: Polymer Physics, 1988, 26, 2463-2483.	2.1	71
115	Local molecular motions in glassy and dissolved polycarbonates. Macromolecules, 1988, 21, 3396-3401.	4.8	36
116	Nonlinear viscoelasticity and yield: Application of a coupling model. Polymer Engineering and Science, 1987, 27, 2-15.	3.1	37
117	The biaxial deformation and yield behavior of bisphenol-a polycarbonate: Effect of anisotropy. Polymer Engineering and Science, 1986, 26, 920-930.	3.1	35
118	Proton spin relaxation and molecular motion in a bulk polycarbonate. Macromolecules, 1983, 16, 658-665.	4.8	79
119	Dynamic bulk and shear relaxation in glassy polymers. I. Experimental techniques and results on PMMA. Journal of Polymer Science, Polymer Physics Edition, 1982, 20, 205-224.	1.0	68
120	Molecular structure effects on the dynamic mechanical spectra of polycarbonates. Macromolecules, 1981, 14, 54-64.	4.8	247
121	The effect of strain rate on the toughening mechanisms of rubber-modified plastics. Polymer Engineering and Science, 1981, 21, 205-211.	3.1	71
122	Mechanical properties of polymer mixtures: Effect of compatibility. Journal of Macromolecular Science - Physics, 1980, 17, 543-564.	1.0	65
123	Mechanical properties of mixtures of two compatible polymers. Polymer Engineering and Science, 1977, 17, 213-219.	3.1	143
124	The effect of sudden strain-rate change on the yield behavior of bisphenol-A polycarbonate. Polymer Engineering and Science, 1974, 14, 691-695.	3.1	12