Albert F Yee

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/5154116/publications.pdf
Version: 2024-02-01

14.6

5

Why Enhanced Subnanosecond Relaxations Are Important for Toughness in Polymer Glasses.
4.8 Macromolecules, 2021, 54, 2518-2528.

12

Importance of Sub-Nanosecond Fluctuations on the Toughness of Polycarbonate Classes.
4.8

Macromolecules, 2020, 53, 6672-6681.
4.6

13

4 Synergistic Antimicrobial Activity of a Nanopillar Surface on a Chitosan Hydrogel. ACS Applied Bio
 Materials, 2020, 3, 8040-8048.

Biomimetic Nanopillared Surfaces Inhibit Drug Resistant Filamentous Fungal Growth. ACS Applied Bio
Materials, 2019, 2, 3159-3163.
4.6

Nanopillared Surfaces Disrupt <i>Pseudomonas aeruginosa</i> Mechanoresponsive Upstream Motility.
ACS Applied Materials \& Interfaces, 2019, 11, 10532-10539.
8.0

17

7 Collagen density modulates triple-negative breast cancer cell metabolism through adhesion-mediated
7 contractility. Scientific Reports, 2018, 8, 17094.
$3.3 \quad 51$

8 Metabolism Modulation of Cancer Cells on Varying Substrate Stiffnesses. Biophysical Journal, 2018, -114, 19a.

9 Conformal reversal imprint lithography for polymer nanostructuring over large curved geometries.
$9 \quad$ Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2017, 35, 021602.

10 Correlation of focal adhesion assembly and disassembly with cell migration on nanotopography.
Integrative Biology (United Kingdom), 2017, 9, 145-155.
1.3

39
11 Focal Adhesion Formation and Reorganization on Nanopatterned Surfaces. Biophysical Journal, 2016,
110, 133a.
$0.5 \quad 0$

12 Nanopatterned polymer surfaces with bactericidal properties. Biointerphases, 2015, 10, 021010.
1.6

219

13 Expression of Oct4 in human embryonic stem cells is dependent on nanotopographical configuration.
Acta Biomaterialia, 2013, 9, 6369-6380.

Probing near-surface nanoscale mechanical properties of low modulus materials using a quartz crystal resonator atomic force microscope. Nanotechnology, 2011, 22, 295709.
2.6

3

Nanopattern-induced changes in morphology and motility of smooth muscle cells. Biomaterials, 2005,
$26,5405-5413$.

Epoxy Nanocomposites with Highly Exfoliated Clay:â€\%o Mechanical Properties and Fracture Mechanisms. Macromolecules, 2005, 38, 788-800.

Toughening of Cubic Silsesquioxane Epoxy Nanocomposites Using Coreâ^Shell Rubber Particles:ÂA
Three-Component Hybrid System. Macromolecules, 2004, 37, 3267-3276.

Design of Mechanically Robust High-Tg Polymers:â€\%o Mechanical Properties of Glassy Poly(ester) Tj ETQq0 00 rgBT/Overloçk 10 Tf 50

Organic/Inorganic Hybrid Composites from Cubic Silsesquioxanes. Epoxy Resins of
Octa(dimethylsiloxyethylcyclohexylepoxide) Silsesquioxane. Macromolecules, 2003, 36, 5666-5682.
4.8

Temperature-Dependent Transition of Deformation Mode in Poly(1,4-cyclohexylenedimethylene) Tj ETQqO 00 rgBT/Qverlock 220 Tf 505

Design of Mechanically Robust High-TgPolymers:Â Synthesis and Dynamic Mechanical Relaxation
25 Behavior of Classy Poly(ester carbonate)s with Cyclohexylene Rings in the Backbone.
4.8

Macromolecules, 2003, 36, 9411-9420.

26 Effect of the Scale of Local Segmental Motion on Nanovoid Growth in Polyester Copolymer Classes.
Macromolecules, 2003, 36, 2793-2801.

Design of Mechanically Robust High-TgPolymers:Â Physical Properties of Glassy Poly(ester carbonate)s
with Cyclohexylene Rings in the Backbone. Macromolecules, 2003, 36, 9421-9429.

Effect of Linkage Groups on Motional Cooperativity in the Secondary Relaxations of Some Glassy
Polymers. Macromolecules, 2002, 35, 425-432.

Moisture diffusion and hygrothermal aging in bismaleimide matrix carbon fiber compositesâ€"part l:
uni-weave composites. Composites Science and Technology, 2002, 62, 2099-2110.
Moisture diffusion and hygrothermal aging in bismaleimide matrix carbon fiber composites: part
llâ€"woven and hybrid composites. Composites Science and Technology, 2002, 62, 2111-2119.

Effect of temperature on moisture absorption in a bismaleimide resin and its carbon fiber composites.
Polymer, 2002, 43, 3987-3997.

Organic/Inorganic Hybrid Composites from Cubic Silsesquioxanes. Journal of the American Chemical Society, 2001, 123, 11420-11430.
13.7

460

Correlations of the Boson Peak with Positron Annihilation in Series of Polycarbonate Copolymers.
Macromolecules, 2001, 34, 4082-4088.
4.8

Determination of Pore Size in Mesoporous Thin Films from the Annihilation Lifetime of Positronium.
Journal of Physical Chemistry B, 2001, 105, 4657-4662.
2.6

266

Effect of the Local Motions of Chemical Linkages on Segmental Mobility in Poly(ester carbonate)
Block Copolymers. Macromolecules, 2001, 34, 2559-2568.
4.8

Inorganic particle toughening I: micro-mechanical deformations in the fracture of glass bead filled epoxies. Polymer, 2001, 42, 577-588.
Inorganic particle toughening II: toughening mechanisms of glass bead filled epoxies. Polymer, 2001,
$3742,589-597$.
Controlling molecular mobility and ductile-brittle transitions of polycarbonate copolymers. Journal
of Polymer Science, Part B: Polymer Physics, 2001, 39, 1730-1740.
$40 \quad$ Fracture behavior of glass bead filled epoxies: Cleaning process of glass beads. Journal of Applied

Effect of rubber interlayers on the fracture of glass bead/epoxy composites. Journal of Materials

Role of inherent matrix toughness on fracture of glass bead filled epoxies. Polymer, 2000, 41,
8375-8385.
$3.8 \quad 70$

47
$8375-8385$.

Micro-mechanical deformation mechanisms in the fracture of hybrid-particulate composites based on glass beads, rubber and epoxies. Polymer Engineering and Science, 2000, 40, 2457-2470.
3.1

25

Fracture of glass bead/epoxy composites: on micro-mechanical deformations. Polymer, 2000, 41,

Contributions of the nanovoid structure to the kinetics of moisture transport in epoxy resins.
Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 776.

56 Positronium annihilation in mesoporous thin films. Physical Review B, 1999, 60, R5157-R5160.
3.2

The Molecular Basis for the Relationship between the Secondary Relaxation and Mechanical
Properties of a Series of Polyester Copolymer Classes. Macromolecules, 1999, 32, 5944-5955.

Molecular dynamics study of isobaric and isochoric glass transitions in a model amorphous polymer. Journal of Chemical Physics, 1999, 110, 7058-7069.

A Dielectric Relaxation Study of the $\hat{3}$-Relaxation in Tetramethylbisphenol A Polycarbonate Plasticized by Tris(2-ethylhexyl) Phosphate. Macromolecules, 1999, 32, 7921-7924.
$4.8 \quad 24$

Development of a process zone in rubber-modified epoxy polymers. International Journal of Fracture, 1998, 92, 271-286.

Contributions of the nanovoid structure to the moisture absorption properties of epoxy resins.
Contributions of the nanovoid structure to the moisture absorption propertic
Journal of Polymer Science, Part B: Polymer Physics, 1998, 36, 3035-3048.
2.1

173

Two-dimensional transferred-echo double resonance study of molecular motion in a fluorinated polycarbonate. Solid State Nuclear Magnetic Resonance, 1998, 12, 87-95.

Constitutive modeling of polymeric foam material subjected to dynamic crash loading. International
Journal of Impact Engineering, 1998, 21, 369-386.

Highly Porous Polyhedral Silsesquioxane Polymers. Synthesis and Characterization. Journal of the
64 American Chemical Society, 1998, 120, 8380-8391.
13.7

373

Bundle Description of Packing and Dynamics in Polycarbonate Homopolymers, Copolymers, and Blends.
65 Macromolecules, 1998, 31, 3016-3020.

Enhancing Plastic Yielding in Polyestercarbonate Glasses by 1,4-Cyclohexylene Linkage Addition.
66 Macromolecules, 1998, 31, 7865-7870.
4.8

57

Molecular Structure Effects on the Secondary Relaxation and Impact Strength of a Series of
Polyester Copolymer Classes. Macromolecules, 1998, 31, 5371-5382.

Stress Evolution during Thermoset Cure. Materials Research Society Symposia Proceedings, 1998, 515,
195.

Contributions of the nanovoid structure to the moisture absorption properties of epoxy resins.
Journal of Polymer Science, Part B: Polymer Physics, 1998, 36, 3035-3048.

Interface and Surface Effects on the Glass Transition in Thin Polystyrene Films. Physical Review
Letters, 1997, 78, 1524-1527.
7.8

531

71 Chain Packing and Dynamics in Polycarbonate Block Copolymers. Macromolecules, 1997, 30, 6302-6306.
4.8

16

Interactions of a liquid crystalline polymer with polycarbonate and poly(ethylene terephthalate).
73 Journal of Materials Science, 1997, 32, 3961-3970.

Evolution of structure and properties of a liquid crystalline epoxy during curing. Journal of Polymer Science, Part B: Polymer Physics, 1997, 35, 2363-2378.

Measurement of Hole Volume in Amorphous Polymers Using Positron Spectroscopy. Macromolecules, 1996, 29, 8507-8516.

Mode II fracture of composites interlayered with nylon particles. Composites Science and Technology, 1996, 56, 1223-1240.

Micromechanical modeling of crack-tip rubber particle cavitational process in polymer toughening.
Polymer Engineering and Science, 1996, 36, 2320-2326.
3.1

Changes of the hole volume in model epoxy networks. Polymer, 1995, 36, 3997-4003.
3.8

Influence of cyclic fatigue on the mechanical properties of amorphous polycarbonate. Polymer, 1995,
36, 759-765.

Evolution of nanometer voids in polycarbonate under mechanical stress and thermal expansion using positron spectroscopy. Journal of Polymer Science, Part B: Polymer Physics, 1995, 33, 77-84.

Positronium Formation as a Probe of Polymer Surfaces and Thin Films. Physical Review Letters, 1995,
74, 4947-4950.

Characterization of Absorbed Water in Perdeuterated Polycarbonate by Residual-Proton NMR.
Macromolecules, 1995, 28, 6477-6480.

Fatigue craze initiation in polycarbonate: study by small-angle X-ray scattering. Polymer, 1994, 35,
4287-4292.

Mechanical properties of in situ composites based on polycarbonate and a liquid crystalline polymer.
Polymer, 1994, 35, 3463-3469.

Fracture toughness and fracture mechanisms of polybutylene-terephthalate/polycarbonate/ impact-modifier blends. Journal of Materials Science, 1994, 29, 4510-4522.

Elastic modulus ofin-situ composites of a liquid crystalline polymer and polycarbonate. Polymer Composites, 1994, 15, 156-162.
3.8

29

87 Positronium formation in semicrystalline poly(ethylene terephthalate). Polymer, 1994, 35, 14-17.

Fatigue craze initiation in polycarbonate: study by transmission electron microscopy. Polymer, 1994, 35, 3604-3611.

Correlation between the Shear Yielding Behavior and Secondary Relaxations of Bisphenol A
The preparation and morphology of PPOâ€"epoxy blends. Journal of Applied Polymer Science, 1993, 48,
$1051-1060$.

$92 \quad$| Effect of drawing on structure and properties of a liquid crystalline polymer and |
| :--- |
| polycarbonatein-situ composite. Polymer Engineering and Science, 1993, 33, 789-798. |

93
Interfacial adhesion and toughening mechanisms in an alloy of polycarbonate/polyethylene. Polymer, 1992, 33, 4868-4871.99 Antiplasticization effects on a secondary relaxation in plasticized glassy polycarbonates.
$4.8 \quad 79$
99 Macromolecules, 1991, 24, 61-67.
100 Syntheses of alternating multiblock copolycarbonates with controlled block lengths. Macromolecules, 1991, 24, 1590-1594. $4.8 \quad 6$
Structural changes in glassy polycarbonate induced by cyclic stresses. Journal of Non-Crystalline
Solids, 1991, 131-133, 492-496. Solids, 1991, 131-133, 492-496. 3.5 15
Prediction of physical aging in controlled-release coatings: the application of the relaxation coupling 2.6 22 various molecular weights. Journal of Applied Polymer Science, 1991, 43, 1849-1858.

Curing reaction and product properties of polysulfones terminated with active functional groups.

Mechanical modeling of initiation of localized yielding under plane stress conditions in rigid-rigid
109 A method of forming composite structures usingin situ-formed liquid crystal polymer fibers in a thermoplastic matrix. Polymer Composites, 1990, 11, 10-18.110 Toughening mechanisms in core-shell rubber modified polycarbonate. Polymer, 1990, 31, 2267-2277.3.8204
111 Toughening mechanisms in a multi-phase alloy of nylon 6,6/polyphenylene oxide. Journal of Materials 3.7 123
Science, 1989, 24, 1447-1457.
Deformation behaviour of a polycarbonate plate with a circular hole: finite elements model and 113 Deformation benaviour of a polycarbonate plate with a circu
3.7 3
Toughening mechanisms in a multi-phase alloy of nylon 6,6/polyphenylene oxide. Journal of Materials $112 \quad$ Science, 1989, 24, 1447-1457.
3.8Strain and temperature accelerated relaxation in polycarbonate. Journal of Polymer Science, Part B:2.1Polymer Physics, 1988, 26, 2463-2483.
115 Local molecular motions in glassy and dissolved polycarbonates. Macromolecules, 1988, 21, 3396-3401. 4.8 36
116 Nonlinear viscoelasticity and yield: Application of a coupling model. Polymer Engineering and Science, 1987, 27, 2-15.3.137
117 The biaxial deformation and yield behavior of bisphenol-a polycarbonate: Effect of anisotropy.
Polymer Engineering and Science, 1986, 26, 920-930. 3.1 35
Proton spin relaxation and molecular motion in a bulk polycarbonate. Macromolecules, 1983, 16, Proton sp
$658-665$658-665.
4.8 79
119 Dynamic bulk and shear relaxation in glassy polymers. I. Experimental techniques and results on PMMA. Journal of Polymer Science, Polymer Physics Edition, 1982, 20, 205-224.1.068Molecular structure effects on the dynamic mechanical spectra of polycarbonates. Macromolecules,4.8247
1981, 14, 54-64. 120
3.171The effect of strain rate on the toughening mechanisms of rubber-modified plastics. PolymerEngineering and Science, 1981, 21, 205-211.Mechanical properties of polymer mixtures: Effect of compatibility. Journal of Macromolecular1.065Science - Physics, 1980, 17, 543-564.Mechanical properties of mixtures of two compatible polymers. Polymer Engineering and Science, 1977,17, 213-219.

