Mitsuo Nakai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/515180/publications.pdf Version: 2024-02-01

Μιτείιο Νλκλι

#	Article	IF	CITATIONS
1	Non-destructive inspection of water or high-pressure hydrogen gas in metal pipes by the flash of neutrons and x rays generated by laser. AIP Advances, 2022, 12, 045220.	1.3	3
2	Super-strong magnetic field-dominated ion beam dynamics in focusing plasma devices. Scientific Reports, 2022, 12, 6876.	3.3	3
3	Dosimetric calibration of GafChromic HD-V2, MD-V3, and EBT3 films for dose ranges up to 100 kGy. Review of Scientific Instruments, 2021, 92, 063301.	1.3	5
4	Direct evaluation of high neutron density environment using <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml: reaction induced by laser-driven neutron source. Physical Review C, 2021, 104, .</mml: </mml:mrow></mml:mrow></mml:math 	mi> 219 /mm	ıl:mi₄≺mml:m
5	Single shot radiography by a bright source of laser-driven thermal neutrons and x-rays. Applied Physics Express, 2021, 14, 106001.	2.4	17
6	Preliminary Cryogenic Layering by the Infrared Heating Method Modified with Cone Temperature Control for the Polystyrene Shell FIREX Target. Plasma and Fusion Research, 2021, 16, 1404099-1404099.	0.7	1
7	Proof-of-principle experiment for laser-driven cold neutron source. Scientific Reports, 2020, 10, 20157.	3.3	28
8	Relativistic magnetic reconnection in laser laboratory for testing an emission mechanism of hard-state black hole system. Physical Review E, 2020, 102, 033202.	2.1	17
9	Development of Tritium Tracer Doped Liquid Fuel Target for Inertial Confinement Fusion at the Gekko XII-LFEX Facility. Fusion Science and Technology, 2020, 76, 464-470.	1.1	3
10	Surface structure on diamond foils generated by spatially nonuniform laser irradiation. Scientific Reports, 2020, 10, 9017.	3.3	1
11	The conceptual design of 1-ps time resolution neutron detector for fusion reaction history measurement at OMEGA and the National Ignition Facility. Review of Scientific Instruments, 2020, 91, 063304.	1.3	7
12	Production of relativistic electrons at subrelativistic laser intensities. Physical Review E, 2020, 101, 031201.	2.1	18
13	The avalanche image intensifier panel for fast neutron radiography by using laser-driven neutron sources. High Energy Density Physics, 2020, 36, 100833.	1.5	10
14	Petapascal Pressure Driven by Fast Isochoric Heating with a Multipicosecond Intense Laser Pulse. Physical Review Letters, 2020, 124, 035001.	7.8	26
15	Monte Carlo particle collision model for qualitative analysis of neutron energy spectra from anisotropic inertial confinement fusion. High Energy Density Physics, 2020, 36, 100803.	1.5	8
16	Enhancing laser beam performance by interfering intense laser beamlets. Nature Communications, 2019, 10, 2995.	12.8	16
17	Electromagnetic field growth triggering super-ponderomotive electron acceleration during multi-picosecond laser-plasma interaction. Communications Physics, 2019, 2, .	5.3	11
18	Efficient and Repetitive Neutron Generation by Double-Laser-Pulse Driven Photonuclear Reaction. Plasma and Fusion Research, 2018, 13, 2404009-2404009.	0.7	3

#	Article	IF	CITATIONS
19	Effect of equation of state on laser imprinting by comparing diamond and polystyrene foils. Physics of Plasmas, 2018, 25, 032706.	1.9	9
20	A large-aperture high-sensitivity avalanche image intensifier panel. Review of Scientific Instruments, 2018, 89, 101128.	1.3	3
21	Magnetized fast isochoric laser heating for efficient creation of ultra-high-energy-density states. Nature Communications, 2018, 9, 3937.	12.8	75
22	A multichannel gated neutron detector with reduced afterpulse for low-yield neutron measurements in intense hard X-ray backgrounds. Review of Scientific Instruments, 2018, 89, 101114.	1.3	3
23	Whispering Gallery Effect in Relativistic Optics. JETP Letters, 2018, 107, 351-354.	1.4	7
24	3 × 10 ⁸ D-D Neutron Generation by High-Intensity Laser Irradiation onto the Inner Surface of Spherical CD Shells. Plasma and Fusion Research, 2018, 13, 2401028-2401028.	0.7	0
25	Ablation-erosion analyses of various fusion material surfaces and developments of surface erosion monitors for notification of fusion chamber maintenance times, as an example: Visible light transparent SiC and up-conversion phosphors applied to plasma facing surface structures, useful for versatile purposes to protect and diagnose fusion chambers and so on 2017		0
26	Boosting laser-ion acceleration with multi-picosecond pulses. Scientific Reports, 2017, 7, 42451.	3.3	71
27	Large aperture fast neutron imaging detector with 10-ns time resolution. Proceedings of SPIE, 2017, , .	0.8	4
28	Improvement in the heating efficiency of fast ignition inertial confinement fusion through suppression of the preformed plasma. Nuclear Fusion, 2017, 57, 066022.	3.5	3
29	Plasma mirror implementation on LFEX laser for ion and fast electron fast ignition. Nuclear Fusion, 2017, 57, 126018.	3.5	5
30	Assessing infrared intensity using the evaporation rate of liquid hydrogen inside a cryogenic integrating sphere for laser fusion targets. Review of Scientific Instruments, 2017, 88, 075103.	1.3	2
31	Production of intense, pulsed, and point-like neutron source from deuterated plastic cavity by mono-directional kilo-joule laser irradiation. Applied Physics Letters, 2017, 111, 233506.	3.3	10
32	Evaluation of laser-driven ion energies for fusion fast-ignition research. Progress of Theoretical and Experimental Physics, 2017, 2017, .	6.6	4
33	Cool-down performance of the new apparatus for fuel layering demonstrations of FIREX targets. Journal of Physics: Conference Series, 2016, 688, 012037.	0.4	1
34	Mitigation of Laser Imprinting with Diamond Ablator for Direct-Drive Inertial Confinement Fusion Targets. Journal of Physics: Conference Series, 2016, 688, 012107.	0.4	1
35	Experimental Test of the Polarization Persistence in Inertial Confinement Fusion. Journal of Physics: Conference Series, 2016, 688, 012015.	0.4	2
36	Electron transport estimated from electron spectra using electron spectrometer in LFEX laser target experiments. Journal of Physics: Conference Series, 2016, 717, 012043.	0.4	2

#	Article	IF	CITATIONS
37	Progress Towards a Laser Produced Relativistic Electron-Positron Pair Plasma. Journal of Physics: Conference Series, 2016, 688, 012010.	0.4	4
38	Energy distribution of fast electrons accelerated by high intensity laser pulse depending on laser pulse duration. Journal of Physics: Conference Series, 2016, 717, 012102.	0.4	6
39	Fast ignition realization experiment with high-contrast kilo-joule peta-watt LFEX laser and strong external magnetic field. Physics of Plasmas, 2016, 23, .	1.9	54
40	Ultrahigh-contrast kilojoule-class petawatt LFEX laser using a plasma mirror. Applied Optics, 2016, 55, 6850.	2.1	30
41	The diagnostics of the energy coupling efficiency in the Fast Ignition integrated experiment. Journal of Physics: Conference Series, 2016, 688, 012004.	0.4	0
42	Quantitative Kα line spectroscopy for energy transport in ultra-intense laser plasma interaction. Journal of Physics: Conference Series, 2016, 688, 012132.	0.4	0
43	Mechanical design of experimental apparatus for FIREX cryo-target cooling. Journal of Physics: Conference Series, 2016, 717, 012098.	0.4	1
44	Development of Compton X-ray spectrometer for high energy resolution single-shot high-flux hard X-ray spectroscopy. Review of Scientific Instruments, 2016, 87, 043502.	1.3	8
45	Heating efficiency evaluation with mimicking plasma conditions of integrated fast-ignition experiment. Physical Review E, 2015, 91, 063102.	2.1	23
46	High-Intensity Neutron Generation via Laser-Driven Photonuclear Reaction. Plasma and Fusion Research, 2015, 10, 2404003-2404003.	0.7	23
47	Response measurement of single-crystal chemical vapor deposition diamond radiation detector for intense X-rays aiming at neutron bang-time and neutron burn-history measurement on an inertial confinement fusion with fast ignition. Review of Scientific Instruments, 2015, 86, 053503.	1.3	2
48	Quantitative Kα line spectroscopy for energytransport in fast ignition plasma driven with LFEX PW laser. High Energy Density Physics, 2015, 15, 78-81.	1.5	1
49	Laser erosion diagnostics of plasma facing materials with displacement sensors and their application to safeguard monitors to protect nuclear fusion chambers. Proceedings of SPIE, 2015, , .	0.8	0
50	Energy Transportation by MeV Hot Electrons in Fast Ignition Plasma Driven with LFEX PW Laser. Plasma and Fusion Research, 2014, 9, 1404118-1404118.	0.7	0
51	Development of multichannel low-energy neutron spectrometer. Review of Scientific Instruments, 2014, 85, 11E125.	1.3	5
52	Accuracy evaluation of a Compton X-ray spectrometer with bremsstrahlung X-rays generated by a 6 MeV electron bunch. Review of Scientific Instruments, 2014, 85, 11D634.	1.3	5
53	Characterizing a fast-response, low-afterglow liquid scintillator for neutron time-of-flight diagnostics in fast ignition experiments. Review of Scientific Instruments, 2014, 85, 11E126.	1.3	9
54	Development of x-ray radiography for high energy density physics. Physics of Plasmas, 2014, 21, .	1.9	34

#	Article	IF	CITATIONS
55	Photonuclear reaction based high-energy x-ray spectrometer to cover from 2 MeV to 20 MeV. Review of Scientific Instruments, 2014, 85, 11D629.	1.3	5
56	Stabilization of radiation reaction with vacuum polarization. Progress of Theoretical and Experimental Physics, 2014, 2014, 43A01-0.	6.6	8
57	Development of the High Energy Bremsstrahlung X-Ray Spectrometer by Using (<i>γ</i> , n) Reaction. Plasma and Fusion Research, 2014, 9, 4404112-4404112.	0.7	0
58	The Development of the Neutron Detector for the Fast Ignition Experiment by using LFEX and Gekko XII Facility. Plasma and Fusion Research, 2014, 9, 4404105-4404105.	0.7	1
59	The Neutron Imaging Diagnostics and Reconstructing Technique for Fast Ignition. Plasma and Fusion Research, 2014, 9, 4404108-4404108.	0.7	1
60	Development of Multichannel Time-of-Flight Neutron Spectrometer for the Fast Ignition Experiment. Plasma and Fusion Research, 2014, 9, 4404110-4404110.	0.7	7
61	Development of Compton X-Ray Spectrometer for Fast Ignition Experiment . Plasma and Fusion Research, 2014, 9, 4405109-4405109.	0.7	4
62	Luminescence properties of Nd3+ and Er3+ doped glasses in the VUV region. Optical Materials, 2013, 35, 1962-1964.	3.6	19
63	Quantitative measurement of hard X-ray spectra from laser-driven fast ignition plasma. High Energy Density Physics, 2013, 9, 435-438.	1.5	5
64	Pr or Ce-doped, fast-response and low-afterglow cross-section-enhanced scintillator with 6Li for down-scattered neutron originated from laser fusion. Journal of Crystal Growth, 2013, 362, 288-290.	1.5	20
65	Present status of fast ignition realization experiment and inertial fusion energy development. Nuclear Fusion, 2013, 53, 104021.	3.5	27
66	New insights into the laser produced electron–positron pairs. New Journal of Physics, 2013, 15, 065010.	2.9	24
67	Electronic States of Trivalent Praseodymium Ion Doped in 20Al(PO3)3–80LiF Glass. Japanese Journal of Applied Physics, 2013, 52, 062402.	1.5	6
68	FIREX foam cryogenic target development: residual void reduction and estimation with solid hydrogen refractive index measurements. Nuclear Fusion, 2013, 53, 083009.	3.5	10
69	Development of time-of-flight neutron detector with fast-decay and low-afterglow scintillator for fast ignition experiment. EPJ Web of Conferences, 2013, 59, 13012.	0.3	0
70	Recent progress of fuel layering study for FIREX cryogenic target. EPJ Web of Conferences, 2013, 59, 12002.	0.3	1
71	Multichannel down-scattered neutron detector for areal density measurement. EPJ Web of Conferences, 2013, 59, 13011.	0.3	1
72	Implosion and heating experiments of fast ignition targets by Gekko-XII and LFEX lasers. EPJ Web of Conferences, 2013, 59, 01008.	0.3	2

#	Article	IF	CITATIONS
73	The photonuclear neutron and gamma-ray backgrounds in the fast ignition experiment. Review of Scientific Instruments, 2012, 83, 10D909.	1.3	12
74	Fast-Response and Low-Afterglow Cerium-Doped Lithium 6 Fluoro-Oxide Class Scintillator for Laser Fusion-Originated Down-Scattered Neutron Detection. IEEE Transactions on Nuclear Science, 2012, 59, 2256-2259.	2.0	6
75	Integrated experiments of fast ignition targets by Gekko-XII and LFEX lasers. High Energy Density Physics, 2012, 8, 227-230.	1.5	22
76	Fast ignition integrated experiments with Gekko and LFEX lasers. Plasma Physics and Controlled Fusion, 2011, 53, 124029.	2.1	55
77	Optical and scintillation properties of Pr-doped Li-glass for neutron detection in inertial confinement fusion process. Journal of Non-Crystalline Solids, 2011, 357, 910-914.	3.1	16
78	Optical properties and structure of Pr3+-doped Al(PO3)3–LiF glasses as scattered neutron scintillator for nuclear fusion diagnostics. IOP Conference Series: Materials Science and Engineering, 2011, 18, 112006.	0.6	5
79	Development of Glass Scintillator Material for Measurement of Scattered Neutron Originated from Inertial Confi nement Fusion. The Review of Laser Engineering, 2011, 39, 312-318.	0.0	0
80	Leakage Control of Tritium Through Heat Cycles of Conceptual-Design, Laser-Fusion Reactor KOYO-F. Fusion Science and Technology, 2011, 60, 893-896.	1.1	5
81	Recent Developments in Fabrication of New Conceptual Gold Cone and Machining of Polystyrene Shell for Fast Ignition Target. Fusion Science and Technology, 2011, 59, 276-278.	1.1	4
82	Present states and future prospect of fast ignition realization experiment (FIREX) with Gekko and LFEX Lasers at ILE. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 653, 84-88.	1.6	10
83	Fast-response, Low-Afterglow 4,4'''-Bis[(2-butyloctyl)oxy]-1,1':4',1'':4'',1'''-quarterphenyl Dye-Based Liquid Scintillator for High-Contrast Detection of Laser Fusion-Generated Neutrons. Japanese Journal of Applied Physics, 2011, 50, 080208.	1.5	14
84	Laser-shock compression and Hugoniot measurements of liquid hydrogen to 55 GPa. Physical Review B, 2011, 83, .	3.2	35
85	Fast-response, Low-Afterglow 4,4'''-Bis[(2-butyloctyl)oxy]-1,1':4',1'':4'',1'''-quarterphenyl Dye-Based Liquid Scintillator for High-Contrast Detection of Laser Fusion-Generated Neutrons. Japanese Journal of Applied Physics, 2011, 50, 080208.	1.5	3
86	Hugoniot and temperature measurements of liquid hydrogen by laser-shock compression. Journal of Physics: Conference Series, 2010, 244, 042018.	0.4	3
87	Laser machining for fabrication of targets used in the FIREX-I project. Journal of Physics: Conference Series, 2010, 244, 032038.	0.4	2
88	A scattered-neutron detector for areal density measurement. Journal of Physics: Conference Series, 2010, 244, 032041.	0.4	1
89	Industrial applications of laser neutron source. Journal of Physics: Conference Series, 2010, 244, 042027.	0.4	5
90	High-speed monochromatic x-ray imager for electron temperature mapping of fast igniter plasmas. Journal of Physics: Conference Series, 2010, 244, 032060.	0.4	0

#	Article	IF	CITATIONS
91	Study on possible fuel layering sequence for FIREX target. Journal of Physics: Conference Series, 2010, 244, 032039.	0.4	4
92	Present status and future prospect of Fast Ignition Realization Experiment (FIREX) Project at ILE, Osaka. , 2010, , .		1
93	Custom-designed scintillator for laser fusion diagnostics – Pr3+-doped fluoro-phosphate lithium glass scintillator. Optical Materials, 2010, 32, 1393-1396.	3.6	11
94	Note: Light output enhanced fast response and low afterglow L6i glass scintillator as potential down-scattered neutron diagnostics for inertial confinement fusion. Review of Scientific Instruments, 2010, 81, 106105.	1.3	14
95	Down-scattered neutron imaging detector for areal density measurement of inertial confinement fusion. Review of Scientific Instruments, 2010, 81, 10D303.	1.3	7
96	Measurement of preheating due to radiation and nonlocal electron heat transport in laser-irradiated targets. Physics of Plasmas, 2010, 17, 032702.	1.9	9
97	Pr doped Li-6 glass scintillator for Inertial Confinement Fusion neutron diagnostics. , 2010, , .		Ο
98	Custom-Designed Fast-Response Praseodymium-Doped Lithium 6 Fluoro-Oxide Glass Scintillator With Enhanced Cross-Section for Scattered Neutron Originated From Inertial Confinement Fusion. IEEE Transactions on Nuclear Science, 2010, 57, 1426-1429.	2.0	18
99	Ultrathin amorphization of single-crystal silicon by ultraviolet femtosecond laser pulse irradiation. Journal of Applied Physics, 2009, 105, .	2.5	27
100	Plasma physics and laser development for the Fast-Ignition Realization Experiment (FIREX) Project. Nuclear Fusion, 2009, 49, 104024.	3.5	45
101	Fabrication of aerogel capsule, bromine-doped capsule, and modified gold cone in modified target for the Fast Ignition Realization Experiment (FIREX) Project. Nuclear Fusion, 2009, 49, 095028.	3.5	32
102	Pr3+-doped fluoro-oxide lithium glass as scintillator for nuclear fusion diagnostics. Review of Scientific Instruments, 2009, 80, 113504.	1.3	41
103	Shock Hugoniot and temperature data for polystyrene obtained with quartz standard. Physics of Plasmas, 2009, 16, .	1.9	46
104	Experimental Evidence of Impact Ignition: 100-Fold Increase of Neutron Yield by Impactor Collision. Physical Review Letters, 2009, 102, 235002.	7.8	45
105	Temperature Control in a Cryogenic Target with a Conical Laser Guide for Fuel Layering. Fusion Science and Technology, 2009, 56, 427-431.	1.1	2
106	Smooth Membrane Formation on Resorcinol-Formaldehyde Aerogel Balls Gelated Using a Basic Phase-Transfer Catalyst. Fusion Science and Technology, 2009, 55, 465-471.	1.1	5
107	Advanced Target Design for the FIREX-I Project. Plasma and Fusion Research, 2009, 4, S1001-S1001.	0.7	1
108	Manufacturing and Leak Check of Shell Targets for the FIREX-I Project. Plasma and Fusion Research, 2009, 4, S1010-S1010.	0.7	4

#	Article	IF	CITATIONS
109	A Proposed Procedure for Temperature Control of the Cryogenic Target for the FIREX Project. Plasma and Fusion Research, 2009, 4, S1007-S1007.	0.7	0
110	Rayleigh–Taylor instability growth on low-density foam targets. Physics of Plasmas, 2008, 15, .	1.9	14
111	Study on a fuel layering sequence of the foam target for the FIREX project. Journal of Physics: Conference Series, 2008, 112, 032067.	0.4	3

Thin shell aerogel fabrication for FIREX-I targets using high viscosity (phloroglucinol carboxylic) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 62:

112		1.0	10
113	Streaked x-ray backlighting with twin-slit imager for study of density profile and trajectory of low-density foam target filled with deuterium liquid. Review of Scientific Instruments, 2008, 79, 10E916.	1.3	1
114	Development of TOF neutron spectrometer for the measurement of degenerated plasma in fast ignition experiment. Journal of Physics: Conference Series, 2008, 112, 032079.	0.4	3
115	Fabrication and characterization of planar cryogenic targets for GEKKO-XII. Journal of Physics: Conference Series, 2008, 112, 032068.	0.4	0
116	Solution viscosity adjustable phloroglucinolcarboxylic acid/formaldehyde applied in extremely thin shell fusion target fabrication. Journal of Physics: Conference Series, 2008, 112, 032069.	0.4	0
117	Temperature measurement of preheated planar-cryogenic targets. Journal of Physics: Conference Series, 2008, 112, 022012.	0.4	0
118	Application of bubble detector in FIREX program. Journal of Physics: Conference Series, 2008, 112, 032081.	0.4	0
119	Fast response neutron scintillation detector for FIRE-X. Journal of Physics: Conference Series, 2008, 112, 032082.	0.4	2
120	Experimental investigation of aerosol formation in laser fusion reactor chamber by discharge method. Journal of Physics: Conference Series, 2008, 112, 032040.	0.4	1
121	Developments of characterization of the foam shell target for fast ignition realization experiment-l (FIREX-I). Journal of Physics: Conference Series, 2008, 112, 032066.	0.4	3
122	Comprehensive Diagnosis of Growth Rates of the Ablative Rayleigh-Taylor Instability. Physical Review Letters, 2007, 98, 045002.	7.8	58
123	Reduction of the Rayleigh-Taylor instability growth with cocktail color irradiation. Physics of Plasmas, 2007, 14, 122702.	1.9	20
124	Foam Structure of Xerogel Prepared Via Ring-Opening Reaction Between Epoxy Groups Attached on the Side Chain of Polystyrene. Fusion Science and Technology, 2007, 51, 665-672.	1.1	4
125	Preliminary Results of Fuel Layering on the Cryogenic Target for the FIREX Project. Fusion Science and Technology, 2007, 51, 753-757.	1.1	4
126	Laser Machining of RF Foam by Second Harmonics of Nd:YAG Laser. Fusion Science and Technology, 2007, 51, 677-681.	1.1	15

#	Article	IF	CITATIONS
127	Encapsulation of Low Density Materials for the First Stage of Fast Ignition Realization Experiment (FIREX-I) - Control of Microstructure and Gelation Process using a Phase-Transfer Catalyst and Tailored Polymers. , 2007, , .		0
128	Recent results and future prospects of laser fusion research at ILE, Osaka. European Physical Journal D, 2007, 44, 259-264.	1.3	11
129	Optimization of Gelation to Prepare Hollow Foam Shell of Resorcinol-Formalin Using a Phase-Transfer Catalyst. Fusion Science and Technology, 2006, 49, 663-668.	1.1	11
130	Polystyrene Based Foam Materials for Cryogenic Targets of Fast Ignition Realization Experiment (FIREX). Fusion Science and Technology, 2006, 49, 695-700.	1.1	6
131	Tin-Polymer Composite on a Rotating Drum as a High Repetition Rate Laser Target for Extreme Ultraviolet Generation. Fusion Science and Technology, 2006, 49, 691-694.	1.1	6
132	Electrochemical Fabrication of Low Density Metal Foam with Mono-Dispersed-Sized Micro- and Submicro-Meter Pore. Fusion Science and Technology, 2006, 49, 686-690.	1.1	22
133	Cool-down performance of the apparatus for the cryogenic target of the FIREX project. Fusion Engineering and Design, 2006, 81, 1647-1652.	1.9	16
134	Polymorphic tin dioxide synthesis via sol–gel mineralization of ethyl–cyanoethyl cellulose lyotropic liquid crystals. Colloid and Polymer Science, 2006, 284, 429-434.	2.1	6
135	Fabrication of Low-Density Solid Xenon as Laser-Produced Plasma Extreme Ultraviolet Source. Japanese Journal of Applied Physics, 2006, 45, L884-L886.	1.5	2
136	Low-Density-Plastic-Foam Capsule of Resorcinol/Formalin and (Phloroglucinolcarboxylic) Tj ETQq0 0 0 rgBT /Ove Japanese Journal of Applied Physics, 2006, 45, L335-L338.	rlock 10 T 1.5	f 50 387 Td (/ 20
137	Extreme Ultraviolet Emission from Laser-Irradiated Low-Density Xe Targets. Japanese Journal of Applied Physics, 2006, 45, 5951-5953.	1.5	3
138	Equation of State of Diamond under Shock Compression up to 2 TPa. AIP Conference Proceedings, 2006, , .	0.4	1
139	Ultrafast x-ray imaging with sliced sampling streak cameras. Review of Scientific Instruments, 2006, 77, 026105.	1.3	1
140	Angular distribution control of extreme ultraviolet radiation from laser-produced plasma by manipulating the nanostructure of low-density SnO2 targets. Applied Physics Letters, 2006, 88, 094102.	3.3	26
141	Hugoniot measurement of diamond under laser shock compression up to 2TPa. Physics of Plasmas, 2006, 13, 052705.	1.9	53
142	Recent results and future prospects of laser fusion research at ILE, Osaka. European Physical Journal Special Topics, 2006, 133, 27-28.	0.2	1
143	Preliminary results on the cryogenic target for FIREX project. European Physical Journal Special Topics, 2006, 133, 899-901.	0.2	0
144	Conceptual design of laser fusion reactor KOYO-fast – Target design and the fueling system. European Physical Journal Special Topics, 2006, 133, 841-843.	0.2	1

#	Article	IF	CITATIONS
145	Present Status of Fast Ignition Research and Prospects of FIREX Project. Fusion Science and Technology, 2005, 47, 662-666.	1.1	22
146	Resorcinol-Formalin Foam Balls Via Gelation of Emulsion Using Phase-Transfer Catalysts. Macromolecular Chemistry and Physics, 2005, 206, 2171-2176.	2.2	17
147	Towards realization of hyper-velocities for impact fast ignition. Plasma Physics and Controlled Fusion, 2005, 47, B815-B822.	2.1	25
148	Dynamic imaging of 13.5 nm extreme ultraviolet emission from laser-produced Sn plasmas. Applied Physics Letters, 2005, 87, 241502.	3.3	18
149	Petawatt-laser direct heating of uniformly imploded deuterated-polystyrene shell target. Physical Review E, 2005, 71, 016403.	2.1	24
150	Characterization of density profile of laser-produced Sn plasma for 13.5nm extreme ultraviolet source. Applied Physics Letters, 2005, 86, 201501.	3.3	39
151	Characterization of extreme ultraviolet emission from laser-produced spherical tin plasma generated with multiple laser beams. Applied Physics Letters, 2005, 86, 051501.	3.3	108
152	Equation-of-state measurements for polystyrene at multi-TPa pressures in laser direct-drive experiments. Physics of Plasmas, 2005, 12, 124503.	1.9	24
153	Opacity Effect on Extreme Ultraviolet Radiation from Laser-Produced Tin Plasmas. Physical Review Letters, 2005, 95, 235004.	7.8	146
154	Foam materials for cryogenic targets of fast ignition realization experiment (FIREX). Nuclear Fusion, 2005, 45, 1277-1283.	3.5	34
155	Temperature-Dependent EUV Spectra of Xenon Plasmas Observed in the Compact Helical System. Journal of Plasma and Fusion Research, 2005, 81, 480-481.	0.4	3
156	Suppression of the Rayleigh–Taylor instability and its implication for the impact ignition. Plasma Physics and Controlled Fusion, 2004, 46, B245-B254.	2.1	7
157	Suppression of Rayleigh–Taylor instability due to radiative ablation in brominated plastic targets. Physics of Plasmas, 2004, 11, 2814-2822.	1.9	29
158	Experimental study on basic properties of laser-produced EUV plasmas on GEKKO-XII laser facility. , 2004, , .		0
159	Experimental study on ablative stabilization of Rayleigh-Taylor instability of laser-irradiated targets. , 2004, , .		0
160	Temporally resolved Schwarzschild microscope for the characterization of extreme ultraviolet emission in laser-produced plasmas. Review of Scientific Instruments, 2004, 75, 5173-5176.	1.3	14
161	Present Status and Future Prospects of Laser Fusion Research at ILE Osaka University. Plasma Science and Technology, 2004, 6, 2179-2184.	1.5	2
162	Suppression of the Rayleigh-Taylor Instability due to Self-Radiation in a Multiablation Target. Physical Review Letters, 2004, 92, 195001.	7.8	74

#	Article	IF	CITATIONS
163	GEKKO/HIPER-driven shock waves and equation-of-state measurements at ultrahigh pressures. Physics of Plasmas, 2004, 11, 1600-1608.	1.9	38
164	Fast plasma heating in a cone-attached geometry—towards fusion ignition. Nuclear Fusion, 2004, 44, S276-S283.	3.5	36
165	Estimation of emission efficiency for laser-produced EUV plasmas. , 2004, , .		5
166	Properties of EUV emissions from laser-produced tin plasmas. , 2004, 5374, 912.		5
167	Study on EUV emission properties of laser-produced plasma at ILE, Osaka. , 2004, , .		6
168	Characterization of Extreme UV Radiation from Laser Produced Spherical Tin Plasmas for Use in Lithography. Journal of Plasma and Fusion Research, 2004, 80, 325-330.	0.4	10
169	Characterization of GEKKO/HIPER-Driven Shock Waves for Equation-of-State Experiments in Ultra-High-Pressure Regime. Journal of Plasma and Fusion Research, 2004, 80, 486-491.	0.4	1
170	Suppression of Rayleigh-Taylor Instability Using High-Z Doped Plastic Targets for Inertial Fusion Energy. Journal of Plasma and Fusion Research, 2004, 80, 597-604.	0.4	0
171	Experimental technique for launching miniature flying plates using laser pulses. International Journal of Impact Engineering, 2003, 29, 497-502.	5.0	15
172	Equation-of-state measurements of polyimide at pressures up to 5.8 TPa using low-density foam with laser-driven shock waves. Physical Review E, 2003, 67, 056406.	2.1	34
173	Temporal evolution of temperature and density profiles of a laser compressed core (invited). Review of Scientific Instruments, 2003, 74, 1683-1687.	1.3	14
174	First observation of density profile in directly laser-driven polystyrene targets for ablative Rayleigh–Taylor instability research. Physics of Plasmas, 2003, 10, 4784-4789.	1.9	36
175	X-ray imaging diagnostics for laser-driven hydrodynamic instability experiments. Review of Scientific Instruments, 2003, 74, 2194-2197.	1.3	5
176	High-speed x-ray radiographic measurement of laser-driven hydrodynamic instability. , 2003, 4948, 425.		0
177	Side-on measurement of hydrodynamics of laser-driven plasmas with high space- and time-resolution x-ray imaging technique. Review of Scientific Instruments, 2003, 74, 2198-2201.	1.3	12
178	Hydrodynamic Instability Experiments on the HIPER Laser. AIP Conference Proceedings, 2003, , .	0.4	0
179	Imprint reduction in a plasma layer preformed with x-ray irradiation. Physics of Plasmas, 2002, 9, 1381-1391.	1.9	12
180	Single spatial mode experiments on initial laser imprint on direct-driven planar targets. Physics of Plasmas, 2002, 9, 1734-1744.	1.9	15

#	Article	IF	CITATIONS
181	Perturbation transfer from the front to rear surface of laser-irradiated targets. Physical Review E, 2002, 65, 045401.	2.1	6
182	Ablative Rayleigh-Taylor Instability at Short Wavelengths Observed with Moiré Interferometry. Physical Review Letters, 2002, 88, 145003.	7.8	53
183	Penumbral imaging for measurement of the ablation density in laser-driven targets. Review of Scientific Instruments, 2002, 73, 2588-2596.	1.3	16
184	Fast heating scalable to laser fusion ignition. Nature, 2002, 418, 933-934.	27.8	445
185	Rayleigh Taylor and Laser Imprinting Diagnostics. , 2002, , 169-176.		0
186	Density profile of the ablating plasma produced by soft x-ray irradiation. Review of Scientific Instruments, 2001, 72, 653-656.	1.3	2
187	Monochromatic x-ray imaging with bent crystals for laser fusion research. Review of Scientific Instruments, 2001, 72, 744-747.	1.3	17
188	Indirect/direct hybrid drive implosion experiments with x-ray pre-irradiation. , 2000, 3886, 465.		3
189	Hydrodynamic model experiment of the collision of supernova 1987A with its circumstellar ring using high-power laser. , 2000, 3886, 489.		3
190	Indirect-direct hybrid target experiments with the GEKKO XII laser. Nuclear Fusion, 2000, 40, 547-556.	3.5	30
191	Feed-out of Rear Surface Perturbation due to Rarefaction Wave in Laser-Irradiated Targets. Physical Review Letters, 2000, 84, 5331-5334.	7.8	21
192	Time-resolved ten-channel monochromatic imaging of inertial confinement fusion plasmas. Applied Optics, 2000, 39, 5865.	2.1	29
193	Formation of Initial Perturbation of Rayleighâ€Taylor Instability in Supernovae and Laserâ€irradiated Targets—Is There Any Similarity?. Astrophysical Journal, Supplement Series, 2000, 127, 219-225.	7.7	6
194	Rippled shock propagation and hydrodynamic perturbation growth in laser implosion. Journal of Materials Processing Technology, 1999, 85, 34-38.	6.3	5
195	Direct measurement of laser irradiation uniformity of fusion pellets by the use of X-ray frame images. Fusion Engineering and Design, 1999, 44, 137-140.	1.9	1
196	Effects of non-local electron thermal transport on ablative Rayleigh-Taylor instability. Fusion Engineering and Design, 1999, 44, 205-208.	1.9	2
197	Hydrodynamic perturbation growth in the start-up phase. Fusion Engineering and Design, 1999, 44, 199-203.	1.9	0
198	Moiré interferometry of short wavelength Rayleigh–Taylor growth. Review of Scientific Instruments, 1999, 70, 637-641.	1.3	15

#	Article	IF	CITATIONS
199	Progress of direct drive laser fusion research at ILE, Osaka. , 1999, 3492, 34.		0
200	Shigemorietal.Reply:. Physical Review Letters, 1998, 80, 3415-3415.	7.8	3
201	Measurements of mass ablation rate of laser-irradiated target by the face-on x-ray backlighting technique. Review of Scientific Instruments, 1998, 69, 3942-3944.	1.3	9
202	Rippled Shock Propagation and Hydrodynamic Perturbation Growth in Laser Implosion Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 1998, 7, 930-932.	0.0	0
203	High-convergence uniform implosion of fusion pellets with the new GEKKO laser. Plasma Physics and Controlled Fusion, 1997, 39, A401-A409.	2.1	1
204	Measurements of Rayleigh-Taylor Growth Rate of Planar Targets Irradiated Directly by Partially Coherent Light. Physical Review Letters, 1997, 78, 250-253.	7.8	113
205	Study of laser-imploded core plasmas with an advanced Kirkpatrick–Baez x-ray microscope. Review of Scientific Instruments, 1997, 68, 824-827.	1.3	17
206	Direct-drive hydrodynamic instability experiments on the GEKKO XII laser. Physics of Plasmas, 1997, 4, 4079-4089.	1.9	92
207	Three dimensional imaging of laser-imploded targets using X-ray computed tomography technique. IEEE Transactions on Nuclear Science, 1997, 44, 890-893.	2.0	6
208	Irradiation uniformity measurement of laser fusion pellets by an X-ray imaging method. Fusion Engineering and Design, 1997, 34-35, 197-200.	1.9	0
209	Laser Fusion Research at Ile Osaka University. Fusion Science and Technology, 1996, 30, 625-633.	0.6	3
210	Stimulated Raman scattering from two overlapped 527 nm laser beams. AIP Conference Proceedings, 1996, , .	0.4	0
211	il R measurement of imploded cryogenic foam target by DD-protons. AIP Conference Proceedings, 1996, , .	0.4	0
212	Measurement of absorption distribution by second harmonic and x-ray images. AIP Conference Proceedings, 1996, , .	0.4	1
213	Implosion experiments with uniformity-improved GEKKO XII: Overview. AIP Conference Proceedings, 1996, , .	0.4	1
214	Development of XUV lasers at the RAL Central Laser Facility. Optical and Quantum Electronics, 1996, 28, 201-208.	3.3	3
215	High-order harmonics of 248.6-nm KrF laser from helium and neon ions. Physical Review A, 1996, 53, R31-R34.	2.5	109
216	Recent progress of implosion experiments with uniformityâ€improved GEKKO XII laser facility at the Institute of Laser Engineering, Osaka University. Physics of Plasmas, 1996, 3, 2077-2083.	1.9	34

-	#	Article	IF	CITATIONS
:	217	Areal Density Measurement of Imploded Cryogenic Target by Energy Peak Shift of DD-Produced Protons. Physical Review Letters, 1995, 75, 3130-3133.	7.8	25
	218	Dynamic Behavior of Rippled Shock Waves and Subsequently Induced Areal-Density-Perturbation Growth in Laser-Irradiated Foils. Physical Review Letters, 1995, 74, 3608-3611.	7.8	59
	219	Dynamic Behavior of Rippled Shock Waves and Subsequently Induced Areal-Density-Perturbation Growth in Laser-Irradiated Foils. Physical Review Letters, 1995, 75, 2908-2908.	7.8	9
:	220	Stimulated Raman scattering from symmetrically illuminated twoâ€layered spherical targets with 527 nm laser light. Physics of Plasmas, 1995, 2, 486-492.	1.9	1
	221	Cryogenic deuterium target experiments with the GEKKO XII, green laser system. Physics of Plasmas, 1995, 2, 2495-2503.	1.9	18
:	222	Recent progress in laser fusion research at Osaka University: Uniformity and stability issues*. Physics of Plasmas, 1994, 1, 1653-1661.	1.9	15
:	223	Implosion ofD2temperature-controlled cryogenic foam targets with plastic ablators. Physical Review E, 1994, 49, 1520-1526.	2.1	9
:	224	4.8â€keV xâ€ray backlight framing method for observing images of softâ€xâ€rayâ€driven fusion capsules. Review of Scientific Instruments, 1993, 64, 706-710.	1.3	10
:	225	Physics highlights of the Gekko12 program. Plasma Physics and Controlled Fusion, 1992, 34, 1775-1783.	2.1	Ο
:	226	High-density compression experiments at ILE, Osaka. Laser and Particle Beams, 1991, 9, 193-207.	1.0	139
:	227	Timeâ€resolved measurements of laserâ€induced shock waves in deuterated polystyrene porous targets by xâ€ray backlighting. Physics of Fluids B, 1991, 3, 735-744.	1.7	7
:	228	Annealing of polystyrene microcapsules for inertial confinement fusion experiments. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1991, 9, 150-153.	2.1	8
:	229	Multiframe xâ€ray imaging system for temporally and spatially resolved measurements of imploding inertial confinement fusion targets. Review of Scientific Instruments, 1991, 62, 124-129.	1.3	44
:	230	Threeâ€dimensional imaging of laser imploded targets. Journal of Applied Physics, 1990, 68, 1483-1488.	2.5	13
:	231	Development of xâ€ray emission computed tomography for ICF research. Review of Scientific Instruments, 1990, 61, 2783-2785.	1.3	6
:	232	Xâ€ray and particle diagnostics of a highâ€density plasma by laser implosion (invited). Review of Scientific Instruments, 1990, 61, 3235-3240.	1.3	5
	233	X-Ray Framing Camera Images Of Imploding Targets. Proceedings of SPIE, 1989, , .	0.8	0
:	234	Scalings of implosion experiments for high neutron yield. Physics of Fluids, 1988, 31, 2884.	1.4	165

#	Article	IF	CITATIONS
235	Fabrication of a cryogenic foam target for inertial confinement fusion experiments. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1988, 6, 3144-3147.	2.1	18
236	Hydrodynamic instability in an ablatively imploded target irradiated by high power green lasers. Physics of Fluids, 1988, 31, 2875.	1.4	22
237	Stimulated Raman scattering in cannonball targets. Physics of Fluids, 1987, 30, 3276.	1.4	7
238	Suprathermal electron generation in cannonball targets. Optics Communications, 1986, 56, 409-414.	2.1	8
239	Laser Implosion of High-Aspect-Ratio Targets Produces Thermonuclear Neutron Yields Exceeding1012by Use of Shock Multiplexing. Physical Review Letters, 1986, 56, 1575-1578.	7.8	56
240	Laser Fusion Implosion Experiments. The Review of Laser Engineering, 1986, 14, 1090-1132.	0.0	0
241	Measurements of Intensity Scaling of Ablation Pressure at 10.6 µm and 1.05 µm Laser Wavelengths. Japanese Journal of Applied Physics, 1984, 23, 1353-1356.	1.5	4
242	A comparison of ablative acceleration measurements. Applied Physics Letters, 1982, 40, 776-778.	3.3	8
243	Intensity dependence of classical and collective absorption processes in laser produced plasmas at 1.053 μm and 0.527 μm. IEEE Transactions on Plasma Science, 1982, 10, 55-58.	1.3	7
244	Three-dimensional imaging of laser-imploded targets using X-ray computed tomography technique. , 0, ,		0
245	Progress in understanding of laser-produced plasmas for EUV source. , 0, , .		0
246	Imaging of Radiation Accidents and Radioactive Contamination Using Scintillators. , 0, , .		0
247	Thermal neutron fluence measurement by Cadmium differential method at laser-driven neutron source. Journal of Physics G: Nuclear and Particle Physics, 0, , .	3.6	1
248	NMR Spectroscopy for Proof-of-Concept Experimentation on a Polarized Laser Fusion Process. Fusion Science and Technology, 0, , 1-15.	1.1	0