Case W Mcnamara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5150209/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pharmacological and genetic activation of cAMP synthesis disrupts cholesterol utilization in Mycobacterium tuberculosis. PLoS Pathogens, 2022, 18, e1009862.	4.7	11
2	Iron limitation in M. tuberculosis has broad impact on central carbon metabolism. Communications Biology, 2022, 5, .	4.4	13
3	Phenotypic screening techniques for <i>Cryptosporidium</i> drug discovery. Expert Opinion on Drug Discovery, 2021, 16, 59-74.	5.0	16
4	Repurposing Infectious Disease Hits as Anti- <i>Cryptosporidium</i> Leads. ACS Infectious Diseases, 2021, 7, 1275-1282.	3.8	8
5	MalDA, Accelerating Malaria Drug Discovery. Trends in Parasitology, 2021, 37, 493-507.	3.3	51
6	Drug repurposing screens identify chemical entities for the development of COVID-19 interventions. Nature Communications, 2021, 12, 3309.	12.8	81
7	The Tuberculosis Drug Accelerator at year 10: what have we learned?. Nature Medicine, 2021, 27, 1333-1337.	30.7	32
8	Prioritization of Molecular Targets for Antimalarial Drug Discovery. ACS Infectious Diseases, 2021, 7, 2764-2776.	3.8	35
9	An Integrated Approach to Identify New Anti-Filarial Leads to Treat River Blindness, a Neglected Tropical Disease. Pathogens, 2021, 10, 71.	2.8	16
10	High-Content Screening for Cryptosporidium Drug Discovery. Methods in Molecular Biology, 2020, 2052, 303-317.	0.9	2
11	Short-course quinazoline drug treatments are effective in the Litomosoides sigmodontis and Brugia pahangi jird models. International Journal for Parasitology: Drugs and Drug Resistance, 2020, 12, 18-27.	3.4	10
12	Bicyclic azetidines kill the diarrheal pathogen <i>Cryptosporidium</i> in mice by inhibiting parasite phenylalanyl-tRNA synthetase. Science Translational Medicine, 2020, 12, .	12.4	45
13	A nutrient-limited screen unmasks rifabutin hyperactivity for extensively drug-resistant Acinetobacter baumannii. Nature Microbiology, 2020, 5, 1134-1143.	13.3	50
14	Antimalarial Peptide and Polyketide Natural Products from the Fijian Marine Cyanobacterium Moorea producens. Marine Drugs, 2020, 18, 167.	4.6	29
15	Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infectious Diseases, 2020, 6, 613-628.	3.8	26
16	Advances in Antiwolbachial Drug Discovery for Treatment of Parasitic Filarial Worm Infections. Tropical Medicine and Infectious Disease, 2019, 4, 108.	2.3	24
17	Identification of a potent benzoxaborole drug candidate for treating cryptosporidiosis. Nature Communications, 2019, 10, 2816.	12.8	43
18	Novel chemical starting points for drug discovery in leishmaniasis and Chagas disease. International Journal for Parasitology: Drugs and Drug Resistance, 2019, 10, 58-68.	3.4	12

#	Article	IF	CITATIONS
19	Peyssonnosides A–B, Unusual Diterpene Glycosides with a Sterically Encumbered Cyclopropane Motif: Structure Elucidation Using an Integrated Spectroscopic and Computational Workflow. Journal of Organic Chemistry, 2019, 84, 8531-8541.	3.2	26
20	Discovery of short-course antiwolbachial quinazolines for elimination of filarial worm infections. Science Translational Medicine, 2019, 11, .	12.4	36
21	Discovery of Kirromycins with Anti-Wolbachia Activity from Streptomyces sp. CB00686. ACS Chemical Biology, 2019, 14, 1174-1182.	3.4	7
22	Modular, stereocontrolled C _β –H/C _α –C activation of alkyl carboxylic acids. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8721-8727.	7.1	39
23	A suite of phenotypic assays to ensure pipeline diversity when prioritizing drug-like Cryptosporidium growth inhibitors. Nature Communications, 2019, 10, 1862.	12.8	28
24	Lysyl-tRNA synthetase as a drug target in malaria and cryptosporidiosis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7015-7020.	7.1	94
25	Antibacterial Oligomeric Polyphenols from the Green Alga <i>Cladophora socialis</i> . Journal of Organic Chemistry, 2019, 84, 5035-5045.	3.2	22
26	Boron-Pleuromutilins as Anti- <i>Wolbachia</i> Agents with Potential for Treatment of Onchocerciasis and Lymphatic Filariasis. Journal of Medicinal Chemistry, 2019, 62, 2521-2540.	6.4	35
27	Herbicidins from <i>Streptomyces</i> sp. CB01388 Showing Anti- <i>Cryptosporidium</i> Activity. Journal of Natural Products, 2018, 81, 791-797.	3.0	12
28	Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science, 2018, 362, .	12.6	99
29	The ReFRAME library as a comprehensive drug repurposing library and its application to the treatment of cryptosporidiosis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10750-10755.	7.1	165
30	Cell-based screen for discovering lipopolysaccharide biogenesis inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6834-6839.	7.1	81
31	Advances in bumped kinase inhibitors for human and animal therapy for cryptosporidiosis. International Journal for Parasitology, 2017, 47, 753-763.	3.1	30
32	A high-throughput phenotypic screen identifies clofazimine as a potential treatment for cryptosporidiosis. PLoS Neglected Tropical Diseases, 2017, 11, e0005373.	3.0	91
33	High-Throughput Luciferase-Based Assay for the Discovery of Therapeutics That Prevent Malaria. ACS Infectious Diseases, 2016, 2, 281-293.	3.8	84
34	Utilizing Chemical Genomics to Identify Cytochrome b as a Novel Drug Target for Chagas Disease. PLoS Pathogens, 2015, 11, e1005058.	4.7	52
35	Inhibitors of Plasmodial Serine Hydroxymethyltransferase (SHMT): Cocrystal Structures of Pyrazolopyrans with Potent Blood- and Liver-Stage Activities. Journal of Medicinal Chemistry, 2015, 58, 3117-3130.	6.4	46
36	Mutations in the P-Type Cation-Transporter ATPase 4, PfATP4, Mediate Resistance to Both Aminopyrazole and Spiroindolone Antimalarials. ACS Chemical Biology, 2015, 10, 413-420.	3.4	75

CASE W MCNAMARA

#	Article	IF	CITATIONS
37	KAI407, a Potent Non-8-Aminoquinoline Compound That Kills Plasmodium cynomolgi Early Dormant Liver Stage Parasites <i>In Vitro</i> . Antimicrobial Agents and Chemotherapy, 2014, 58, 1586-1595.	3.2	61
38	Lead Optimization of Imidazopyrazines: A New Class of Antimalarial with Activity on <i>Plasmodium</i> Liver Stages. ACS Medicinal Chemistry Letters, 2014, 5, 947-950.	2.8	30
39	Targeting Plasmodium PI(4)K to eliminate malaria. Nature, 2013, 504, 248-253.	27.8	377
40	Na+ Regulation in the Malaria Parasite Plasmodium falciparum Involves the Cation ATPase PfATP4 and Is a Target of the Spiroindolone Antimalarials. Cell Host and Microbe, 2013, 13, 227-237.	11.0	185
41	Mitotic Evolution of Plasmodium falciparum Shows a Stable Core Genome but Recombination in Antigen Families. PLoS Genetics, 2013, 9, e1003293.	3.5	192
42	Targeting the ERAD pathway via inhibition of signal peptide peptidase for antiparasitic therapeutic design. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 21486-21491.	7.1	89
43	Selective and Specific Inhibition of the Plasmodium falciparum Lysyl-tRNA Synthetase by the Fungal Secondary Metabolite Cladosporin. Cell Host and Microbe, 2012, 11, 654-663.	11.0	202
44	A Chemical Genomic Analysis of Decoquinate, a <i>Plasmodium falciparum</i> Cytochrome <i>b</i> Inhibitor. ACS Chemical Biology, 2011, 6, 1214-1222.	3.4	84
45	Target identification and validation of novel antimalarials. Future Microbiology, 2011, 6, 693-704.	2.0	30
46	Imaging of <i>Plasmodium</i> Liver Stages to Drive Next-Generation Antimalarial Drug Discovery. Science, 2011, 334, 1372-1377.	12.6	308
47	Specificity and cooperativity at βâ€lactamase position 104 in TEMâ€1/BLIP and SHVâ€1/BLIP interactions. Proteins: Structure, Function and Bioinformatics, 2011, 79, 1267-1276.	2.6	15
48	Spiroindolones, a Potent Compound Class for the Treatment of Malaria. Science, 2010, 329, 1175-1180.	12.6	1,031
49	M1 Protein Allows Group A Streptococcal Survival in Phagocyte Extracellular Traps through Cathelicidin Inhibition. Journal of Innate Immunity, 2009, 1, 202-214.	3.8	157
50	Gene expression signatures and small-molecule compounds link a protein kinase to Plasmodium falciparum motility. Nature Chemical Biology, 2008, 4, 347-356.	8.0	203
51	<i>In silico</i> activity profiling reveals the mechanism of action of antimalarials discovered in a high-throughput screen. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9059-9064.	7.1	400
52	Coiled-Coil Irregularities and Instabilities in Group A <i>Streptococcus</i> M1 Are Required for Virulence. Science, 2008, 319, 1405-1408.	12.6	137
53	Hydrogen peroxide induces the dissociation of GroEL into monomers that can facilitate the reactivation of oxidatively inactivated rhodanese. International Journal of Biochemistry and Cell Biology, 2004, 36, 505-518.	2.8	11