
## Hin-Lap Yip

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5148558/publications.pdf Version: 2024-02-01



HINL AD YID

| #  | Article                                                                                                                                                                                                               | IF                 | CITATIONS    |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------|
| 1  | Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with<br>Electron-Deficient Core. Joule, 2019, 3, 1140-1151.                                                                     | 24.0               | 4,052        |
| 2  | Organic and solution-processed tandem solar cells with 17.3% efficiency. Science, 2018, 361, 1094-1098.                                                                                                               | 12.6               | 2,262        |
| 3  | Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells. Energy and Environmental Science, 2012, 5, 5994.                                                            | 30.8               | 993          |
| 4  | Interface Engineering for Organic Electronics. Advanced Functional Materials, 2010, 20, 1371-1388.                                                                                                                    | 14.9               | 859          |
| 5  | Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective<br>layer. Applied Physics Letters, 2008, 92, .                                                               | 3.3                | 790          |
| 6  | High-Performance Perovskite-Polymer Hybrid Solar Cells via Electronic Coupling with Fullerene<br>Monolayers. Nano Letters, 2013, 13, 3124-3128.                                                                       | 9.1                | 602          |
| 7  | n-Type Water/Alcohol-Soluble Naphthalene Diimide-Based Conjugated Polymers for High-Performance<br>Polymer Solar Cells. Journal of the American Chemical Society, 2016, 138, 2004-2013.                               | 13.7               | 525          |
| 8  | Polymer Solar Cells That Use Selfâ€Assembledâ€Monolayer―Modified ZnO/Metals as Cathodes. Advanced<br>Materials, 2008, 20, 2376-2382.                                                                                  | 21.0               | 511          |
| 9  | Solution-processed organic tandem solar cells with power conversion efficiencies >12%. Nature Photonics, 2017, 11, 85-90.                                                                                             | 31.4               | 510          |
| 10 | Functional fullerenes for organic photovoltaics. Journal of Materials Chemistry, 2012, 22, 4161.                                                                                                                      | 6.7                | 478          |
| 11 | The role of spin in the kinetic control of recombination in organic photovoltaics. Nature, 2013, 500, 435-439.                                                                                                        | 27.8               | 460          |
| 12 | Delocalization of exciton and electron wavefunction in non-fullerene acceptor molecules enables efficient organic solar cells. Nature Communications, 2020, 11, 3943.                                                 | 12.8               | 458          |
| 13 | Modulation of recombination zone position for quasi-two-dimensional blue perovskite light-emitting diodes with efficiency exceeding 5%. Nature Communications, 2019, 10, 1027.                                        | 12.8               | 425          |
| 14 | Highly efficient all-inorganic perovskite solar cells with suppressed non-radiative recombination by a Lewis base. Nature Communications, 2020, 11, 177.                                                              | 12.8               | 360          |
| 15 | Blocking reactions between indium-tin oxide and poly (3,4-ethylene dioxythiophene):poly(styrene) Tj ETQq1 1 0.                                                                                                        | 78 <u>43</u> 14 rg | gBT_/Qverloc |
| 16 | Efficient Polymer Solar Cells Based on the Copolymers of Benzodithiophene and Thienopyrroledione.<br>Chemistry of Materials, 2010, 22, 2696-2698.                                                                     | 6.7                | 346          |
| 17 | Improved Charge Transport and Absorption Coefficient in Indacenodithieno[3,2â€b]thiopheneâ€based<br>Ladderâ€Type Polymer Leading to Highly Efficient Polymer Solar Cells. Advanced Materials, 2012, 24,<br>6356-6361. | 21.0               | 343          |
| 18 | Interfacial modification to improve inverted polymer solar cells. Journal of Materials Chemistry, 2008, 18, 5113.                                                                                                     | 6.7                | 339          |

| #  | Article                                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Interface Engineering for Allâ€Inorganic CsPbI <sub>2</sub> Br Perovskite Solar Cells with Efficiency<br>over 14%. Advanced Materials, 2018, 30, e1802509.                                                                                                       | 21.0 | 336       |
| 20 | Development of New Conjugated Polymers with Donorâ^'ï€-Bridgeâ^'Acceptor Side Chains for High<br>Performance Solar Cells. Journal of the American Chemical Society, 2009, 131, 13886-13887.                                                                      | 13.7 | 335       |
| 21 | Dual Interfacial Design for Efficient CsPbI <sub>2</sub> Br Perovskite Solar Cells with Improved<br>Photostability. Advanced Materials, 2019, 31, e1901152.                                                                                                      | 21.0 | 328       |
| 22 | Semi-transparent polymer solar cells with 6% PCE, 25% average visible transmittance and a color<br>rendering index close to 100 for power generating window applications. Energy and Environmental<br>Science, 2012, 5, 9551.                                    | 30.8 | 323       |
| 23 | High-Efficiency Polymer Solar Cells via the Incorporation of an Amino-Functionalized Conjugated<br>Metallopolymer as a Cathode Interlayer. Journal of the American Chemical Society, 2013, 135,<br>15326-15329.                                                  | 13.7 | 321       |
| 24 | Perovskite Lightâ€Emitting Diodes with EQE Exceeding 28% through a Synergetic Dualâ€Additive Strategy for Defect Passivation and Nanostructure Regulation. Advanced Materials, 2021, 33, e2103268.                                                               | 21.0 | 320       |
| 25 | Indacenodithiophene and Quinoxaline-Based Conjugated Polymers for Highly Efficient Polymer Solar<br>Cells. Chemistry of Materials, 2011, 23, 2289-2291.                                                                                                          | 6.7  | 318       |
| 26 | Effects of a Molecular Monolayer Modification of NiO Nanocrystal Layer Surfaces on Perovskite<br>Crystallization and Interface Contact toward Faster Hole Extraction and Higher Photovoltaic<br>Performance. Advanced Functional Materials, 2016, 26, 2950-2958. | 14.9 | 305       |
| 27 | Fused Benzothiadiazole: A Building Block for nâ€Type Organic Acceptor to Achieve Highâ€Performance<br>Organic Solar Cells. Advanced Materials, 2019, 31, e1807577.                                                                                               | 21.0 | 297       |
| 28 | High performance ambient processed inverted polymer solar cells through interfacial modification with a fullerene self-assembled monolayer. Applied Physics Letters, 2008, 93, .                                                                                 | 3.3  | 295       |
| 29 | A Review on the Development of the Inverted Polymer Solar Cell Architecture. Polymer Reviews, 2010, 50, 474-510.                                                                                                                                                 | 10.9 | 293       |
| 30 | Decomposition of Organometal Halide Perovskite Films on Zinc Oxide Nanoparticles. ACS Applied<br>Materials & Interfaces, 2015, 7, 19986-19993.                                                                                                                   | 8.0  | 279       |
| 31 | Aminoâ€Functionalized Conjugated Polymer as an Efficient Electron Transport Layer for<br>Highâ€Performance Planarâ€Heterojunction Perovskite Solar Cells. Advanced Energy Materials, 2016, 6,<br>1501534.                                                        | 19.5 | 278       |
| 32 | Metal grid/conducting polymer hybrid transparent electrode for inverted polymer solar cells. Applied<br>Physics Letters, 2010, 96, .                                                                                                                             | 3.3  | 273       |
| 33 | Recent advances in semi-transparent polymer and perovskite solar cells for power generating window applications. Energy and Environmental Science, 2018, 11, 1688-1709.                                                                                          | 30.8 | 266       |
| 34 | Rational Design of Advanced Thermoelectric Materials. Advanced Energy Materials, 2013, 3, 549-565.                                                                                                                                                               | 19.5 | 264       |
| 35 | Indium tin oxide-free semi-transparent inverted polymer solar cells using conducting polymer as both bottom and top electrodes. Organic Electronics, 2009, 10, 1401-1407.                                                                                        | 2.6  | 255       |
| 36 | Doping of Fullerenes via Anionâ€Induced Electron Transfer and Its Implication for Surfactant<br>Facilitated High Performance Polymer Solar Cells. Advanced Materials, 2013, 25, 4425-4430.                                                                       | 21.0 | 244       |

| #  | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Increased open circuit voltage in fluorinated benzothiadiazole-based alternating conjugated polymers. Chemical Communications, 2011, 47, 11026.                                                                                      | 4.1  | 241       |
| 38 | Inorganic Halide Perovskite Solar Cells: Progress and Challenges. Advanced Energy Materials, 2020, 10, 2000183.                                                                                                                      | 19.5 | 231       |
| 39 | Highâ€Performance Colorâ€Tunable Perovskite Light Emitting Devices through Structural Modulation<br>from Bulk to Layered Film. Advanced Materials, 2017, 29, 1603157.                                                                | 21.0 | 218       |
| 40 | Effects of organic cations on the defect physics of tin halide perovskites. Journal of Materials<br>Chemistry A, 2017, 5, 15124-15129.                                                                                               | 10.3 | 213       |
| 41 | Dual Interfacial Modifications Enable High Performance Semitransparent Perovskite Solar Cells with<br>Large Open Circuit Voltage and Fill Factor. Advanced Energy Materials, 2017, 7, 1602333.                                       | 19.5 | 209       |
| 42 | Surface Doping of Conjugated Polymers by Graphene Oxide and Its Application for Organic Electronic Devices. Advanced Materials, 2011, 23, 1903-1908.                                                                                 | 21.0 | 204       |
| 43 | D-A-Ï€-A-D-type Dopant-free Hole Transport Material for Low-Cost, Efficient, and Stable Perovskite<br>Solar Cells. Joule, 2021, 5, 249-269.                                                                                          | 24.0 | 203       |
| 44 | Dopantâ€Free Organic Holeâ€Transporting Material for Efficient and Stable Inverted Allâ€Inorganic and<br>Hybrid Perovskite Solar Cells. Advanced Materials, 2020, 32, e1908011.                                                      | 21.0 | 195       |
| 45 | Structurally Reconstructed CsPbl <sub>2</sub> Br Perovskite for Highly Stable and Squareâ€Centimeter<br>Allâ€Inorganic Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1803572.                                          | 19.5 | 192       |
| 46 | A Simple and Effective Way of Achieving Highly Efficient and Thermally Stable Bulk-Heterojunction<br>Polymer Solar Cells Using Amorphous Fullerene Derivatives as Electron Acceptor. Chemistry of<br>Materials, 2009, 21, 2598-2600. | 6.7  | 191       |
| 47 | Interface design for high-efficiency non-fullerene polymer solar cells. Energy and Environmental<br>Science, 2017, 10, 1784-1791.                                                                                                    | 30.8 | 187       |
| 48 | Significant Improved Performance of Photovoltaic Cells Made from a Partially Fluorinated<br>Cyclopentadithiophene/Benzothiadiazole Conjugated Polymer. Macromolecules, 2012, 45, 5427-5435.                                          | 4.8  | 186       |
| 49 | Highly efficient fullerene/perovskite planar heterojunction solar cells via cathode modification with<br>an amino-functionalized polymer interlayer. Journal of Materials Chemistry A, 2014, 2, 19598-19603.                         | 10.3 | 186       |
| 50 | Enhanced Open ircuit Voltage in High Performance Polymer/Fullerene Bulkâ€Heterojunction Solar<br>Cells by Cathode Modification with a C <sub>60</sub> Surfactant. Advanced Energy Materials, 2012, 2,<br>82-86.                      | 19.5 | 185       |
| 51 | Nonfullerene Tandem Organic Solar Cells with High Performance of 14.11%. Advanced Materials, 2018, 30, e1707508.                                                                                                                     | 21.0 | 184       |
| 52 | High Performance Amorphous Metallated π-Conjugated Polymers for Field-Effect Transistors and<br>Polymer Solar Cells. Chemistry of Materials, 2008, 20, 5734-5736.                                                                    | 6.7  | 182       |
| 53 | Interface-enhanced organic solar cells with extrapolated T80 lifetimes of over 20â€ <sup>-</sup> years. Science<br>Bulletin, 2020, 65, 208-216.                                                                                      | 9.0  | 181       |
| 54 | Interfacial Engineering of Ultrathin Metal Film Transparent Electrode for Flexible Organic<br>Photovoltaic Cells. Advanced Materials, 2014, 26, 3618-3623.                                                                           | 21.0 | 178       |

| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Heat-Insulating Multifunctional Semitransparent Polymer Solar Cells. Joule, 2018, 2, 1816-1826.                                                                                                                          | 24.0 | 173       |
| 56 | Non-halogenated solvents for environmentally friendly processing of high-performance bulk-heterojunction polymer solar cells. Energy and Environmental Science, 2013, 6, 3241.                                           | 30.8 | 168       |
| 57 | Self-assembled monolayer modified ZnO/metal bilayer cathodes for polymer/fullerene<br>bulk-heterojunction solar cells. Applied Physics Letters, 2008, 92, .                                                              | 3.3  | 167       |
| 58 | Effect of Chemical Modification of Fullerene-Based Self-Assembled Monolayers on the Performance of<br>Inverted Polymer Solar Cells. ACS Applied Materials & Interfaces, 2010, 2, 1892-1902.                              | 8.0  | 166       |
| 59 | Graded 2D/3D Perovskite Heterostructure for Efficient and Operationally Stable MAâ€Free Perovskite<br>Solar Cells. Advanced Materials, 2020, 32, e2000571.                                                               | 21.0 | 166       |
| 60 | Effective interfacial layer to enhance efficiency of polymer solar cells via solution-processed fullerene-surfactants. Journal of Materials Chemistry, 2012, 22, 8574.                                                   | 6.7  | 159       |
| 61 | Progress of the key materials for organic solar cells. Science China Chemistry, 2020, 63, 758-765.                                                                                                                       | 8.2  | 158       |
| 62 | Highâ€Performance Polymer Tandem Solar Cells Employing a New nâ€Type Conjugated Polymer as an<br>Interconnecting Layer. Advanced Materials, 2016, 28, 4817-4823.                                                         | 21.0 | 156       |
| 63 | Molecular Weight Effect on the Absorption, Charge Carrier Mobility, and Photovoltaic Performance<br>of an Indacenodiselenophene-Based Ladder-Type Polymer. Chemistry of Materials, 2013, 25, 3188-3195.                  | 6.7  | 155       |
| 64 | Improving Film Formation and Photovoltage of Highly Efficient Invertedâ€Type Perovskite Solar Cells<br>through the Incorporation of New Polymeric Hole Selective Layers. Advanced Energy Materials, 2016,<br>6, 1502021. | 19.5 | 152       |
| 65 | Highâ€Performance Largeâ€Area Organic Solar Cells Enabled by Sequential Bilayer Processing via<br>Nonhalogenated Solvents. Advanced Energy Materials, 2019, 9, 1802832.                                                  | 19.5 | 152       |
| 66 | Enhancing the Performance of Inverted Perovskite Solar Cells via Grain Boundary Passivation with Carbon Quantum Dots. ACS Applied Materials & Interfaces, 2019, 11, 3044-3052.                                           | 8.0  | 147       |
| 67 | Ï€â€Ïfâ€Phosphonic Acid Organic Monolayer/Sol–Gel Hafnium Oxide Hybrid Dielectrics for Lowâ€Voltage<br>Organic Transistors. Advanced Materials, 2008, 20, 3697-3701.                                                     | 21.0 | 142       |
| 68 | Toward Highâ€Performance Semiâ€Transparent Polymer Solar Cells: Optimization of Ultraâ€Thin Light<br>Absorbing Layer and Transparent Cathode Architecture. Advanced Energy Materials, 2013, 3, 417-423.                  | 19.5 | 141       |
| 69 | High-Throughput Optical Screening for Efficient Semitransparent Organic Solar Cells. Joule, 2019, 3, 2241-2254.                                                                                                          | 24.0 | 141       |
| 70 | Highâ€Performance Semitransparent Organic Solar Cells with Excellent Infrared Reflection and<br>Seeâ€Through Functions. Advanced Materials, 2020, 32, e2001621.                                                          | 21.0 | 140       |
| 71 | Carbon–Oxygenâ€Bridged Ladderâ€Type Building Blocks for Highly Efficient Nonfullerene Acceptors.<br>Advanced Materials, 2019, 31, e1804790.                                                                              | 21.0 | 139       |
| 72 | Effect of Fluorine Content in Thienothiophene-Benzodithiophene Copolymers on the Morphology and<br>Performance of Polymer Solar Cells. Chemistry of Materials, 2014, 26, 3009-3017.                                      | 6.7  | 136       |

| #  | Article                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Highly Efficient Inverted Organic Solar Cells Through Material and Interfacial Engineering of<br>Indacenodithieno[3,2â€ <i>b</i> ]thiopheneâ€Based Polymers and Devices. Advanced Functional Materials,<br>2014, 24, 1465-1473.          | 14.9 | 132       |
| 74 | Solutionâ€Processible Highly Conducting Fullerenes. Advanced Materials, 2013, 25, 2457-2461.                                                                                                                                             | 21.0 | 130       |
| 75 | Surpassing the 10% efficiency milestone for 1-cm2 all-polymer solar cells. Nature Communications, 2019, 10, 4100.                                                                                                                        | 12.8 | 129       |
| 76 | Exploiting Ternary Blends for Improved Photostability in High-Efficiency Organic Solar Cells. ACS<br>Energy Letters, 2020, 5, 1371-1379.                                                                                                 | 17.4 | 126       |
| 77 | Optical Design of Transparent Thin Metal Electrodes to Enhance Inâ€Coupling and Trapping of Light in<br>Flexible Polymer Solar Cells. Advanced Materials, 2012, 24, 6362-6367.                                                           | 21.0 | 125       |
| 78 | Thermally Cross-Linkable Hole-Transporting Materials on Conducting Polymer: Synthesis,<br>Characterization, and Applications for Polymer Light-Emitting Devices. Chemistry of Materials, 2008,<br>20, 413-422.                           | 6.7  | 119       |
| 79 | Dopantâ€Free Squaraineâ€Based Polymeric Holeâ€Transporting Materials with Comprehensive Passivation<br>Effects for Efficient Allâ€Inorganic Perovskite Solar Cells. Angewandte Chemie - International Edition,<br>2019, 58, 17724-17730. | 13.8 | 118       |
| 80 | Highâ€Efficiency Polymer Solar Cells Achieved by Doping Plasmonic Metallic Nanoparticles into Dual<br>Charge Selecting Interfacial Layers to Enhance Light Trapping. Advanced Energy Materials, 2013, 3,<br>666-673.                     | 19.5 | 116       |
| 81 | Nearâ€Infrared Electron Acceptors with Fluorinated Regioisomeric Backbone for Highly Efficient<br>Polymer Solar Cells. Advanced Materials, 2018, 30, e1803769.                                                                           | 21.0 | 116       |
| 82 | CsPb(I Br1â^')3 solar cells. Science Bulletin, 2019, 64, 1532-1539.                                                                                                                                                                      | 9.0  | 114       |
| 83 | Fibril Network Strategy Enables Highâ€Performance Semitransparent Organic Solar Cells. Advanced<br>Functional Materials, 2020, 30, 2002181.                                                                                              | 14.9 | 113       |
| 84 | Anode modification of inverted polymer solar cells using graphene oxide. Applied Physics Letters, 2010, 97, .                                                                                                                            | 3.3  | 112       |
| 85 | Synthesis, Characterization, Charge Transport, and Photovoltaic Properties of<br>Dithienobenzoquinoxaline- and Dithienobenzopyridopyrazine-Based Conjugated Polymers.<br>Macromolecules, 2011, 44, 4752-4758.                            | 4.8  | 111       |
| 86 | Highâ€Performance Polymer Solar Cells with Electrostatic Layerâ€byâ€Layer Selfâ€Assembled Conjugated<br>Polyelectrolytes as the Cathode Interlayer. Advanced Materials, 2015, 27, 3607-3613.                                             | 21.0 | 111       |
| 87 | Conjugated polymers based on C, Si and N-bridged dithiophene and thienopyrroledione units:<br>synthesis, field-effect transistors and bulk heterojunction polymer solar cells. Journal of Materials<br>Chemistry, 2011, 21, 3895.        | 6.7  | 110       |
| 88 | A Versatile Fluoroâ€Containing Lowâ€Bandgap Polymer for Efficient Semitransparent and Tandem Polymer<br>Solar Cells. Advanced Functional Materials, 2013, 23, 5084-5090.                                                                 | 14.9 | 110       |
| 89 | Highâ€Dielectric Constant Sideâ€Chain Polymers Show Reduced Nonâ€Geminate Recombination in<br>Heterojunction Solar Cells. Advanced Energy Materials, 2014, 4, 1301857.                                                                   | 19.5 | 110       |
| 90 | Fluoranthene-based dopant-free hole transporting materials for efficient perovskite solar cells.<br>Chemical Science, 2018, 9, 2698-2704.                                                                                                | 7.4  | 109       |

| #   | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Ultraviolet-ozone surface modification for non-wetting hole transport materials based inverted<br>planar perovskite solar cells with efficiency exceeding 18%. Journal of Power Sources, 2017, 360,<br>157-165.                  | 7.8  | 106       |
| 92  | High-mobility low-bandgap conjugated copolymers based on indacenodithiophene and<br>thiadiazolo[3,4-c]pyridine units for thin film transistor and photovoltaic applications. Journal of<br>Materials Chemistry, 2011, 21, 13247. | 6.7  | 102       |
| 93  | Recombination Dynamics Study on Nanostructured Perovskite Lightâ€Emitting Devices. Advanced<br>Materials, 2018, 30, e1801370.                                                                                                    | 21.0 | 102       |
| 94  | Benzobis(silolothiophene)-Based Low Bandgap Polymers for Efficient Polymer Solar Cells. Chemistry of Materials, 2011, 23, 765-767.                                                                                               | 6.7  | 101       |
| 95  | Spectral Engineering of Semitransparent Polymer Solar Cells for Greenhouse Applications. Advanced<br>Energy Materials, 2019, 9, 1803438.                                                                                         | 19.5 | 101       |
| 96  | Elevenâ€Membered Fusedâ€Ring Low Bandâ€Gap Polymer with Enhanced Charge Carrier Mobility and<br>Photovoltaic Performance. Advanced Functional Materials, 2014, 24, 3631-3638.                                                    | 14.9 | 99        |
| 97  | Spraycoating of silver nanoparticle electrodes for inverted polymer solar cells. Organic Electronics, 2009, 10, 719-723.                                                                                                         | 2.6  | 98        |
| 98  | Synthesis, Characterization, and Photovoltaic Properties of Carbazole-Based Two-Dimensional<br>Conjugated Polymers with Donor-Ï€-Bridge-Acceptor Side Chains. Chemistry of Materials, 2010, 22,<br>6444-6452.                    | 6.7  | 95        |
| 99  | Side-Chain Effect on Cyclopentadithiophene/Fluorobenzothiadiazole-Based Low Band Gap Polymers<br>and Their Applications for Polymer Solar Cells. Macromolecules, 2013, 46, 5497-5503.                                            | 4.8  | 94        |
| 100 | Efficient and Stable Perovskite Solar Cells via Dual Functionalization of Dopamine Semiquinone<br>Radical with Improved Trap Passivation Capabilities. Advanced Functional Materials, 2018, 28, 1707444.                         | 14.9 | 94        |
| 101 | Semitransparent Organic Solar Cells with Vivid Colors. ACS Energy Letters, 2020, 5, 3115-3123.                                                                                                                                   | 17.4 | 93        |
| 102 | Device Performance of Emerging Photovoltaic Materials (Version 1). Advanced Energy Materials, 2021, 11, 2002774.                                                                                                                 | 19.5 | 93        |
| 103 | 11.2% Allâ€Polymer Tandem Solar Cells with Simultaneously Improved Efficiency and Stability. Advanced Materials, 2018, 30, e1803166.                                                                                             | 21.0 | 92        |
| 104 | Impact of surface dipole in NiOx on the crystallization and photovoltaic performance of organometal halide perovskite solar cells. Nano Energy, 2019, 61, 496-504.                                                               | 16.0 | 92        |
| 105 | Phosphonium Halides as Both Processing Additives and Interfacial Modifiers for High Performance<br>Planarâ€Heterojunction Perovskite Solar Cells. Small, 2015, 11, 3344-3350.                                                    | 10.0 | 91        |
| 106 | Graphene oxide nanosheets based organic field effect transistor for nonvolatile memory applications.<br>Applied Physics Letters, 2010, 97, .                                                                                     | 3.3  | 90        |
| 107 | Surpassing 13% Efficiency for Polythiophene Organic Solar Cells Processed from Nonhalogenated Solvent. Advanced Materials, 2021, 33, e2008158.                                                                                   | 21.0 | 90        |
| 108 | Thermally Cross-Linkable Hole-Transporting Materials for Improving Hole Injection in Multilayer<br>Blue-Emitting Phosphorescent Polymer Light-Emitting Diodes. Macromolecules, 2008, 41, 9570-9580.                              | 4.8  | 89        |

| #   | Article                                                                                                                                                                                                                                    | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Facile synthesis of a 56ï€-electron 1,2-dihydromethano-[60]PCBM and its application for thermally stable polymer solar cells. Chemical Communications, 2011, 47, 10082.                                                                    | 4.1  | 89        |
| 110 | New fullerene design enables efficient passivation of surface traps in high performance p-i-n<br>heterojunction perovskite solar cells. Nano Energy, 2016, 26, 7-15.                                                                       | 16.0 | 89        |
| 111 | Polymer-Assisted In Situ Growth of All-Inorganic Perovskite Nanocrystal Film for Efficient and Stable<br>Pure-Red Light-Emitting Devices. ACS Applied Materials & Interfaces, 2018, 10, 42564-42572.                                       | 8.0  | 86        |
| 112 | Tandem Organic Solar Cells with 18.7% Efficiency Enabled by Suppressing the Charge Recombination in<br>Front Sub ell. Advanced Functional Materials, 2021, 31, 2103283.                                                                    | 14.9 | 84        |
| 113 | Halogen-free solvent processing for sustainable development of high efficiency organic solar cells.<br>Organic Electronics, 2012, 13, 2870-2878.                                                                                           | 2.6  | 82        |
| 114 | Stable Sn/Pb-Based Perovskite Solar Cells with a Coherent 2D/3D Interface. IScience, 2018, 9, 337-346.                                                                                                                                     | 4.1  | 82        |
| 115 | Fully Solution-Processed Tandem White Quantum-Dot Light-Emitting Diode with an External Quantum<br>Efficiency Exceeding 25%. ACS Nano, 2018, 12, 6040-6049.                                                                                | 14.6 | 82        |
| 116 | Utilization of Trapped Optical Modes for White Perovskite Light-Emitting Diodes with Efficiency over 12%. Joule, 2021, 5, 456-466.                                                                                                         | 24.0 | 81        |
| 117 | Inâ€situ Crosslinking and nâ€Doping of Semiconducting Polymers and Their Application as Efficient<br>Electronâ€Transporting Materials in Inverted Polymer Solar Cells. Advanced Energy Materials, 2011, 1,<br>1148-1153.                   | 19.5 | 80        |
| 118 | Efficient Large Area Organic Solar Cells Processed by Bladeâ€Coating With Singleâ€Component Green<br>Solvent. Solar Rrl, 2018, 2, 1700169.                                                                                                 | 5.8  | 79        |
| 119 | Low-voltage organic thin-film transistors with π-σ-phosphonic acid molecular dielectric monolayers.<br>Applied Physics Letters, 2008, 92, .                                                                                                | 3.3  | 77        |
| 120 | Metallohalide perovskite–polymer composite film for hybrid planar heterojunction solar cells. RSC<br>Advances, 2015, 5, 775-783.                                                                                                           | 3.6  | 76        |
| 121 | Air-processed mixed-cation Cs <sub>0.15</sub> FA <sub>0.85</sub> PbI <sub>3</sub> planar perovskite<br>solar cells derived from a PbI <sub>2</sub> –CsI–FAI intermediate complex. Journal of Materials<br>Chemistry A, 2018, 6, 7731-7740. | 10.3 | 75        |
| 122 | Chemically Doped and Cross-linked Hole-Transporting Materials as an Efficient Anode Buffer Layer for<br>Polymer Solar Cells. Chemistry of Materials, 2011, 23, 5006-5015.                                                                  | 6.7  | 73        |
| 123 | Improved thin film morphology and bulk-heterojunction solar cell performance through systematic<br>tuning of the surface energy of conjugated polymers. Journal of Materials Chemistry, 2012, 22, 5587.                                    | 6.7  | 73        |
| 124 | Achieving Both Enhanced Voltage and Current through Fineâ€Tuning Molecular Backbone and<br>Morphology Control in Organic Solar Cells. Advanced Energy Materials, 2019, 9, 1901024.                                                         | 19.5 | 73        |
| 125 | Long-lived and disorder-free charge transfer states enable endothermic charge separation in efficient non-fullerene organic solar cells. Nature Communications, 2020, 11, 5617.                                                            | 12.8 | 73        |
| 126 | Highly Efficient Polymer Tandem Cells and Semitransparent Cells for Solar Energy. Advanced Energy<br>Materials, 2014, 4, 1301645.                                                                                                          | 19.5 | 71        |

| #   | Article                                                                                                                                                                            | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode. Applied Physics Letters, 2010, 96, .                             | 3.3  | 70        |
| 128 | A lactam building block for efficient polymer solar cells. Chemical Communications, 2015, 51, 11830-11833.                                                                         | 4.1  | 69        |
| 129 | Composition Engineering of Allâ€Inorganic Perovskite Film for Efficient and Operationally Stable Solar<br>Cells. Advanced Functional Materials, 2020, 30, 2001764.                 | 14.9 | 69        |
| 130 | High-Performance Ternary Organic Solar Cells with Controllable Morphology via Sequential<br>Layer-by-Layer Deposition. ACS Applied Materials & Interfaces, 2020, 12, 13077-13086.  | 8.0  | 69        |
| 131 | Allâ€Organic Photopatterned One Diodeâ€One Resistor Cell Array for Advanced Organic Nonvolatile<br>Memory Applications. Advanced Materials, 2012, 24, 828-833.                     | 21.0 | 68        |
| 132 | Self-Assembled Monolayers of Aromatic Thiols Stabilized by Parallel-Displaced Ï€â^Ï€ Stacking<br>Interactions. Langmuir, 2006, 22, 3049-3056.                                      | 3.5  | 67        |
| 133 | A PCBM Electron Transport Layer Containing Small Amounts of Dual Polymer Additives that Enables<br>Enhanced Perovskite Solar Cell Performance. Advanced Science, 2016, 3, 1500353. | 11.2 | 67        |
| 134 | Wideâ€Bandgap Perovskite Solar Cells With Large Openâ€Circuit Voltage of 1653 mV Through Interfacial<br>Engineering. Solar Rrl, 2018, 2, 1800083.                                  | 5.8  | 67        |
| 135 | Suppressing Ion Migration across Perovskite Grain Boundaries by Polymer Additives. Advanced Functional Materials, 2021, 31, 2006802.                                               | 14.9 | 66        |
| 136 | Device Performance of Emerging Photovoltaic Materials (Version 2). Advanced Energy Materials, 2021, 11, .                                                                          | 19.5 | 66        |
| 137 | Consensus statement: Standardized reporting of power-producing luminescent solar concentrator performance. Joule, 2022, 6, 8-15.                                                   | 24.0 | 66        |
| 138 | The distinctive phase stability and defect physics in CsPbI <sub>2</sub> Br perovskite. Journal of Materials Chemistry A, 2019, 7, 20201-20207.                                    | 10.3 | 64        |
| 139 | Strong Photocurrent Enhancements in Highly Efficient Flexible Organic Solar Cells by Adopting a<br>Microcavity Configuration. Advanced Materials, 2014, 26, 3349-3354.             | 21.0 | 63        |
| 140 | Spacer Engineering of Diammoniumâ€Based 2D Perovskites toward Efficient and Stable 2D/3D<br>Heterostructure Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, 2102973.  | 19.5 | 63        |
| 141 | Overcoming Spaceâ€Charge Effect for Efficient Thickâ€Film Nonâ€Fullerene Organic Solar Cells. Advanced<br>Energy Materials, 2018, 8, 1801609.                                      | 19.5 | 62        |
| 142 | Optical Analysis for Semitransparent Organic Solar Cells. Solar Rrl, 2019, 3, 1800270.                                                                                             | 5.8  | 62        |
| 143 | Polymer Triplet Energy Levels Need Not Limit Photocurrent Collection in Organic Solar Cells. Journal of the American Chemical Society, 2012, 134, 19661-19668.                     | 13.7 | 61        |
| 144 | n-Doping of thermally polymerizable fullerenes as an electron transporting layer for inverted polymer solar cells. Journal of Materials Chemistry, 2011, 21, 6956.                 | 6.7  | 60        |

| #   | Article                                                                                                                                                                                                                                    | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Morphology Evolution in Highâ€Performance Polymer Solar Cells Processed from Nonhalogenated<br>Solvent. Advanced Science, 2015, 2, 1500095.                                                                                                | 11.2 | 60        |
| 146 | Achieving efficient organic solar cells and broadband photodetectors via simple compositional tuning of ternary blends. Nano Energy, 2019, 63, 103807.                                                                                     | 16.0 | 59        |
| 147 | An Operando Study on the Photostability of Nonfullerene Organic Solar Cells. Solar Rrl, 2019, 3, 1900077.                                                                                                                                  | 5.8  | 59        |
| 148 | Efficient monolithic perovskite/organic tandem solar cells and their efficiency potential. Nano<br>Energy, 2020, 78, 105238.                                                                                                               | 16.0 | 59        |
| 149 | Highâ€Performance Inverted Polymer Solar Cells: Device Characterization, Optical Modeling, and<br>Holeâ€Transporting Modifications. Advanced Functional Materials, 2012, 22, 2804-2811.                                                    | 14.9 | 58        |
| 150 | Amino-functionalized conjugated polymer electron transport layers enhance the UV-photostability of planar heterojunction perovskite solar cells. Chemical Science, 2017, 8, 4587-4594.                                                     | 7.4  | 57        |
| 151 | Patterning of Robust Self-Assembled n-type Hexaazatrinaphthylene-Based Nanorods and Nanowires by<br>Microcontact Printing. Journal of the American Chemical Society, 2006, 128, 13042-13043.                                               | 13.7 | 55        |
| 152 | Highly Transparent Organic Solar Cells with Allâ€Nearâ€Infrared Photoactive Materials. Small Methods,<br>2019, 3, 1900424.                                                                                                                 | 8.6  | 55        |
| 153 | Highâ€Performance Semi‶ransparent Organic Photovoltaic Devices via Improving Absorbing Selectivity.<br>Advanced Energy Materials, 2021, 11, 2003408.                                                                                       | 19.5 | 54        |
| 154 | Synthesis, Nanostructure, Functionality, and Application of<br>Polyfluorene- <i>block</i> -poly( <i>N</i> -isopropylacrylamide)s. Macromolecules, 2010, 43, 282-291.                                                                       | 4.8  | 53        |
| 155 | Coâ€Interlayer Engineering toward Efficient Green Quasiâ€Twoâ€Dimensional Perovskite Lightâ€Emitting<br>Diodes. Advanced Functional Materials, 2020, 30, 1910167.                                                                          | 14.9 | 52        |
| 156 | Materials, photophysics and device engineering of perovskite light-emitting diodes. Reports on<br>Progress in Physics, 2021, 84, 046401.                                                                                                   | 20.1 | 52        |
| 157 | High-performance see-through power windows. Energy and Environmental Science, 2022, 15, 2629-2637.                                                                                                                                         | 30.8 | 51        |
| 158 | Poly(3,4â€Ethylenedioxythiophene): Methylnaphthalene Sulfonate Formaldehyde Condensate: The Effect<br>of Work Function and Structural Homogeneity on Hole Injection/Extraction Properties. Advanced<br>Energy Materials, 2017, 7, 1601499. | 19.5 | 50        |
| 159 | Synergic Interface and Optical Engineering for Highâ€Performance Semitransparent Polymer Solar<br>Cells. Advanced Energy Materials, 2017, 7, 1701121.                                                                                      | 19.5 | 50        |
| 160 | Boosting Infrared Light Harvesting by Molecular Functionalization of Metal Oxide/Polymer Interfaces<br>in Efficient Hybrid Solar Cells. Advanced Functional Materials, 2012, 22, 2160-2166.                                                | 14.9 | 49        |
| 161 | Inkjet Printing Matrix Perovskite Quantum Dot Lightâ€Emitting Devices. Advanced Materials<br>Technologies, 2020, 5, 2000099.                                                                                                               | 5.8  | 49        |
| 162 | Evaluation of structure–property relationships of solution-processible fullerene acceptors and their n-channel field-effect transistor performance. Journal of Materials Chemistry, 2012, 22, 14976.                                       | 6.7  | 48        |

| #   | Article                                                                                                                                                                                                                                            | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | A Tandem Organic Solar Cell with PCE of 14.52% Employing Subcells with the Same Polymer Donor and<br>Two Absorption Complementary Acceptors. Advanced Materials, 2019, 31, e1804723.                                                               | 21.0 | 48        |
| 164 | 3,4â€Dicyanothiophene—a Versatile Building Block for Efficient Nonfullerene Polymer Solar Cells.<br>Advanced Energy Materials, 2020, 10, 1904247.                                                                                                  | 19.5 | 48        |
| 165 | Highly efficient red electrophosphorescent devices based on an iridium complex with trifluoromethyl-substituted pyrimidine ligand. Applied Physics Letters, 2004, 85, 1619-1621.                                                                   | 3.3  | 46        |
| 166 | In situ doping and crosslinking of fullerenes to form efficient and robust electron-transporting layers for polymer solar cells. Energy and Environmental Science, 2014, 7, 638-643.                                                               | 30.8 | 46        |
| 167 | Thermally stable high performance non-fullerene polymer solar cells with low energy loss by using ladder-type small molecule acceptors. Organic Electronics, 2017, 44, 217-224.                                                                    | 2.6  | 45        |
| 168 | Solution processed inverted tandem polymer solar cells with self-assembled monolayer modified interfacial layers. Applied Physics Letters, 2010, 97, .                                                                                             | 3.3  | 44        |
| 169 | Sensitivity of titania(B) nanowires to nitroaromatic and nitroamino explosives at room temperature via surface hydroxyl groups. Journal of Materials Chemistry, 2011, 21, 7269.                                                                    | 6.7  | 44        |
| 170 | Highly Efficient Tandem Organic Solar Cell Enabled by Environmentally Friendly Solvent Processed<br>Polymeric Interconnecting Layer. Advanced Energy Materials, 2018, 8, 1703180.                                                                  | 19.5 | 44        |
| 171 | High performance low-bandgap perovskite solar cells based on a high-quality mixed Sn–Pb perovskite<br>film prepared by vacuum-assisted thermal annealing. Journal of Materials Chemistry A, 2018, 6,<br>16347-16354.                               | 10.3 | 44        |
| 172 | Highly efficient indacenodithiophene-based polymeric solar cells in conventional and inverted device configurations. Organic Electronics, 2011, 12, 794-801.                                                                                       | 2.6  | 43        |
| 173 | Indacenodithieno[3,2-b]thiophene-based broad bandgap polymers for high efficiency polymer solar cells. Polymer Chemistry, 2013, 4, 5220.                                                                                                           | 3.9  | 42        |
| 174 | Unexpected fluorescent emission of graft sulfonated-acetone–formaldehyde lignin and its<br>application as a dopant of PEDOT for high performance photovoltaic and light-emitting devices.<br>Journal of Materials Chemistry C, 2016, 4, 5297-5306. | 5.5  | 42        |
| 175 | Homogeneous Grain Boundary Passivation in Wideâ€Bandgap Perovskite Films Enables Fabrication of<br>Monolithic Perovskite/Organic Tandem Solar Cells with over 21% Efficiency. Advanced Functional<br>Materials, 2022, 32, .                        | 14.9 | 42        |
| 176 | Efficient device engineering for inverted non-fullerene organic solar cells with low energy loss.<br>Journal of Materials Chemistry C, 2018, 6, 4457-4463.                                                                                         | 5.5  | 41        |
| 177 | Interface Engineering of a Compatible PEDOT Derivative Bilayer for Highâ€Performance Inverted<br>Perovskite Solar Cells. Advanced Materials Interfaces, 2017, 4, 1600948.                                                                          | 3.7  | 40        |
| 178 | Growth and evolution of solution-processed CH3NH3PbI3-xClx layer for highly efficient planar-heterojunction perovskite solar cells. Journal of Power Sources, 2016, 301, 242-250.                                                                  | 7.8  | 39        |
| 179 | Naphthalene Diimide Based n-Type Conjugated Polymers as Efficient Cathode Interfacial Materials for<br>Polymer and Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 36070-36081.                                               | 8.0  | 39        |
| 180 | Surface Characterization of Polythiophene:Fullerene Blends on Different Electrodes Using Near Edge<br>X-ray Absorption Fine Structure. ACS Applied Materials & Interfaces, 2011, 3, 726-732.                                                       | 8.0  | 38        |

| #   | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | The effect of thieno[3,2-b]thiophene on the absorption, charge mobility and photovoltaic performance of diketopyrrolopyrrole-based low bandgap conjugated polymers. Journal of Materials Chemistry C, 2013, 1, 7526.            | 5.5  | 38        |
| 182 | Backbone Fluorination of Polythiophenes Improves Device Performance of Non-Fullerene Polymer<br>Solar Cells. ACS Applied Energy Materials, 2019, 2, 7572-7583.                                                                  | 5.1  | 38        |
| 183 | FAâ€Assistant lodide Coordination in Organic–Inorganic Wideâ€Bandgap Perovskite with Mixed Halides.<br>Small, 2020, 16, e1907226.                                                                                               | 10.0 | 38        |
| 184 | Advances in Dion-Jacobson phase two-dimensional metal halide perovskite solar cells. Nanophotonics, 2021, 10, 2069-2102.                                                                                                        | 6.0  | 38        |
| 185 | Efficient all polymer solar cells from layer-evolved processing of a bilayer inverted structure.<br>Journal of Materials Chemistry C, 2014, 2, 416-420.                                                                         | 5.5  | 37        |
| 186 | Reduced open-circuit voltage loss for highly efficient low-bandgap perovskite solar cells <i>via</i> suppression of silver diffusion. Journal of Materials Chemistry A, 2019, 7, 17324-17333.                                   | 10.3 | 37        |
| 187 | Revealing the crystallization process and realizing uniform 1.8 eV MA-based wide-bandgap mixed-halide perovskites via solution engineering. Nano Research, 2019, 12, 1033-1039.                                                 | 10.4 | 37        |
| 188 | Fluoro- and Amino-Functionalized Conjugated Polymers as Electron Transport Materials for<br>Perovskite Solar Cells with Improved Efficiency and Stability. ACS Applied Materials & Interfaces,<br>2019, 11, 5289-5297.          | 8.0  | 37        |
| 189 | Incorporation of rubidium cations into blue perovskite quantum dot light-emitting diodes <i>via</i> FABr-modified multi-cation hot-injection method. Nanoscale, 2019, 11, 1295-1303.                                            | 5.6  | 36        |
| 190 | Direct observation of cation-exchange in liquid-to-solid phase transformation in<br>FA <sub>1â^'x</sub> MA <sub>x</sub> PbI <sub>3</sub> based perovskite solar cells. Journal of Materials<br>Chemistry A, 2018, 6, 9081-9088. | 10.3 | 35        |
| 191 | Self-Stimulated Dissociation in Non-Fullerene Organic Bulk-Heterojunction Solar Cells. Joule, 2020, 4, 2443-2457.                                                                                                               | 24.0 | 35        |
| 192 | Metalâ€Halide Perovskite Crystallization Kinetics: A Review of Experimental and Theoretical Studies.<br>Advanced Energy Materials, 2021, 11, 2100784.                                                                           | 19.5 | 35        |
| 193 | Inkjet-Printed Full-Color Matrix Quasi-Two-Dimensional Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2021, 13, 41773-41781.                                                                             | 8.0  | 35        |
| 194 | The evolution and future of metal halide perovskite-based optoelectronic devices. Matter, 2021, 4, 3814-3834.                                                                                                                   | 10.0 | 35        |
| 195 | Solution-processed cross-linkable hole selective layer for polymer solar cells in the inverted structure. Applied Physics Letters, 2010, 97, .                                                                                  | 3.3  | 34        |
| 196 | Wide bandgap dithienobenzodithiophene-based π-conjugated polymers consisting of fluorinated<br>benzotriazole and benzothiadiazole for polymer solar cells. Journal of Materials Chemistry C, 2016, 4,<br>4719-4727.             | 5.5  | 34        |
| 197 | White Polymer Light-Emitting Diodes Based on Exciplex Electroluminescence from Polymer Blends and a Single Polymer. ACS Applied Materials & Amp; Interfaces, 2016, 8, 6164-6173.                                                | 8.0  | 34        |
| 198 | Colorâ€&table Deepâ€Blue Perovskite Lightâ€Emitting Diodes Based on Organotrichlorosilane<br>Postâ€Treatment. Advanced Functional Materials, 2021, 31, 2103219.                                                                 | 14.9 | 34        |

| #   | Article                                                                                                                                                                                                                                     | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 199 | Development and Challenges of Metal Halide Perovskite Solar Modules. Solar Rrl, 2022, 6, 2100545.                                                                                                                                           | 5.8  | 34        |
| 200 | Subtle side chain modification of triphenylamineâ€based polymer holeâ€transport layer materials<br>produces efficient and stable inverted perovskite solar cells. , 2022, 1, 281-293.                                                       |      | 34        |
| 201 | Non-Fullerene Acceptor Doped Block Copolymer for Efficient and Stable Organic Solar Cells. ACS Energy Letters, 2022, 7, 2196-2202.                                                                                                          | 17.4 | 34        |
| 202 | Porous and Intercrossed PbI <sub>2</sub> –CsI Nanorod Scaffold for Inverted Planar FA–Cs<br>Mixed-Cation Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 6126-6135.                                                   | 8.0  | 32        |
| 203 | Multifunctional semitransparent organic solar cells with excellent infrared photon rejection.<br>Chinese Chemical Letters, 2020, 31, 1608-1611.                                                                                             | 9.0  | 31        |
| 204 | Elucidating the Role of Antisolvents on the Surface Chemistry and Optoelectronic Properties of<br>CsPbBr <sub><i>x</i></sub> I <sub>3-x</sub> Perovskite Nanocrystals. Journal of the American Chemical<br>Society, 2022, 144, 12102-12115. | 13.7 | 31        |
| 205 | Recent Advances in Perovskite Solar Cells: Morphology Control and Interfacial Engineering. Acta<br>Chimica Sinica, 2015, 73, 179.                                                                                                           | 1.4  | 30        |
| 206 | Two-Dimensional Self-Assembly of 1-Pyrylphosphonic Acid:Â Transfer of Stacks on Structured Surface.<br>Journal of the American Chemical Society, 2006, 128, 5672-5679.                                                                      | 13.7 | 29        |
| 207 | Optimization of Active Layer and Anode Electrode for High-Performance Inverted Bulk-Heterojunction Solar Cells. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 1665-1675.                                                | 2.9  | 28        |
| 208 | Efficient Poling of Electroâ€Optic Polymers in Thin Films and Silicon Slot Waveguides by Detachable<br>Pyroelectric Crystals. Advanced Materials, 2012, 24, OP42-7.                                                                         | 21.0 | 28        |
| 209 | Combined optimization of emission layer morphology and hole-transport layer for enhanced performance of perovskite light-emitting diodes. Journal of Materials Chemistry C, 2017, 5, 6169-6175.                                             | 5.5  | 28        |
| 210 | Comparison of processing windows and electronic properties between CH3NH3PbI3 perovskite fabricated by one-step and two-step solution processes. Organic Electronics, 2018, 63, 159-165.                                                    | 2.6  | 28        |
| 211 | Highly stable enhanced near-infrared amplified spontaneous emission in solution-processed perovskite films by employing polymer and gold nanorods. Nanoscale, 2019, 11, 1959-1967.                                                          | 5.6  | 28        |
| 212 | Semitransparent perovskite solar cells for smart windows. Science Bulletin, 2020, 65, 980-982.                                                                                                                                              | 9.0  | 28        |
| 213 | Direct surface functionalization of indium tin oxide via electrochemically induced assembly. Journal of Materials Chemistry, 2007, 17, 3489.                                                                                                | 6.7  | 27        |
| 214 | Charge Carrier Dynamics in Metalated Polymers Investigated by Optical-Pump Terahertz-Probe<br>Spectroscopy. Journal of Physical Chemistry B, 2009, 113, 15427-15432.                                                                        | 2.6  | 27        |
| 215 | Engineering of perovskite light-emitting diodes based on quasi-2D perovskites formed by diamine cations. Organic Electronics, 2019, 75, 105400.                                                                                             | 2.6  | 27        |
| 216 | Solvent-Dispersed Benzothiadiazole-Tetrathiafulvalene Single-Crystal Nanowires and Their<br>Application in Field-Effect Transistors. ACS Applied Materials & Interfaces, 2013, 5, 2320-2324.                                                | 8.0  | 26        |

| #   | Article                                                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 217 | Fabrication of high-performance and low-hysteresis lead halide perovskite solar cells by utilizing a<br>versatile alcohol-soluble bispyridinium salt as an efficient cathode modifier. Journal of Materials<br>Chemistry A, 2017, 5, 17943-17953. | 10.3 | 26        |
| 218 | Unravelling Alkaliâ€Metalâ€Assisted Domain Distribution of Quasiâ€2D Perovskites for Cascade Energy<br>Transfer toward Efficient Blue Lightâ€Emitting Diodes. Advanced Science, 2022, 9, e2200393.                                                | 11.2 | 26        |
| 219 | High-performance and stable CsPbBr <sub>3</sub> light-emitting diodes based on polymer additive treatment. RSC Advances, 2019, 9, 27684-27691.                                                                                                    | 3.6  | 25        |
| 220 | In-situ synthesis of metal nanoparticle-polymer composites and their application as efficient<br>interfacial materials for both polymer and planar heterojunction perovskite solar cells. Organic<br>Electronics, 2015, 27, 46-52.                | 2.6  | 23        |
| 221 | Synergistic Effect of Pseudo-Halide Thiocyanate Anion and Cesium Cation on Realizing<br>High-Performance Pinhole-Free MA-Based Wide-Band Gap Perovskites. ACS Applied Materials &<br>Interfaces, 2019, 11, 25909-25916.                           | 8.0  | 23        |
| 222 | Semitransparent organic solar cells based on all-low-bandgap donor and acceptor materials and their performance potential. Materials Today Energy, 2021, 21, 100807.                                                                              | 4.7  | 23        |
| 223 | Emission Wavelength Tuning via Competing Lattice Expansion and Octahedral Tilting for Efficient Red<br>Perovskite Lightâ€Emitting Diodes. Advanced Functional Materials, 2021, 31, 2106691.                                                       | 14.9 | 23        |
| 224 | Identifying structure–absorption relationships and predicting absorption strength of non-fullerene<br>acceptors for organic photovoltaics. Energy and Environmental Science, 2022, 15, 2958-2973.                                                 | 30.8 | 22        |
| 225 | Efficient organic-inorganic hybrid cathode interfacial layer enabled by polymeric dopant and its application in large-area polymer solar cells. Science China Chemistry, 2019, 62, 67-73.                                                         | 8.2  | 21        |
| 226 | Molecularly Engineered Interfaces in Metal Halide Perovskite Solar Cells. Journal of Physical<br>Chemistry Letters, 2021, 12, 4882-4901.                                                                                                          | 4.6  | 21        |
| 227 | A cascade-type electron extraction design for efficient low-bandgap perovskite solar cells based on a conventional structure with suppressed open-circuit voltage loss. Materials Chemistry Frontiers, 2019, 3, 496-504.                          | 5.9  | 20        |
| 228 | Toward Efficient Tandem Organic Solar Cells: From Materials to Device Engineering. ACS Applied<br>Materials & Interfaces, 2020, 12, 39937-39947.                                                                                                  | 8.0  | 20        |
| 229 | Tunable lightâ€harvesting polymers containing embedded dipolar chromophores for polymer solar cell<br>applications. Journal of Polymer Science Part A, 2012, 50, 1362-1373.                                                                       | 2.3  | 18        |
| 230 | Dopantâ€Free Squaraineâ€Based Polymeric Holeâ€Transporting Materials with Comprehensive Passivation<br>Effects for Efficient Allâ€Inorganic Perovskite Solar Cells. Angewandte Chemie, 2019, 131, 17888-17894.                                    | 2.0  | 18        |
| 231 | Interface Engineering for Allâ€Inorganic CsPblBr <sub>2</sub> Perovskite Solar Cells with Enhanced Power Conversion Efficiency over 11%. Energy Technology, 2021, 9, 2100562.                                                                     | 3.8  | 18        |
| 232 | Monolithic perovskite/organic tandem solar cells: Developments, prospects, and challenges. Nano<br>Select, 2021, 2, 1266-1276.                                                                                                                    | 3.7  | 18        |
| 233 | Ceneral design of self-doped small molecules as efficient hole extraction materials for polymer solar cells. Journal of Materials Chemistry A, 2017, 5, 3780-3785.                                                                                | 10.3 | 17        |
| 234 | Toward Efficient Triple-Junction Polymer Solar Cells through Rational Selection of Middle Cells. ACS<br>Energy Letters, 2020, 5, 1771-1779.                                                                                                       | 17.4 | 17        |

| #   | Article                                                                                                                                                                                                         | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 235 | Architecturing 1Dâ€2Dâ€3D Multidimensional Coupled CsPbI <sub>2</sub> Br Perovskites toward Highly<br>Effective and Stable Solar Cells. Small, 2021, 17, e2100888.                                              | 10.0 | 17        |
| 236 | Fully visible-light-harvesting conjugated polymers with pendant donor-ï€-acceptor chromophores for photovoltaic applications. Solar Energy Materials and Solar Cells, 2012, 97, 50-58.                          | 6.2  | 16        |
| 237 | Synthesis of Anthracene-Based Donor–Acceptor Copolymers with a Thermally Removable Group for<br>Polymer Solar Cells. Macromolecules, 2014, 47, 8585-8593.                                                       | 4.8  | 16        |
| 238 | The Energyâ€Alignment Engineering in Polytriphenylaminesâ€Based Hole Transport Polymers Realizes Low<br>Energy Loss and High Efficiency for Allâ€Inorganic Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900265. | 5.8  | 16        |
| 239 | The Role of Diammonium Cation on the Structural and Optoelectronic Properties in 3D<br>Cesium–Formamidinium Mixedâ€Cation Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900140.                                  | 5.8  | 16        |
| 240 | Effects of ZnI2 doping on the performance of methylammonium-free perovskite solar cells. Journal of Applied Physics, 2020, 128, .                                                                               | 2.5  | 16        |
| 241 | Planar Heterojunction Organic Photodetectors Based on Fullerene and Non-fullerene Acceptor<br>Bilayers for a Tunable Spectral Response. ACS Applied Materials & Interfaces, 2020, 12, 55064-55071.              | 8.0  | 15        |
| 242 | Perovskiteâ€Gallium Nitride Tandem Lightâ€Emitting Diodes with Improved Luminance and Color<br>Tunability. Advanced Science, 2022, 9, .                                                                         | 11.2 | 15        |
| 243 | Perovskite/Organic Hybrid White Electroluminescent Devices with Stable Spectrum and Extended Operating Lifetime. ACS Energy Letters, 2022, 7, 523-532.                                                          | 17.4 | 14        |
| 244 | Arrays of Covalently Bonded Single Gold Nanoparticles on Thiolated Molecular Assemblies. Langmuir, 2006, 22, 6346-6351.                                                                                         | 3.5  | 13        |
| 245 | Donor–Acceptorâ€Type Copolymers Based on a Naphtho[1,2â€ɛ:5,6â€ɛ]bis(1,2,5â€thiadiazole) Scaffold for<br>Highâ€Efficiency Polymer Solar Cells. Chemistry - an Asian Journal, 2014, 9, 2104-2112.                | 3.3  | 13        |
| 246 | End-chain effects of non-fullerene acceptors on polymer solar cells. Organic Electronics, 2019, 64,<br>1-6.                                                                                                     | 2.6  | 13        |
| 247 | Synthesis and photovoltaic performance of a non-fullerene acceptor comprising siloxane-terminated alkoxyl side chain. Organic Electronics, 2021, 91, 106087.                                                    | 2.6  | 13        |
| 248 | Quantification of Temperatureâ€Dependent Charge Separation and Recombination Dynamics in<br>Nonâ€Fullerene Organic Photovoltaics. Advanced Functional Materials, 2021, 31, 2107157.                             | 14.9 | 13        |
| 249 | Emissive Chargeâ€Transfer States at Hybrid Inorganic/Organic Heterojunctions Enable Low Nonâ€Radiative<br>Recombination and Highâ€Performance Photodetectors. Advanced Materials, 2022, 34, e2104654.           | 21.0 | 13        |
| 250 | Controlled assembly of large π-conjugated aromatic thiols on Au(111). Nanotechnology, 2008, 19,<br>135605.                                                                                                      | 2.6  | 12        |
| 251 | Highâ€Performance Upscaled Indium Tin Oxide–Free Organic Solar Cells with Visual Esthetics and Flexibility. Solar Rrl, 2021, 5, 2100339.                                                                        | 5.8  | 12        |
| 252 | Solvent-vapor annealing-induced growth, alignment, and patterning of π-conjugated supramolecular<br>nanowires. Journal of Materials Research, 2011, 26, 311-321.                                                | 2.6  | 10        |

| #   | Article                                                                                                                                                                                                                                     | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 253 | Morphology evolution by controlling solvent-solute interactions using a binary solvent in bulk<br>heterojunction solar cells. Applied Physics Letters, 2013, 102, .                                                                         | 3.3  | 10        |
| 254 | Chitosanâ€Assisted Crystallization and Film Forming of Perovskite Crystals through Biomineralization.<br>Chemistry - an Asian Journal, 2016, 11, 893-899.                                                                                   | 3.3  | 9         |
| 255 | Blue Perovskite Light-emitting Diodes: Opportunities and Challenges. Wuli Huaxue Xuebao/ Acta<br>Physico - Chimica Sinica, 2020, .                                                                                                          | 4.9  | 9         |
| 256 | Solar Cells: Aminoâ€Functionalized Conjugated Polymer as an Efficient Electron Transport Layer for<br>Highâ€Performance Planarâ€Heterojunction Perovskite Solar Cells (Adv. Energy Mater. 5/2016). Advanced<br>Energy Materials, 2016, 6, . | 19.5 | 8         |
| 257 | Progress of the key materials for organic solar cells. Scientia Sinica Chimica, 2020, 50, 437-446.                                                                                                                                          | 0.4  | 8         |
| 258 | Performance optimization of tandem organic solar cells at varying incident angles based on optical analysis method. Optics Express, 2020, 28, 2381.                                                                                         | 3.4  | 8         |
| 259 | Electrocatalytic reduction of oxygen at platinum nanoparticles dispersed on electrochemically reduced graphene oxide/PEDOT:PSS composites. RSC Advances, 2020, 10, 30519-30528.                                                             | 3.6  | 7         |
| 260 | Flexibility of Room-Temperature-Synthesized Amorphous CdO-In <sub>2</sub> O <sub>3</sub> Alloy<br>Films and Their Application as Transparent Conductors in Solar Cells. ACS Applied Materials &<br>Interfaces, 2021, 13, 43795-43805.       | 8.0  | 7         |
| 261 | Conformation modification of terthiophene during the on-surface synthesis of pure polythiophene.<br>Nanoscale, 2020, 12, 18096-18105.                                                                                                       | 5.6  | 6         |
| 262 | Enhancing the Performance of Quasi-2D Perovskite Light-Emitting Diodes Using Natural Cyclic<br>Molecules with Distinct Phase Regulation Behaviors. ACS Applied Materials & Interfaces, 2022, 14,<br>9587-9596.                              | 8.0  | 6         |
| 263 | Applications of organic additives in metal halide perovskite light-emitting diodes. Wuli Xuebao/Acta<br>Physica Sinica, 2019, 68, 158505.                                                                                                   | 0.5  | 5         |
| 264 | Stepwise on-surface synthesis of thiophene-based polymeric ribbons by coupling reactions and the carbon–fluorine bond cleavage. Physical Chemistry Chemical Physics, 2022, 24, 697-703.                                                     | 2.8  | 5         |
| 265 | Electroâ€optical Materials: Efficient Poling of Electroâ€Optic Polymers in Thin Films and Silicon Slot<br>Waveguides by Detachable Pyroelectric Crystals (Adv. Mater. 10/2012). Advanced Materials, 2012, 24,<br>OP1.                       | 21.0 | 4         |
| 266 | A distorted lactam unit with intramolecular hydrogen bonds as the electron donor of polymer solar cells. Journal of Materials Chemistry C, 2019, 7, 12290-12296.                                                                            | 5.5  | 4         |
| 267 | Enabling high-performance, centimeter-scale organic solar cells through three-dimensional charge transport. Cell Reports Physical Science, 2022, , 100761.                                                                                  | 5.6  | 4         |
| 268 | The electronic properties of CH <sub>3</sub> NH <sub>3</sub> PbI <sub>3</sub> perovskite surfaces tuned by inverted polarities of pyridine and ethylamine. Journal of Materials Chemistry C, 2018, 6, 6733-6738.                            | 5.5  | 3         |
| 269 | Improving the performance of all-inorganic perovskite light-emitting diodes through using polymeric interlayers with a pendant design. Materials Chemistry Frontiers, 2021, 5, 7199-7207.                                                   | 5.9  | 3         |
| 270 | Stability and flexibility of self-assembled monolayers of thiols consisting of a horizontal large<br>ï€-system and a vertical spacer. Journal of Physics Condensed Matter, 2008, 20, 315012.                                                | 1.8  | 2         |

| #   | Article                                                                                                                                                                           | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 271 | Interface engineering of stable, efficient polymer solar cells. SPIE Newsroom, 2009, , .                                                                                          | 0.1  | 2         |
| 272 | All-Organic Photopatterned One Diode-One Resistor Cell Array for Advanced Organic Nonvolatile<br>Memory Applications (Adv. Mater. 6/2012). Advanced Materials, 2012, 24, 827-827. | 21.0 | 2         |
| 273 | Gated lateral charge transport in self-assembled 1-pyrylphosphonic acid molecular multilayers.<br>Applied Physics Letters, 2006, 88, 223112.                                      | 3.3  | 1         |
| 274 | Interfacial Materials for Efficient Solution Processable Organic Photovoltaic Devices. Topics in Applied Physics, 2015, , 273-297.                                                | 0.8  | 1         |
| 275 | Roll-to-roll printed high voltage supercapattery in lead-contaminated aqueous electrolyte. Physical<br>Chemistry Chemical Physics, 2020, 22, 5597-5603.                           | 2.8  | 1         |
| 276 | Ultrathin Self-Assembled Organophosphonic Acid Monolayers/Metal Oxides Hybrid Dielectrics for<br>Low-Voltage Field-Effect Transistors. ACS Symposium Series, 2010, , 229-239.     | 0.5  | 0         |
| 277 | Interface engineering for high performance polymer and perovskite solar cells. , 2016, , .                                                                                        |      | 0         |
| 278 | Charge Transfer Dynamics in Donor-Ï€-Bridge-Acceptor Side-Chain Polymers for Solar Cells. , 2010, , .                                                                             |      | 0         |
| 279 | Metal Nanoparticle Enhanced Organic Solar Cells: A Numerical Study of Structure Property<br>Relationships. , 2011, , .                                                            |      | 0         |
| 280 | Strategies for Kinetic Control in Organic Solar Cells. , 2013, , .                                                                                                                |      | 0         |
| 281 | Interface and Tandem Design for High Performance Polymer Solar Cells. , 2017, , .                                                                                                 |      | 0         |
| 282 | High-Throughput Optical Modeling Guided Design of Polymer Solar Cells. , 2019, , .                                                                                                |      | 0         |
| 283 | Optical design for high-efficiency white perovskite LEDs. , 0, , .                                                                                                                |      | 0         |