
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5148490/publications.pdf Version: 2024-02-01

Χιλογεί Τλη

#	Article	IF	CITATIONS
1	Construction of Bi2WO6/CoAl-LDHs S-scheme heterojunction with efficient photo-Fenton-like catalytic performance: Experimental and theoretical studies. Chemosphere, 2022, 291, 133001.	8.2	30
2	Biochar in the 21st century: A data-driven visualization of collaboration, frontier identification, and future trend. Science of the Total Environment, 2022, 818, 151774.	8.0	60
3	Remediation of As and Cd contaminated sediment by biochars: Accompanied with the change of microbial community. Journal of Environmental Chemical Engineering, 2022, 10, 106912.	6.7	12
4	Speciation and release risk of heavy metals bonded on simulated naturally-aged microplastics prepared from artificially broken macroplastics. Environmental Pollution, 2022, 295, 118695.	7.5	13
5	Lignocellulosic biomass carbonization for biochar production and characterization of biochar reactivity. Renewable and Sustainable Energy Reviews, 2022, 157, 112056.	16.4	71
6	Effects of biochar-based materials on the bioavailability of soil organic pollutants and their biological impacts. Science of the Total Environment, 2022, 826, 153956.	8.0	25
7	Application of Invasive Plants as Biochar Precursors in the Field of Environment and Energy Storage. Frontiers in Environmental Science, 2022, 10, .	3.3	4
8	The effects of biochar on antibiotic resistance genes (ARGs) removal during different environmental governance processes: A review. Journal of Hazardous Materials, 2022, 435, 129067.	12.4	67
9	Biochar-based agricultural soil management: An application-dependent strategy for contributing to carbon neutrality. Renewable and Sustainable Energy Reviews, 2022, 164, 112529.	16.4	39
10	Insight into disinfection byproduct formation potential of aged biochar and its effects during chlorination. Journal of Environmental Management, 2022, 317, 115437.	7.8	5
11	Alfalfa biochar supported Mg-Fe layered double hydroxide as filter media to remove trace metal(loid)s from stormwater. Science of the Total Environment, 2022, 844, 156835.	8.0	13
12	The effects of biochar and its applications in the microbial remediation of contaminated soil: A review. Journal of Hazardous Materials, 2022, 438, 129557.	12.4	66
13	Phytoremediation plants (ramie) and steel smelting wastes for calcium silicate coated-nZVI/biochar production: Environmental risk assessment and efficient As(V) removal mechanisms. Science of the Total Environment, 2022, 844, 156924.	8.0	12
14	Application of biochar for the remediation of polluted sediments. Journal of Hazardous Materials, 2021, 404, 124052.	12.4	67
15	Mechanism analysis of heavy metal lead captured by natural-aged microplastics. Chemosphere, 2021, 270, 128624.	8.2	125
16	Activation of persulfate by nanoscale zero-valent iron loaded porous graphitized biochar for the removal of 17l²-estradiol: Synthesis, performance and mechanism. Journal of Colloid and Interface Science, 2021, 588, 776-786.	9.4	45
17	Recent progress in conjugated microporous polymers for clean energy: Synthesis, modification, computer simulations, and applications. Progress in Polymer Science, 2021, 115, 101374.	24.7	117
18	The approaches and prospects for natural organic matter-derived disinfection byproducts control by carbon-based materials in water disinfection progresses. Journal of Cleaner Production, 2021, 311, 127799.	9.3	26

#	Article	IF	CITATIONS
19	Recent advances in applications of nonradical oxidation in water treatment: Mechanisms, catalysts and environmental effects. Journal of Cleaner Production, 2021, 321, 128781.	9.3	29
20	Potential hazards of biochar: The negative environmental impacts of biochar applications. Journal of Hazardous Materials, 2021, 420, 126611.	12.4	118
21	Application of layered double hydroxide-biochar composites in wastewater treatment: Recent trends, modification strategies, and outlook. Journal of Hazardous Materials, 2021, 420, 126569.	12.4	80
22	Refined regulation and nitrogen doping of biochar derived from ramie fiber by deep eutectic solvents (DESs) for catalytic persulfate activation toward non-radical organics degradation and disinfection. Journal of Colloid and Interface Science, 2021, 601, 544-555.	9.4	48
23	Adsorption of 17β-estradiol from aqueous solution by raw and direct/pre/post-KOH treated lotus seedpod biochar. Journal of Environmental Sciences, 2020, 87, 10-23.	6.1	69
24	Mechanisms underlying the photocatalytic degradation pathway of ciprofloxacin with heterogeneous TiO2. Chemical Engineering Journal, 2020, 380, 122366.	12.7	258
25	Design and Preparation of Chitosan-Crosslinked Bismuth Ferrite/Biochar Coupled Magnetic Material for Methylene Blue Removal. International Journal of Environmental Research and Public Health, 2020, 17, 6.	2.6	46
26	Efficient Removal 17-Estradiol by Graphene-Like Magnetic Sawdust Biochar: Preparation Condition and Adsorption Mechanism. International Journal of Environmental Research and Public Health, 2020, 17, 8377.	2.6	16
27	Catalytic degradation of sulfamethoxazole by persulfate activated with magnetic graphitized biochar: Multiple mechanisms and variables effects. Chemical Engineering Research and Design, 2020, 144, 143-157.	5.6	29
28	Utilization of biochar for resource recovery from water: A review. Chemical Engineering Journal, 2020, 397, 125502.	12.7	135
29	Activation of persulfate by graphitized biochar for sulfamethoxazole removal: The roles of graphitic carbon structure and carbonyl group. Journal of Colloid and Interface Science, 2020, 577, 419-430.	9.4	94
30	Simultaneous remediation of methylene blue and Cr(VI) by mesoporous BiVO4 photocatalyst under visible-light illumination. Journal of the Taiwan Institute of Chemical Engineers, 2020, 112, 357-365.	5.3	17
31	Coupling of kenaf Biochar and Magnetic BiFeO3 onto Cross-Linked Chitosan for Enhancing Separation Performance and Cr(VI) Ions Removal Efficiency. International Journal of Environmental Research and Public Health, 2020, 17, 788.	2.6	15
32	Three-dimensional microspheric g-C ₃ N ₄ coupled by <i>Broussonetia papyrifera</i> biochar: facile sodium alginate immobilization and excellent photocatalytic Cr(<scp>iv</scp>) reduction. RSC Advances, 2020, 10, 6121-6128.	3.6	21
33	Rice waste biochars produced at different pyrolysis temperatures for arsenic and cadmium abatement and detoxification in sediment. Chemosphere, 2020, 250, 126268.	8.2	56
34	Nitrogen-doped biochar fiber with graphitization from Boehmeria nivea for promoted peroxymonosulfate activation and non-radical degradation pathways with enhancing electron transfer. Applied Catalysis B: Environmental, 2020, 269, 118850.	20.2	449
35	Effects of heteroaggregation with metal oxides and clays on tetracycline adsorption by graphene oxide. Science of the Total Environment, 2020, 719, 137283.	8.0	30
36	Synthesis a graphene-like magnetic biochar by potassium ferrate for 17β-estradiol removal: Effects of Al2O3 nanoparticles and microplastics. Science of the Total Environment, 2020, 715, 136723.	8.0	46

XIAOFEI TAN

#	Article	IF	CITATIONS
37	Biomass-derived porous graphitic carbon materials for energy and environmental applications. Journal of Materials Chemistry A, 2020, 8, 5773-5811.	10.3	234
38	Synthesis of Porous Biochar Containing Graphitic Carbon Derived From Lignin Content of Forestry Biomass and Its Application for the Removal of Diclofenac Sodium From Aqueous Solution. Frontiers in Chemistry, 2020, 8, 274.	3.6	15
39	Insights into catalytic removal and separation of attached metals from natural-aged microplastics by magnetic biochar activating oxidation process. Water Research, 2020, 179, 115876.	11.3	140
40	Degradation of sulfamethazine by biochar-supported bimetallic oxide/persulfate system in natural water: Performance and reaction mechanism. Journal of Hazardous Materials, 2020, 398, 122816.	12.4	133
41	Removal of 17β-estradiol from aqueous solution by graphene oxide supported activated magnetic biochar: Adsorption behavior and mechanism. Journal of the Taiwan Institute of Chemical Engineers, 2019, 102, 330-339.	5.3	42
42	Functionalized Biochar/Clay Composites for Reducing the Bioavailable Fraction of Arsenic and Cadmium in River Sediment. Environmental Toxicology and Chemistry, 2019, 38, 2337-2347.	4.3	48
43	Microwave-assisted chemical modification method for surface regulation of biochar and its application for estrogen removal. Chemical Engineering Research and Design, 2019, 128, 329-341.	5.6	42
44	Catalytic degradation of estrogen by persulfate activated with iron-doped graphitic biochar: Process variables effects and matrix effects. Chemical Engineering Journal, 2019, 378, 122141.	12.7	158
45	Synergy of Photocatalysis and Adsorption for Simultaneous Removal of Hexavalent Chromium and Methylene Blue by g-C3N4/BiFeO3/Carbon Nanotubes Ternary Composites. International Journal of Environmental Research and Public Health, 2019, 16, 3219.	2.6	22
46	Adsorption behavior of engineered carbons and carbon nanomaterials for metal endocrine disruptors: Experiments and theoretical calculation. Chemosphere, 2019, 222, 184-194.	8.2	157
47	Biochar for environmental management: Mitigating greenhouse gas emissions, contaminant treatment, and potential negative impacts. Chemical Engineering Journal, 2019, 373, 902-922.	12.7	256
48	Enhancement of Detoxification of Petroleum Hydrocarbons and Heavy Metals in Oil-Contaminated Soil by Using Glycine-β-Cyclodextrin. International Journal of Environmental Research and Public Health, 2019, 16, 1155.	2.6	18
49	Facile synthesis of MnO _x â€loaded biochar for the removal of doxycycline hydrochloride: effects of ambient conditions and coâ€existing heavy metals. Journal of Chemical Technology and Biotechnology, 2019, 94, 2187-2197.	3.2	41
50	Facile assembled biochar-based nanocomposite with improved graphitization for efficient photocatalytic activity driven by visible light. Applied Catalysis B: Environmental, 2019, 250, 78-88.	20.2	516
51	Influence of surfactants on anaerobic digestion of waste activated sludge: acid and methane production and pollution removal. Critical Reviews in Biotechnology, 2019, 39, 746-757.	9.0	47
52	A review on strategies to LDH-based materials to improve adsorption capacity and photoreduction efficiency for CO2. Coordination Chemistry Reviews, 2019, 386, 154-182.	18.8	187
53	Application of silver phosphate-based photocatalysts: Barriers and solutions. Chemical Engineering Journal, 2019, 366, 339-357.	12.7	96
54	Magnetic nanoferromanganese oxides modified biochar derived from pine sawdust for adsorption of tetracycline hydrochloride. Environmental Science and Pollution Research, 2019, 26, 5892-5903.	5.3	86

#	Article	IF	CITATIONS
55	Biochar synthesized via pyrolysis of Broussonetia papyrifera leaves: mechanisms and potential applications for phosphate removal. Environmental Science and Pollution Research, 2019, 26, 6565-6575.	5.3	17
56	Influence of immobilization on phenanthrene degradation by Bacillus sp. P1 in the presence of Cd(II). Science of the Total Environment, 2019, 655, 1279-1287.	8.0	31
57	Adsorption of 17β-estradiol by a novel attapulgite/biochar nanocomposite : Characteristics and influencing factors. Chemical Engineering Research and Design, 2019, 121, 155-164.	5.6	54
58	Ternary assembly of g-C3N4/graphene oxide sheets /BiFeO3 heterojunction with enhanced photoreduction of Cr(VI) under visible-light irradiation. Chemosphere, 2019, 216, 733-741.	8.2	73
59	Appraising the effect of in-situ remediation of heavy metal contaminated sediment by biochar and activated carbon on Cu immobilization and microbial community. Ecological Engineering, 2019, 127, 519-526.	3.6	37
60	Performance of magnetic graphene oxide/diethylenetriaminepentaacetic acid nanocomposite for the tetracycline and ciprofloxacin adsorption in single and binary systems. Journal of Colloid and Interface Science, 2018, 521, 150-159.	9.4	127
61	Hydrothermal synthesis of montmorillonite/hydrochar nanocomposites and application for 17β-estradiol and 17α-ethynylestradiol removal. RSC Advances, 2018, 8, 4273-4283.	3.6	33
62	Adsorption of estrogen contaminants (17β-estradiol and 17α-ethynylestradiol) by graphene nanosheets from water: Effects of graphene characteristics and solution chemistry. Chemical Engineering Journal, 2018, 339, 296-302.	12.7	42
63	Allelopathic effect of the rice straw aqueous extract on the growth of Microcystis aeruginosa. Ecotoxicology and Environmental Safety, 2018, 148, 953-959.	6.0	58
64	Nitrogen-containing amino compounds functionalized graphene oxide: Synthesis, characterization and application for the removal of pollutants from wastewater: A review. Journal of Hazardous Materials, 2018, 342, 177-191.	12.4	131
65	Comparative study of rice husk biochars for aqueous antibiotics removal. Journal of Chemical Technology and Biotechnology, 2018, 93, 1075-1084.	3.2	41
66	Titanium dioxideâ€coated biochar composites as adsorptive and photocatalytic degradation materials for the removal of aqueous organic pollutants. Journal of Chemical Technology and Biotechnology, 2018, 93, 783-791.	3.2	73
67	Fabrication of Stabilized Fe–Mn Binary Oxide Nanoparticles: Effective Adsorption of 17β-Estradiol and Influencing Factors. International Journal of Environmental Research and Public Health, 2018, 15, 2218.	2.6	12
68	Activated magnetic biochar by one-step synthesis: Enhanced adsorption and coadsorption for 17β-estradiol and copper. Science of the Total Environment, 2018, 639, 1530-1542.	8.0	142
69	Comprehensive Adsorption Studies of Doxycycline and Ciprofloxacin Antibiotics by Biochars Prepared at Different Temperatures. Frontiers in Chemistry, 2018, 6, 80.	3.6	143
70	The effect of several activated biochars on Cd immobilization and microbial community composition during in-situ remediation of heavy metal contaminated sediment. Chemosphere, 2018, 208, 655-664.	8.2	113
71	Immobilization of aqueous and sediment-sorbed ciprofloxacin by stabilized Fe-Mn binary oxide nanoparticles: Influencing factors and reaction mechanisms. Chemical Engineering Journal, 2017, 314, 612-621.	12.7	38
72	Adsorption of Estrogen Contaminants by Graphene Nanomaterials under Natural Organic Matter Preloading: Comparison to Carbon Nanotube, Biochar, and Activated Carbon. Environmental Science & Technology, 2017, 51, 6352-6359.	10.0	151

XIAOFEI TAN

#	Article	IF	CITATIONS
73	PPAR-α improves the recovery of lung function following acute respiratory distress syndrome by suppressing the level of TGF-β1. Molecular Medicine Reports, 2017, 16, 49-56.	2.4	4
74	Adsorption of emerging contaminant metformin using graphene oxide. Chemosphere, 2017, 179, 20-28.	8.2	129
75	Facile synthesis of Cu(II) impregnated biochar with enhanced adsorption activity for the removal of doxycycline hydrochloride from water. Science of the Total Environment, 2017, 592, 546-553.	8.0	154
76	Cu(II)-influenced adsorption of ciprofloxacin from aqueous solutions by magnetic graphene oxide/nitrilotriacetic acid nanocomposite: Competition and enhancement mechanisms. Chemical Engineering Journal, 2017, 319, 219-228.	12.7	157
77	Biochar as potential sustainable precursors for activated carbon production: Multiple applications in environmental protection and energy storage. Bioresource Technology, 2017, 227, 359-372.	9.6	487
78	Sorption performance and mechanisms of arsenic(V) removal by magnetic gelatin-modified biochar. Chemical Engineering Journal, 2017, 314, 223-231.	12.7	278
79	Enhanced adsorption of hexavalent chromium by a biochar derived from ramie biomass (Boehmeria) Tj ETQq1 1 Pollution Research, 2017, 24, 23528-23537.	0.784314 5.3	rgBT /Overlo 30
80	Competitive adsorption of Pb(II), Cd(II) and Cu(II) onto chitosan-pyromellitic dianhydride modified biochar. Journal of Colloid and Interface Science, 2017, 506, 355-364.	9.4	342
81	Remediation of Pb-contaminated port sediment by biosurfactant from Bacillus sp. G1. Transactions of Nonferrous Metals Society of China, 2017, 27, 1385-1393.	4.2	1
82	Potential Benefits of Biochar in Agricultural Soils: A Review. Pedosphere, 2017, 27, 645-661.	4.0	137
83	Adsorption of Cu(II), Pb(II), and Cd(II) Ions from Acidic Aqueous Solutions by Diethylenetriaminepentaacetic Acid-Modified Magnetic Graphene Oxide. Journal of Chemical & Engineering Data, 2017, 62, 407-416.	1.9	82
84	Tetracycline absorbed onto nitrilotriacetic acid-functionalized magnetic graphene oxide: Influencing factors and uptake mechanism. Journal of Colloid and Interface Science, 2017, 485, 269-279.	9.4	138
85	Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: A mini review. Bioresource Technology, 2017, 224, 25-33.	9.6	388
86	Adsorption Removal of 17β-Estradiol from Water by Rice Straw-Derived Biochar with Special Attention to Pyrolysis Temperature and Background Chemistry. International Journal of Environmental Research and Public Health, 2017, 14, 1213.	2.6	40
87	Efficient Removal of Tetracycline from Aqueous Media with a Fe3O4 Nanoparticles@graphene Oxide Nanosheets Assembly. International Journal of Environmental Research and Public Health, 2017, 14, 1495.	2.6	41
88	Investigation of the adsorption-reduction mechanisms of hexavalent chromium by ramie biochars of different pyrolytic temperatures. Bioresource Technology, 2016, 218, 351-359.	9.6	286
89	One-pot synthesis of carbon supported calcined-Mg/Al layered double hydroxides for antibiotic removal by slow pyrolysis of biomass waste. Scientific Reports, 2016, 6, 39691.	3.3	107
90	Maintaining eco-health of urban waterscapes with imbedded integrating ecological entity: Experimental approach. Journal of Central South University, 2016, 23, 2827-2837.	3.0	2

XIAOFEI TAN

#	Article	IF	CITATIONS
91	Biochar-based nano-composites for the decontamination of wastewater: A review. Bioresource Technology, 2016, 212, 318-333.	9.6	654
92	Biochar pyrolyzed from MgAl-layered double hydroxides pre-coated ramie biomass (Boehmeria nivea) Tj ETQqO Management, 2016, 184, 85-93.	0 0 rgBT /C 7.8	overlock 10 Tf 98
93	A novel graphene oxide coated biochar composite: synthesis, characterization and application for Cr(<scp>vi</scp>) removal. RSC Advances, 2016, 6, 85202-85212.	3.6	57
94	Utilization of LDH-based materials as potential adsorbents and photocatalysts for the decontamination of dyes wastewater: a review. RSC Advances, 2016, 6, 79415-79436.	3.6	141
95	Removal of metformin hydrochloride by Alternanthera philoxeroides biomass derived porous carbon materials treated with hydrogen peroxide. RSC Advances, 2016, 6, 79275-79284.	3.6	30
96	Enhanced adsorption of methylene blue by citric acid modification of biochar derived from water hyacinth (Eichornia crassipes). Environmental Science and Pollution Research, 2016, 23, 23606-23618.	5.3	89
97	Cadmium accumulation and tolerance of Macleaya cordata: a newly potential plant for sustainable phytoremediation in Cd-contaminated soil. Environmental Science and Pollution Research, 2016, 23, 10189-10199.	5.3	48
98	Biochar to improve soil fertility. A review. Agronomy for Sustainable Development, 2016, 36, 1.	5.3	633
99	Effects of exogenous calcium and spermidine on cadmium stress moderation and metal accumulation in Boehmeria nivea (L.) Gaudich. Environmental Science and Pollution Research, 2016, 23, 8699-8708.	5.3	54
100	Growth inhibition and oxidative damage of Microcystis aeruginosa induced by crude extract of Sagittaria trifolia tubers. Journal of Environmental Sciences, 2016, 43, 40-47.	6.1	49
101	Production of biochars from Ca impregnated ramie biomass (Boehmeria nivea (L.) Gaud.) and their phosphate removal potential. RSC Advances, 2016, 6, 5871-5880.	3.6	82
102	The use of microbial-earthworm ecofilters for wastewater treatment with special attention to influencing factors in performance: A review. Bioresource Technology, 2016, 200, 999-1007.	9.6	58
103	Competitive removal of Cd(<scp>ii</scp>) and Pb(<scp>ii</scp>) by biochars produced from water hyacinths: performance and mechanism. RSC Advances, 2016, 6, 5223-5232.	3.6	124
104	Effective removal of Cr(<scp>vi</scp>) using β-cyclodextrin–chitosan modified biochars with adsorption/reduction bifuctional roles. RSC Advances, 2016, 6, 94-104.	3.6	221
105	Removal of 17β-estradiol by few-layered graphene oxide nanosheets from aqueous solutions: External influence and adsorption mechanism. Chemical Engineering Journal, 2016, 284, 93-102.	12.7	258
106	Biochar amendment to leadâ€contaminated soil: Effects on fluorescein diacetate hydrolytic activity and phytotoxicity to rice. Environmental Toxicology and Chemistry, 2015, 34, 1962-1968.	4.3	12
107	Adsorption of hexavalent chromium by polyacrylonitrile (PAN)-based activated carbon fibers from aqueous solution. RSC Advances, 2015, 5, 25389-25397.	3.6	22
108	Mitigation mechanism of Cd-contaminated soils by different levels of exogenous low-molecular-weight organic acids and Phytolacca americana. RSC Advances, 2015, 5, 45502-45509.	3.6	16

#	Article	IF	CITATIONS
109	Chitosan modification of magnetic biochar produced from Eichhornia crassipes for enhanced sorption of Cr(<scp>vi</scp>) from aqueous solution. RSC Advances, 2015, 5, 46955-46964.	3.6	182
110	Adsorption behavior of Cr(<scp>vi</scp>) from aqueous solution onto magnetic graphene oxide functionalized with 1,2-diaminocyclohexanetetraacetic acid. RSC Advances, 2015, 5, 45384-45392.	3.6	63
111	Synthesis of graphene oxide decorated with core@double-shell nanoparticles and application for Cr(<scp>vi</scp>) removal. RSC Advances, 2015, 5, 106339-106349.	3.6	29
112	Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes). Journal of Environmental Management, 2015, 153, 68-73.	7.8	258
113	Effects of inorganic electrolyte anions on enrichment of Cu(II) ions with aminated Fe3O4/graphene oxide: Cu(II) speciation prediction and surface charge measurement. Chemosphere, 2015, 127, 35-41.	8.2	31
114	Effect of exogenous nitric oxide on antioxidative system and S-nitrosylation in leaves of Boehmeria nivea (L.) Gaud under cadmium stress. Environmental Science and Pollution Research, 2015, 22, 3489-3497.	5.3	55
115	Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere, 2015, 125, 70-85.	8.2	1,324
116	Tartaric acid modified Pleurotus ostreatus for enhanced removal of Cr(<scp>vi</scp>) ions from aqueous solution: characteristics and mechanisms. RSC Advances, 2015, 5, 24009-24015.	3.6	13
117	The effects of P. aeruginosa ATCC 9027 and NTA on phytoextraction of Cd by ramie (Boehmeria nivea (L.)) Tj ETQ	9q110.78	4314 rgBT
118	Immobilization of Cd(II) in acid soil amended with different biochars with a long term of incubation. Environmental Science and Pollution Research, 2015, 22, 12597-12604.	5.3	67
119	Mechanism of Cr(VI) reduction by Aspergillus niger: enzymatic characteristic, oxidative stress response, and reduction product. Environmental Science and Pollution Research, 2015, 22, 6271-6279.	5.3	83
120	Spatial distribution, health risk assessment and statistical source identification of the trace elements in surface water from the Xiangjiang River, China. Environmental Science and Pollution Research, 2015, 22, 9400-9412.	5.3	127
121	Effect of porous zinc–biochar nanocomposites on Cr(<scp>vi</scp>) adsorption from aqueous solution. RSC Advances, 2015, 5, 35107-35115.	3.6	223
122	Removal of Chromium (VI) from Aqueous Solution Using Mycelial Pellets ofPenicillium simplicissimumImpregnated with Powdered Biochar. Bioremediation Journal, 2015, 19, 259-268.	2.0	13
123	Time-dependent antioxidative responses of ramie (Boehmeria nivea (L.) Gaudich) to moderate cadmium stress and its up-regulation mechanism by spermidine antioxidant. RSC Advances, 2015, 5, 76141-76149.	3.6	4
124	Fast adsorption of Cd2+ and Pb2+ by EGTA dianhydride (EGTAD) modified ramie fiber. Journal of Colloid and Interface Science, 2014, 434, 152-158.	9.4	43
125	Effects of background electrolytes and ionic strength on enrichment of Cd(II) ions with magnetic graphene oxide–supported sulfanilic acid. Journal of Colloid and Interface Science, 2014, 435, 138-144.	9.4	76