Kathleen E Delgiorno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5148021/publications.pdf

Version: 2024-02-01

34 papers

2,738 citations

430874 18 h-index 24 g-index

39 all docs 39 docs citations

39 times ranked 4619 citing authors

#	Article	IF	CITATIONS
1	Single-Cell Transcriptomics Reveals a Conserved Metaplasia Program in Pancreatic Injury. Gastroenterology, 2022, 162, 604-620.e20.	1.3	43
2	The Role of Cystine/Glutamate Antiporter SLC7A11/xCT in the Pathophysiology of Cancer. Frontiers in Oncology, 2022, 12, 858462.	2.8	67
3	New insights into tuft cell formation: Implications for structure–function relationships. Current Opinion in Cell Biology, 2022, 76, 102082.	5.4	9
4	Enteroendocrine Cell Formation Is an Early Event in Pancreatic Tumorigenesis. Frontiers in Physiology, 2022, 13, 865452.	2.8	3
5	Eicosanoids in the Pancreatic Tumor Microenvironment—A Multicellular, Multifaceted Progression. , 2022, 1, 682-697.		3
6	264 METAPLASIA-INDUCED EPITHELIAL HETEROGENEITY DIRECTS PANCREATIC TISSUE INJURY AND RECOVERY. Gastroenterology, 2021, 160, S-62.	1.3	1
7	Tuft Cells Inhibit Pancreatic Tumorigenesis in Mice by Producing Prostaglandin D2. Gastroenterology, 2020, 159, 1866-1881.e8.	1.3	45
8	Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science, 2020, 368, 85-89.	12.6	692
9	Tuft Cell Formation Reflects Epithelial Plasticity in Pancreatic Injury: Implications for Modeling Human Pancreatitis. Frontiers in Physiology, 2020, 11, 88.	2.8	40
10	Abstract 5711: Therapeutic induction of tumor-selective ferroptosis in models of pancreatic cancer. , 2020, , .		0
11	Targeting LIF-mediated paracrine interaction for pancreatic cancer therapy and monitoring. Nature, 2019, 569, 131-135.	27.8	287
12	Abstract 5169: Pancreatic tumorigenesis evokes mechanisms of tissue injury and repair., 2019,,.		0
13	Abstract A19: The role of metaplastic tuft cell chemosensory signaling in pancreatic cancer., 2019,,.		1
14	Abstract 5169: Pancreatic tumorigenesis evokes mechanisms of tissue injury and repair., 2019,,.		0
15	Abstract 992: Pancreatic tuft cells resolve injury and restrain tumorigenesis. , 2018, , .		0
16	Reprogramming pancreatic stellate cells via p53 activation: A putative target for pancreatic cancer therapy. PLoS ONE, 2017, 12, e0189051.	2.5	31
17	Mounting Pressure in the Microenvironment: Fluids, Solids, and Cells in Pancreatic Ductal Adenocarcinoma. Gastroenterology, 2016, 150, 1545-1557.e2.	1.3	101
18	Interstitial Pressure in Pancreatic Ductal Adenocarcinoma Is Dominated by a Gel-Fluid Phase. Biophysical Journal, 2016, 110, 2106-2119.	0.5	131

#	Article	IF	Citations
19	Mutant KRas-Induced Mitochondrial Oxidative Stress in Acinar Cells Upregulates EGFR Signaling to Drive Formation of Pancreatic Precancerous Lesions. Cell Reports, 2016, 14, 2325-2336.	6.4	199
20	Abstract A80: Targeted depletion of extracellular matrix components in PDA eases barriers to treatment. , $2016, $, .		0
21	RUNX3 Controls a Metastatic Switch in Pancreatic Ductal Adenocarcinoma. Cell, 2015, 161, 1345-1360.	28.9	175
22	Abstract IA13: Acinar cell transdifferentiation sets the stage for early tumor heterogeneity. , 2015, , .		0
23	Abstract A92: Murine clinical trials program. , 2015, , .		0
24	Abstract B05: Assessing and removing biophysical barriers to treatment., 2015,,.		0
25	PI3K Regulation of RAC1 Is Required for KRAS-Induced Pancreatic Tumorigenesis in Mice. Gastroenterology, 2014, 147, 1405-1416.e7.	1.3	101
26	Identification and Manipulation of Biliary Metaplasia in Pancreatic Tumors. Gastroenterology, 2014, 146, 233-244.e5.	1.3	118
27	Response to Chauhan et al.: Interstitial Pressure and Vascular Collapse in Pancreas Cancer—Fluids and Solids, Measurement and Meaning. Cancer Cell, 2014, 26, 16-17.	16.8	25
28	Stromal reengineering to treat pancreas cancer. Carcinogenesis, 2014, 35, 1451-1460.	2.8	108
29	The secret origins and surprising fates of pancreas tumors. Carcinogenesis, 2014, 35, 1436-1440.	2.8	15
30	Persistent Salmonellosis Causes Pancreatitis in a Murine Model of Infection. PLoS ONE, 2014, 9, e92807.	2.5	10
31	Deficiencies of the Lipid-Signaling Enzymes Phospholipase D1 and D2 Alter Cytoskeletal Organization, Macrophage Phagocytosis, and Cytokine-Stimulated Neutrophil Recruitment. PLoS ONE, 2013, 8, e55325.	2.5	57
32	EGF Receptor Is Required for KRAS-Induced Pancreatic Tumorigenesis. Cancer Cell, 2012, 22, 304-317.	16.8	445
33	Abstract B73: Tumor-associated pancreatic metaplasia assumes a biliary duct-like phenotype, 2012,,.		0
34	Pancreas-Specific Ablation of \hat{l}^21 Integrin Induces Tissue Degeneration by Disrupting Acinar Cell Polarity. Gastroenterology, 2010, 138, 2531-2540.e4.	1.3	27