
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5147756/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transcriptional control of flavonoid biosynthesis by MYB–bHLH–WDR complexes. Trends in Plant Science, 2015, 20, 176-185.	8.8	1,336
2	GENETICS AND BIOCHEMISTRY OF SEED FLAVONOIDS. Annual Review of Plant Biology, 2006, 57, 405-430.	18.7	1,056
3	TT2, TT8, and TTG1 synergistically specify the expression ofBANYULSand proanthocyanidin biosynthesis inArabidopsis thaliana. Plant Journal, 2004, 39, 366-380.	5.7	855
4	Flavonoid oxidation in plants: from biochemical properties to physiological functions. Trends in Plant Science, 2007, 12, 29-36.	8.8	758
5	The TT8 Gene Encodes a Basic Helix-Loop-Helix Domain Protein Required for Expression of DFR and BAN Genes in Arabidopsis Siliques. Plant Cell, 2000, 12, 1863-1878.	6.6	679
6	MYBL2 is a new regulator of flavonoid biosynthesis in <i>Arabidopsis thaliana</i> . Plant Journal, 2008, 55, 940-953.	5.7	474
7	Functional analysis of ArabidopsisNCED6andNCED9genes indicates that ABA synthesized in the endosperm is involved in the induction of seed dormancy. Plant Journal, 2006, 45, 309-319.	5.7	434
8	WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis. Plant Journal, 2007, 50, 825-838.	5.7	408
9	Regulation of hormone metabolism in Arabidopsis seeds: phytochrome regulation of abscisic acid metabolism and abscisic acid regulation of gibberellin metabolism. Plant Journal, 2006, 48, 354-366.	5.7	403
10	Deciphering gene regulatory networks that control seed development and maturation in Arabidopsis. Plant Journal, 2008, 54, 608-620.	5.7	391
11	TRANSPARENT TESTA10 Encodes a Laccase-Like Enzyme Involved in Oxidative Polymerization of Flavonoids in Arabidopsis Seed Coat. Plant Cell, 2005, 17, 2966-2980.	6.6	380
12	Proanthocyanidin-Accumulating Cells in Arabidopsis Testa: Regulation of Differentiation and Role in Seed Development. Plant Cell, 2003, 15, 2514-2531.	6.6	359
13	Use of infrared thermal imaging to isolate Arabidopsis mutants defective in stomatal regulation. Plant Journal, 2002, 30, 601-609.	5.7	315
14	Epoxycarotenoid cleavage by NCED5 fineâ€ŧunes ABA accumulation and affects seed dormancy and drought tolerance with other NCED family members. Plant Journal, 2012, 70, 501-512.	5.7	299
15	Staying Alive: Molecular Aspects of Seed Longevity. Plant and Cell Physiology, 2016, 57, 660-674.	3.1	260
16	Flavonoid diversity and biosynthesis in seed of Arabidopsis thaliana. Planta, 2006, 224, 96-107.	3.2	249
17	The Arabidopsis ABA-deficient mutant aba4 demonstrates that the major route for stress-induced ABA accumulation is via neoxanthin isomers. Plant Journal, 2007, 50, 810-824.	5.7	227
18	Regulation of de novo fatty acid synthesis in maturing oilseeds of Arabidopsis. Plant Physiology and Biochemistry, 2009, 47, 448-455.	5.8	189

#	Article	IF	CITATIONS
19	In situ, Chemical and Macromolecular Study of the Composition of Arabidopsis thaliana Seed Coat Mucilage. Plant and Cell Physiology, 2007, 48, 984-999.	3.1	169
20	The Arabidopsis aba4-1 Mutant Reveals a Specific Function for Neoxanthin in Protection against Photooxidative Stress. Plant Cell, 2007, 19, 1048-1064.	6.6	166
21	Tâ€DNA integration into the Arabidopsis genome depends on sequences of preâ€insertion sites. EMBO Reports, 2002, 3, 1152-1157.	4.5	162
22	Arabidopsis seed secrets unravelled after a decade of genetic and omicsâ€driven research. Plant Journal, 2010, 61, 971-981.	5.7	161
23	The AtSUC5 sucrose transporter specifically expressed in the endosperm is involved in early seed development in Arabidopsis. Plant Journal, 2005, 43, 824-836.	5.7	152
24	Metabolite profiling and quantitative genetics of natural variation for flavonoids in Arabidopsis. Journal of Experimental Botany, 2012, 63, 3749-3764.	4.8	131
25	MUCILAGE-RELATED10 Produces Galactoglucomannan That Maintains Pectin and Cellulose Architecture in Arabidopsis Seed Mucilage. Plant Physiology, 2015, 169, 403-420.	4.8	126
26	A Naturally Occurring Mutation in an <i>Arabidopsis</i> Accession Affects a β- <scp>d</scp> -Galactosidase That Increases the Hydrophilic Potential of Rhamnogalacturonan I in Seed Mucilage. Plant Cell, 2008, 19, 3990-4006.	6.6	123
27	PECTIN METHYLESTERASE INHIBITOR6 Promotes <i>Arabidopsis</i> Mucilage Release by Limiting Methylesterification of Homogalacturonan in Seed Coat Epidermal Cells Â. Plant Cell, 2013, 25, 308-323.	6.6	118
28	CESA5 Is Required for the Synthesis of Cellulose with a Role in Structuring the Adherent Mucilage of Arabidopsis Seeds Â. Plant Physiology, 2011, 156, 1725-1739.	4.8	113
29	Regulation of flavonoid biosynthesis involves an unexpected complex transcriptional regulation of <i><i><scp>TT</scp>8</i> expression, in <scp>A</scp>rabidopsis. New Phytologist, 2013, 198, 59-70.</i>	7.3	111
30	Understanding polysaccharide production and properties using seed coat mutants: future perspectives for the exploitation of natural variants. Annals of Botany, 2014, 114, 1251-1263.	2.9	104
31	Specialization of Oleosins in Oil Body Dynamics during Seed Development in Arabidopsis Seeds Â. Plant Physiology, 2014, 164, 1866-1878.	4.8	104
32	Xylans Provide the Structural Driving Force for Mucilage Adhesion to the Arabidopsis Seed Coat. Plant Physiology, 2016, 171, 165-178.	4.8	98
33	Molecular biology and regulation of abscisic acid biosynthesis in plants. Plant Physiology and Biochemistry, 1999, 37, 341-350.	5.8	93
34	Cloning of a cDNA Encoded by a Member of the Arabidopsis thaliana ATP Sulfurylase Multigene Family. Journal of Biological Chemistry, 1996, 271, 12227-12233.	3.4	90
35	ESKIMO1 Disruption in Arabidopsis Alters Vascular Tissue and Impairs Water Transport. PLoS ONE, 2011, 6, e16645.	2.5	80
36	Endosperm and Nucellus Develop Antagonistically in Arabidopsis Seeds. Plant Cell, 2016, 28, 1343-1360.	6.6	69

#	Article	IF	CITATIONS
37	The Arabidopsis AtEPR1 extensin-like gene is specifically expressed in endosperm during seed germination. Plant Journal, 2000, 23, 643-652.	5.7	64
38	Deciphering and modifying LAFL transcriptional regulatory network in seed for improving yield and quality of storage compounds. Plant Science, 2016, 250, 198-204.	3.6	62
39	Specialized phenolic compounds in seeds: structures, functions, and regulations. Plant Science, 2020, 296, 110471.	3.6	62
40	Analysis of xanthophyll cycle gene expression during the adaptation of Arabidopsis to excess light and drought stress: Changes in RNA steady-state levels do not contribute to short-term responses. Plant Science, 2005, 169, 115-124.	3.6	54
41	Sticking to cellulose: exploiting Arabidopsis seed coat mucilage to understand cellulose biosynthesis and cell wall polysaccharide interactions. New Phytologist, 2017, 214, 959-966.	7.3	53
42	Dissecting Seed Mucilage Adherence Mediated by FEI2 and SOS5. Frontiers in Plant Science, 2016, 7, 1073.	3.6	51
43	Lost in Translation: Physiological Roles of Stored mRNAs in Seed Germination. Plants, 2020, 9, 347.	3.5	49
44	Regulation of HSD1 in Seeds of Arabidopsis thaliana. Plant and Cell Physiology, 2009, 50, 1463-1478.	3.1	47
45	The promoter of the Arabidopsis thaliana BAN gene is active in proanthocyanidin-accumulating cells of the Brassica napus seed coat. Plant Cell Reports, 2009, 28, 601-617.	5.6	45
46	Analysis of Natural Allelic Variation Controlling Arabidopsis thaliana Seed Germinability in Response to Cold and Dark: Identification of Three Major Quantitative Trait Loci. Molecular Plant, 2008, 1, 145-154.	8.3	42
47	Xyloglucan Metabolism Differentially Impacts the Cell Wall Characteristics of the Endosperm and Embryo during Arabidopsis Seed Germination. Plant Physiology, 2016, 170, 1367-1380.	4.8	41
48	Plasma membrane transport systems in higher plants: From black boxes to molecular physiology. Physiologia Plantarum, 1997, 100, 1-15.	5.2	40
49	Local Evolution of Seed Flotation in Arabidopsis. PLoS Genetics, 2014, 10, e1004221.	3.5	38
50	Dissection of Arabidopsis NCED9 promoter regulatory regions reveals a role for ABA synthesized in embryos in the regulation of GA-dependent seed germination. Plant Science, 2016, 246, 91-97.	3.6	38
51	Localisation and expression of zeaxanthin epoxidase mRNA in Arabidopsis in response to drought stress and during seed development. Functional Plant Biology, 2001, 28, 1161.	2.1	38
52	The ABA-Deficiency Suppressor Locus HAS2 Encodes the PPR Protein LOI1/MEF11 Involved in Mitochondrial RNA Editing. Molecular Plant, 2015, 8, 644-656.	8.3	37
53	New ABA-Hypersensitive Arabidopsis Mutants Are Affected in Loci Mediating Responses to Water Deficit and Dickeya dadantii Infection. PLoS ONE, 2011, 6, e20243.	2.5	34
54	Regulation by External K+ in a Maize Inward Shaker Channel Targets Transport Activity in the High Concentration Range. Plant Cell, 2005, 17, 1532-1548.	6.6	33

#	Article	IF	CITATIONS
55	Extensive Natural Variation in Arabidopsis Seed Mucilage Structure. Frontiers in Plant Science, 2016, 7, 803.	3.6	31
56	Molecular analysis of a null mutant for pea (Pisum sativum L.) seed lipoxygenase-2. Plant Molecular Biology, 1999, 39, 1209-1220.	3.9	27
57	Study of AtSUS2 Localization in Seeds Reveals a Strong Association with Plastids. Plant and Cell Physiology, 2008, 49, 1621-1626.	3.1	25
58	Seed coats as an alternative molecular factory: thinking outside the box. Plant Reproduction, 2018, 31, 327-342.	2.2	24
59	Developmental patterning of the sub-epidermal integument cell layer in <i>Arabidopsis</i> seeds. Development (Cambridge), 2017, 144, 1490-1497.	2.5	23
60	Emerging Functions for Cell Wall Polysaccharides Accumulated during Eudicot Seed Development. Plants, 2018, 7, 81.	3.5	23
61	Natural Variation Reveals a Key Role for Rhamnogalacturonan I in Seed Outer Mucilage and Underlying Genes. Plant Physiology, 2019, 181, 1498-1518.	4.8	23
62	Ageing beautifully: can the benefits of seed priming be separated from a reduced lifespan trade-off?. Journal of Experimental Botany, 2021, 72, 2312-2333.	4.8	19
63	Polysaccharide Structures in the Outer Mucilage of <i>Arabidopsis</i> Seeds Visualized by AFM. Biomacromolecules, 2020, 21, 1450-1459.	5.4	17
64	Inheritance and mapping of seed lipoxygenase polypeptides in Pisum. Theoretical and Applied Genetics, 1989, 77, 805-808.	3.6	16
65	Composition and physicochemical properties of outer mucilage from seeds of Arabidopsis natural accessions. AoB PLANTS, 2019, 11, plz031.	2.3	12
66	Transport of UDP-rhamnose by URGT2, URGT4, and URGT6 modulates rhamnogalacturonan-I length. Plant Physiology, 2021, 185, 914-933.	4.8	10
67	Sterol Glucosyltransferases Tailor Polysaccharide Accumulation in Arabidopsis Seed Coat Epidermal Cells. Cells, 2021, 10, 2546.	4.1	5
68	Seeds as perfect factories for developing sustainable agriculture. Plant Reproduction, 2018, 31, 201-202.	2.2	4
69	A TRANSPARENT TESTA Transcriptional Module Regulates Endothelium Polarity. Frontiers in Plant Science, 2019, 10, 1801.	3.6	4
70	Datasets of seed mucilage traits for Arabidopsis thaliana natural accessions with atypical outer mucilage. Scientific Data, 2021, 8, 79.	5.3	3
71	NORD : IMPACTS DES BIOTECHNOLOGIES RECHERCHES Approches moléculaires de la qualité et du développement des graines. Oleagineux Corps Gras Lipides, 2001, 8, 487-495.	0.2	0