Dmitriy I Sokolov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5147754/publications.pdf

Version: 2024-02-01

53 papers	353 citations	933447 10 h-index	940533 16 g-index
53	53	53	515
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	CXCR4-targeted modular peptide carriers for efficient anti-VEGF siRNA delivery. International Journal of Pharmaceutics, 2016, 515, 431-440.	5.2	31
2	Antiproliferative action of valorphin in cell cultures. Journal of Peptide Science, 2002, 8, 438-452.	1.4	25
3	Detection of Microparticles of Leukocytic Origin in the Peripheral Blood in Normal Pregnancy and Preeclampsia. Bulletin of Experimental Biology and Medicine, 2014, 157, 751-756.	0.8	24
4	Mass-Spectrometric Analysis of Proteome of Microvesicles Produced by NK-92 Natural Killer Cells. Bulletin of Experimental Biology and Medicine, 2018, 165, 564-571.	0.8	23
5	Influence of peripheral blood microparticles of pregnant women with preeclampsia on the phenotype of monocytes. Translational Research, 2016, 170, 112-123.	5.0	21
6	Study of Cytokine Profile and Angiogenic Potential of Peritoneal Fluid in Patients with External Genital Endometriosis. Bulletin of Experimental Biology and Medicine, 2005, 140, 541-544.	0.8	16
7	Regulatory Mechanisms for Apoptosis in Placental Tissue during Normal Pregnancy and Gestosis-Complicated Pregnancy. Bulletin of Experimental Biology and Medicine, 2009, 148, 766-770.	0.8	15
8	Synergistic Anti-Angiogenic Effects Using Peptide-Based Combinatorial Delivery of siRNAs Targeting VEGFA, VEGFR1, and Endoglin Genes. Pharmaceutics, 2019, 11, 261.	4.5	14
9	PECULIARITIES OF NK CELLS DIFFERENTIATION: CD56dim AND CD56bright NK CELLS AT PREGNANCY AND IN NON-PREGNANT STATE. Medical Immunology (Russia), 2017, 19, 19-26.	0.4	14
10	Expression of Thrombospondin-1 Gene mRNA and Protein in the Placenta in Gestosis. Bulletin of Experimental Biology and Medicine, 2011, 151, 215-218.	0.8	11
11	Effect of Cytokines on the Formation Tube-Like Structures by Endothelial Cells in the Presence of Trophoblast Cells. Bulletin of Experimental Biology and Medicine, 2017, 163, 148-158.	0.8	11
12	The uteroplacental contact zone cytokine influence on NK cell cytotoxicity to trophoblasts. Gynecological Endocrinology, 2020, 36, 1-6.	1.7	11
13	Proliferative and Migration Activity of JEG-3 Trophoblast Cell Line in the Presence of Cytokines. Bulletin of Experimental Biology and Medicine, 2015, 159, 550-556.	0.8	10
14	NK and trophoblast cells interaction: cytotoxic activity on recurrent pregnancy loss. Gynecological Endocrinology, 2019, 35, 5-10.	1.7	10
15	PHENOTYPIC AND FUNCTIONAL CHARACTERISTICS OF MICROVESICLES PRODUCED BY NATURAL KILLER CELLS. Medical Immunology (Russia), 2019, 21, 669-688.	0.4	10
16	Characteristics of Natural Killer Cell Interaction with Trophoblast Cells During Pregnancy. Current Molecular Medicine, 2020, 20, 202-219.	1.3	9
17	Effects of Placental Secretory Factors on Cytokine Production by Endothelial Cells. Bulletin of Experimental Biology and Medicine, 2013, 154, 375-378.	0.8	8
18	New highly sensitive sandwich ELISA system for soluble endoglin quantification in different biological fluids. Scandinavian Journal of Clinical and Laboratory Investigation, 2018, 78, 515-523.	1.2	8

#	Article	IF	Citations
19	Pro- and Anti-Inflammatory Cytokines in the Context of NK Cell–Trophoblast Interactions. International Journal of Molecular Sciences, 2022, 23, 2387.	4.1	8
20	Interaction of NK Cells, Trophoblast, and Endothelial Cells during Angiogenesis. Bulletin of Experimental Biology and Medicine, 2019, 167, 169-176.	0.8	7
21	NK-92 cells change their phenotype and function when cocultured with IL-15, IL-18 and trophoblast cells. Immunobiology, 2021, 226, 152125.	1.9	7
22	Changes in the Profiles of Chemokines Secreted by Endothelial Cells and Monocytes under Different Coculturing Conditions. Bulletin of Experimental Biology and Medicine, 2011, 150, 446-449.	0.8	5
23	Effects of Placental Tissue Secretory Products on the Formation of Vascular Tubules by EA.Hy926 Endothelial Cells. Bulletin of Experimental Biology and Medicine, 2013, 155, 108-112.	0.8	5
24	THE ROLE OF THE DIFFERENT SUBPOPULATIONS OF CD4 ⁺ D\$\phi\$ LYMPHOCYTES DURING PREGNANCY. Medical Immunology (Russia), 2016, 18, 521-536.	0.4	5
25	EVALUATION OF MICROVESICLES FORMED BY NATURAL KILLER (NK) CELLS USING FLOW CYTOMETRY. Medical Immunology (Russia), 2018, 20, 251-254.	0.4	5
26	Effects of Microvesicles Derived from NK Cells Stimulated with IL- $1\hat{1}^2$ on the Phenotype and Functional Activity of Endothelial Cells. International Journal of Molecular Sciences, 2021, 22, 13663.	4.1	5
27	Changes in Functional Activity of JEG-3 Trophoblast Cell Line in the Presence of Factors Secreted by Placenta. Archives of Medical Research, 2015, 46, 245-256.	3.3	4
28	Expression of VEGF and VEGF-R3 receptor by placental endothelial cells in health and gestosis. Bulletin of Experimental Biology and Medicine, 2008, 145, 348-351.	0.8	3
29	Detection of Antibodies In Vitro Binding to Endothelial Cells in the Sera from Women with Normal Pregnancy and Preeclampsia. Bulletin of Experimental Biology and Medicine, 2015, 159, 475-478.	0.8	3
30	Interactions of NK Cells and Trophoblast Cells. Methodological Aspects. Bulletin of Experimental Biology and Medicine, 2018, 165, 548-553.	0.8	3
31	Phenotypical Characteristics of Peripheral Blood Monocytes in Normal Pregnancy and Gestosis. Bulletin of Experimental Biology and Medicine, 2013, 154, 471-475.	0.8	2
32	Effect of Factors Produced by the Placenta on Cytokine Secretion by THP-1 Cells Cultured on a 3D Scaffold. Bulletin of Experimental Biology and Medicine, 2014, 156, 566-570.	0.8	2
33	Effect of Factors Secreted by the Placenta on Phenotype of THP-1 Cells Cultured on a 3D Scaffold. Bulletin of Experimental Biology and Medicine, 2016, 161, 162-167.	0.8	2
34	Effect of THP-1 Cells on the Formation of Vascular Tubes by Endothelial EA.hy926 Cells in the Presence of Placenta Secretory Products. Bulletin of Experimental Biology and Medicine, 2017, 162, 545-551.	0.8	2
35	Cytotoxic Activity of Peripheral Blood NK Cells towards Trophoblast Cells during Pregnancy. Bulletin of Experimental Biology and Medicine, 2019, 166, 567-573.	0.8	2
36	Interferons: pathogenetic rationale for the treatment of external genital endometriosis and clinical efficacy. Journal of Obstetrics and Women's Diseases, 2019, 68, 47-58.	0.2	2

#	Article	IF	CITATIONS
37	DIFFERENTIATION OF NK CELLS. A LOOK THROUGH THE PRISM OF TRANSCRIPTION FACTORS AND INTRACELLULAR MESSENGERS. Medical Immunology (Russia), 2019, 21, 21-38.	0.4	2
38	Changes in Phenotype of Monocyte-Like THP-1 Cells Associated with Transendothelial Migration. Bulletin of Experimental Biology and Medicine, 2008, 146, 596-598.	0.8	1
39	Effect of Monocyte-Like THP-1 Cells on the Formation of Vascular Tubes by EA.Hy926s Endothelial Cells in the Presence of Cytokines. Bulletin of Experimental Biology and Medicine, 2015, 159, 146-151.	0.8	1
40	Receptor expression by JEG-3 trophoblast cells in the presence of placenta secreted factors. Gynecological Endocrinology, 2019, 35, 35-40.	1.7	1
41	Microvesicles produced by monocytes affect the phenotype and functions of endothelial cells. AIMS Allergy and Immunology, 2021, 5, 135-159.	0.5	1
42	Experimental rationale for the endothelial protective effect of intravenous immunoglobulins in obstetric disease. Akusherstvo I Ginekologiya (Russian Federation), 2016, 5_2016, 82-88.	0.3	1
43	EFFECTS OF PLACENTAL FACTORS UPON DEVELOPMENT OF TUBULAR STRUCTURES BY ENDOTHELIAL CELLS IN PRESENCE OF TROPHOBLASTIC CELLS. Medical Immunology (Russia), 2017, 19, 285-292.	0.4	1
44	T-Lymphocyte proliferative activity in early pregnancy and outside pregnancy state. Gynecological Endocrinology, 2021, 37, 21-25.	1.7	1
45	Microvesicles derived from leukocytes in the peripheral blood of patients with external genital endometriosis. Medical Immunology (Russia), 2022, 24, 327-336.	0.4	1
46	Effect of Placenta Secretory Products on Migration Activity of Endothelial EA.Hy926 Cells. Bulletin of Experimental Biology and Medicine, 2013, 156, 156-160.	0.8	0
47	Profile of cytokines in aqueous humor and trabecular meshwork cell culture in patients with pseudoexfoliation glaucoma. Medical Immunology (Russia), 2021, 23, 95-106.	0.4	0
48	MALDI-TOF mass spectrometric protein profiling of THP-1 cells and their microvesicles. Medical Immunology (Russia), 2021, 23, 275-292.	0.4	0
49	THE ROLE OF SUBPOPULATIONS OF CD8+ T LYMPHOCYTES IN THE DEVELOPMENT OF PREGNANCY. Medical Immunology (Russia), 2018, 20, 621-638.	0.4	O
50	Microvesicles of leukocyte origin. Vestnik Rossiiskoi Akademii Meditsinskikh Nauk, 2018, 73, 378-387.	0.6	0
51	Influence of VEGF deprivation upon vascular formation by endothelium in the presence of macrophages. Medical Immunology (Russia), 2020, 22, 231-248.	0.4	0
52	Role of cytokines in the pathogenesis of glaucoma. Vestnik Rossiiskoi Akademii Meditsinskikh Nauk, 2020, 75, 609-616.	0.6	0
53	Phenotypic Profile of Peripheral Blood NK Cells under Culturing with Trophoblast Cells and IL-15 and IL-18 Cytokines. Medical Immunology (Russia), 2021, 23, 1383-1388.	0.4	0