Patrick Mallia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5147174/publications.pdf

Version: 2024-02-01

70 papers 6,569 citations

94433 37 h-index 98798 67 g-index

73 all docs

73 docs citations

73 times ranked

7520 citing authors

#	Article	IF	CITATIONS
1	Infective Exacerbations of Chronic Lung Disease. , 2022, , 259-265.		O
2	Effect of CRTH2 antagonism on the response to experimental rhinovirus infection in asthma: a pilot randomised controlled trial. Thorax, 2022, 77, 950-959.	5.6	7
3	Airway mucins promote immunopathology in virus-exacerbated chronic obstructive pulmonary disease. Journal of Clinical Investigation, 2022, 132, .	8.2	27
4	Inhaled corticosteroids downregulate the SARS-CoV-2 receptor ACE2 in COPD through suppression of type I interferon. Journal of Allergy and Clinical Immunology, 2021, 147, 510-519.e5.	2.9	121
5	Symptomatic, biochemical and radiographic recovery in patients with COVID-19. BMJ Open Respiratory Research, 2021, 8, e000908.	3.0	10
6	Asthma and viruses: AÂfocus on rhinoviruses and SARS-CoV-2. Journal of Allergy and Clinical Immunology, 2021, 147, 1648-1651.	2.9	5
7	Experimental Antiviral Therapeutic Studies for Human Rhinovirus Infections. Journal of Experimental Pharmacology, 2021, Volume 13, 645-659.	3.2	17
8	Innate-like Gene Expression of Lung-Resident Memory CD8 ⁺ T Cells during Experimental Human Influenza: A Clinical Study. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 826-841.	5.6	16
9	Human rhinovirus infection and COPD: role in exacerbations and potential for therapeutic targets. Expert Review of Respiratory Medicine, 2020, 14, 777-789.	2.5	7
10	Bronchial mucosal inflammation and illness severity in response to experimental rhinovirus infection in COPD. Journal of Allergy and Clinical Immunology, 2020, 146, 840-850.e7.	2.9	8
11	Targeted Retreatment of Incompletely Recovered Chronic Obstructive Pulmonary Disease Exacerbations with Ciprofloxacin. A Double-Blind, Randomized, Placebo-controlled, Multicenter, Phase III Clinical Trial. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 549-557.	5.6	9
12	In vivo experimental models of infection and disease., 2019,, 195-238.		1
13	Validity of the diagnosis of pneumonia in hospitalised patients with COPD. ERJ Open Research, 2019, 5, 00031-2019.	2.6	14
14	Inhaled corticosteroid suppression of cathelicidin drives dysbiosis and bacterial infection in chronic obstructive pulmonary disease. Science Translational Medicine, 2019, 11, .	12.4	75
15	Antiviral immunity is impaired in COPD patients with frequent exacerbations. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 317, L893-L903.	2.9	57
16	<p>Inflammation and infections in unreported chronic obstructive pulmonary disease exacerbations</p> . International Journal of COPD, 2019, Volume 14, 823-833.	2.3	13
17	Lesson of the month 2: A case of nitrous oxide-induced pancytopenia. Clinical Medicine, 2019, 19, 129-130.	1.9	9
18	Human Rhinovirus Impairs the Innate Immune Response to Bacteria in Alveolar Macrophages in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 1496-1507.	5.6	42

#	Article	IF	Citations
19	Modulating airway glucose to reduce respiratory infections. Expert Review of Respiratory Medicine, 2019, 13, 121-124.	2.5	4
20	Bronchial mucosal IFN- $\hat{1}$ ±/ $\hat{1}^2$ and pattern recognition receptor expression in patients with experimental rhinovirus-induced asthma exacerbations. Journal of Allergy and Clinical Immunology, 2019, 143, 114-125.e4.	2.9	65
21	Epitope-specific airway-resident CD4+ T cell dynamics during experimental human RSV infection. Journal of Clinical Investigation, 2019, 130, 523-538.	8.2	42
22	Role of airway glucose in bacterial infections in patients with chronic obstructive pulmonary disease. Journal of Allergy and Clinical Immunology, 2018, 142, 815-823.e6.	2.9	63
23	Comparative Metabolomic Sampling of Upper and Lower Airways by Four Different Methods to Identify Biochemicals That May Support Bacterial Growth. Frontiers in Cellular and Infection Microbiology, 2018, 8, 432.	3.9	18
24	Corticosteroid suppression of antiviral immunity increases bacterial loads and mucus production in COPD exacerbations. Nature Communications, 2018, 9, 2229.	12.8	153
25	A Comprehensive Evaluation of Nasal and Bronchial Cytokines and Chemokines Following Experimental Rhinovirus Infection in Allergic Asthma: Increased Interferons (IFN-γ and IFN-λ) and Type 2 Inflammation (IL-5 and IL-13). EBioMedicine, 2017, 19, 128-138.	6.1	102
26	Vitamin D increases the antiviral activity of bronchial epithelial cells inÂvitro. Antiviral Research, 2017, 137, 93-101.	4.1	123
27	Rhinovirus induction of fractalkine (CX3CL1) in airway and peripheral blood mononuclear cells in asthma. PLoS ONE, 2017, 12, e0183864.	2.5	7
28	Reduced sputum expression of interferon-stimulated genes in severe COPD. International Journal of COPD, 2016, Volume 11, 1485-1494.	2.3	16
29	Azithromycin for Acute Exacerbations of Asthma. JAMA Internal Medicine, 2016, 176, 1630.	5.1	89
30	Oxidative and Nitrosative Stress and Histone Deacetylase-2 Activity in Exacerbations of COPD. Chest, 2016, 149, 62-73.	0.8	70
31	The role of viral infections in exacerbations of chronic obstructive pulmonary disease and asthma. Therapeutic Advances in Respiratory Disease, 2016, 10, 158-174.	2.6	144
32	The MIF Antagonist ISO-1 Attenuates Corticosteroid-Insensitive Inflammation and Airways Hyperresponsiveness in an Ozone-Induced Model of COPD. PLoS ONE, 2016, 11, e0146102.	2.5	43
33	A randomised, double-blind, placebo-controlled study to evaluate the efficacy of oral azithromycin as a supplement to standard care for adult patients with acute exacerbations of asthma (the AZALEA) Tj $ETQq1\ 1\ 0$.78 43 14 r	gB ⊉ /Overlac
34	Rhinovirus-induced VP1-specific Antibodies are Group-specific and Associated With Severity of Respiratory Symptoms. EBioMedicine, 2015, 2, 64-70.	6.1	24
35	Interleukin-18 Is Associated With Protection Against Rhinovirus-Induced Colds and Asthma Exacerbations. Clinical Infectious Diseases, 2015, 60, 1528-1531.	5.8	19
36	The influence of asthma control on the severity of virus-induced asthma exacerbations. Journal of Allergy and Clinical Immunology, 2015, 136, 497-500.e3.	2.9	42

#	Article	IF	Citations
37	Pathogenesis of Viral Infection in Exacerbations of Airway Disease. Annals of the American Thoracic Society, 2015, 12, S115-S132.	3.2	76
38	Lower airway colonization and inflammatory response in COPD: a focus on Haemophilus influenzae. International Journal of COPD, 2014, 9, 1119.	2.3	41
39	Experimental rhinovirus infection in COPD: Implications for antiviral therapies. Antiviral Research, 2014, 102, 95-105.	4.1	25
40	IL-33–Dependent Type 2 Inflammation during Rhinovirus-induced Asthma Exacerbations <i>In Vivo</i> American Journal of Respiratory and Critical Care Medicine, 2014, 190, 1373-1382.	5.6	500
41	The relevance of respiratory viral infections in the exacerbations of chronic obstructive pulmonary diseaseâ€"A systematic review. Journal of Clinical Virology, 2014, 61, 181-188.	3.1	89
42	The Role of Bacteria in the Pathogenesis and Progression of Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 906-913.	5.6	453
43	Inhaled corticosteroids and pneumonia in chronic obstructive pulmonary disease. Lancet Respiratory Medicine,the, 2014, 2, 919-932.	10.7	68
44	Tolerogenic signaling by pulmonary CD1c+ dendritic cellsÂinduces regulatory T cells in patients with chronic obstructive pulmonary disease by IL-27/IL-10/inducible costimulator ligand. Journal of Allergy and Clinical Immunology, 2014, 134, 944-954.e8.	2.9	37
45	Lymphocyte subsets in experimental rhinovirus infection in chronic obstructive pulmonary disease. Respiratory Medicine, 2014, 108, 78-85.	2.9	19
46	Bronchial platelet-activating factor receptor in chronic obstructive pulmonary disease. Respiratory Medicine, 2014, 108, 898-904.	2.9	13
47	Soluble Major Histocompatibility Complex Class I-Related Chain B Molecules Are Increased and Correlate With Clinical Outcomes During Rhinovirus Infection in Healthy Subjects. Chest, 2014, 146, 32-40.	0.8	3
48	Airway Inflammation and Illness Severity in Response to Experimental Rhinovirus Infection in Asthma. Chest, 2014, 145, 1219-1229.	0.8	80
49	Neutrophil adhesion molecules in experimental rhinovirus infection in COPD. Respiratory Research, 2013, 14, 72.	3.6	23
50	Outgrowth of the Bacterial Airway Microbiome after Rhinovirus Exacerbation of Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 1224-1231.	5.6	329
51	Rhinovirus Infection Induces Degradation of Antimicrobial Peptides and Secondary Bacterial Infection in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2012, 186, 1117-1124.	5.6	238
52	Defining critical roles for NFâ€ĤB p65 and type I interferon in innate immunity to rhinovirus. EMBO Molecular Medicine, 2012, 4, 1244-1260.	6.9	80
53	Viruses exacerbating chronic pulmonary disease: the role of immune modulation. BMC Medicine, 2012, 10, 27.	5.5	67
54	Rhinovirus 16–induced IFN-α and IFN-β are deficient in bronchoalveolar lavage cells in asthmatic patients. Journal of Allergy and Clinical Immunology, 2012, 129, 1506-1514.e6.	2.9	190

#	Article	IF	CITATIONS
55	Lung microbiology and exacerbations in COPD. International Journal of COPD, 2012, 7, 555.	2.3	101
56	Immunological pathways in virusâ€induced COPD exacerbations: a role for ILâ€15. European Journal of Clinical Investigation, 2012, 42, 1010-1015.	3.4	9
57	Asthma exacerbations: Origin, effect, and prevention. Journal of Allergy and Clinical Immunology, 2011, 128, 1165-1174.	2.9	301
58	RSV-Induced Bronchial Epithelial Cell PD-L1 Expression Inhibits CD8+ T Cell Nonspecific Antiviral Activity. Journal of Infectious Diseases, 2011, 203, 85-94.	4.0	66
59	Experimental Rhinovirus Infection as a Human Model of Chronic Obstructive Pulmonary Disease Exacerbation. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 734-742.	5.6	349
60	The Role of IL-15 Deficiency in the Pathogenesis of Virus-Induced Asthma Exacerbations. PLoS Pathogens, 2011, 7, e1002114.	4.7	58
61	New Paradigms in the Pathogenesis of Chronic Obstructive Pulmonary Disease II. Proceedings of the American Thoracic Society, 2009, 6, 532-534.	3.5	58
62	Rhinovirus-induced lower respiratory illness is increased in asthma and related to virus load and Th1/2 cytokine and IL-10 production. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13562-13567.	7.1	447
63	Respiratory Syncytial Virus Persistence in Chronic Obstructive Pulmonary Disease. Pediatric Infectious Disease Journal, 2008, 27, S63-S70.	2.0	84
64	Models of infection and exacerbations in COPD. Current Opinion in Pharmacology, 2007, 7, 259-265.	3.5	9
65	Influenza infection and COPD. International Journal of COPD, 2007, 2, 55-64.	2.3	57
66	An experimental model of rhinovirus induced chronic obstructive pulmonary disease exacerbations: a pilot study. Respiratory Research, 2006, 7, 116.	3.6	87
67	How Viral Infections Cause Exacerbation of Airway Diseases. Chest, 2006, 130, 1203-1210.	0.8	149
68	Role of deficient type III interferon-l̂» production in asthma exacerbations. Nature Medicine, 2006, 12, 1023-1026.	30.7	955
69	Mechanisms and Experimental Models of Chronic Obstructive Pulmonary Disease Exacerbations. Proceedings of the American Thoracic Society, 2005, 2, 361-366.	3.5	29
70	Viral infection. , 0, , 76-96.		2