Shang-Tzen Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5146840/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Specific Plant Terpenoids and Lignoids Possess Potent Antiviral Activities against Severe Acute Respiratory Syndrome Coronavirus. Journal of Medicinal Chemistry, 2007, 50, 4087-4095.	6.4	460
2	Antibacterial activity of leaf essential oils and their constituents from Cinnamomum osmophloeum. Journal of Ethnopharmacology, 2001, 77, 123-127.	4.1	403
3	Antioxidant Activity of Extracts fromAcacia confusaBark and Heartwood. Journal of Agricultural and Food Chemistry, 2001, 49, 3420-3424.	5.2	380
4	Chemical Composition and Mosquito Larvicidal Activity of Essential Oils from Leaves of DifferentCinnamomum osmophloeumProvenances. Journal of Agricultural and Food Chemistry, 2004, 52, 4395-4400.	5.2	299
5	Anti-inflammation activities of essential oil and its constituents from indigenous cinnamon (Cinnamomum osmophloeum) twigs. Bioresource Technology, 2008, 99, 3908-3913.	9.6	278
6	Antifungal activities of essential oils and their constituents from indigenous cinnamon (Cinnamomum osmophloeum) leaves against wood decay fungi. Bioresource Technology, 2005, 96, 813-818.	9.6	259
7	Chemical compositions and larvicidal activities of leaf essential oils from two eucalyptus species. Bioresource Technology, 2009, 100, 452-456.	9.6	254
8	Bioactivity of selected plant essential oils against the yellow fever mosquito Aedes aegypti larvae. Bioresource Technology, 2003, 89, 99-102.	9.6	223
9	Cinnamaldehyde inhibits pro-inflammatory cytokines secretion from monocytes/macrophages through suppression of intracellular signaling. Food and Chemical Toxicology, 2008, 46, 220-231.	3.6	189
10	Study on the Antiinflammatory Activity of Essential Oil from Leaves ofCinnamomum osmophloeum. Journal of Agricultural and Food Chemistry, 2005, 53, 7274-7278.	5.2	181
11	Antioxidant activities of ethanolic extracts from the twigs of Cinnamomum osmophloeum. Bioresource Technology, 2008, 99, 1918-1925.	9.6	179
12	Chemical polymorphism and antifungal activity of essential oils from leaves of different provenances of indigenous cinnamon (Cinnamomum osmophloeum). Bioresource Technology, 2006, 97, 306-312.	9.6	161
13	Antifungal activity of essential oil and its constituents from Calocedrus macrolepis var. formosana Florin leaf against plant pathogenic fungi. Bioresource Technology, 2008, 99, 6266-6270.	9.6	148
14	Chemical Composition and Antifungal Activity of Essential Oils from Different Tissues of Japanese Cedar (Cryptomeria japonica). Journal of Agricultural and Food Chemistry, 2005, 53, 614-619.	5.2	138
15	Antifungal activity of cinnamaldehyde and eugenol congeners against wood-rot fungi. Bioresource Technology, 2008, 99, 5145-5149.	9.6	137
16	Antitermitic Activity of Leaf Essential Oils and Components fromCinnamomum osmophleum. Journal of Agricultural and Food Chemistry, 2002, 50, 1389-1392.	5.2	135
17	Insecticidal activities of leaf essential oils from Cinnamomum osmophloeum against three mosquito species. Bioresource Technology, 2009, 100, 457-464.	9.6	131
18	Antioxidant activities of natural phenolic compounds from Acacia confusa bark. Bioresource Technology, 2007, 98, 1120-1123.	9.6	127

#	Article	IF	CITATIONS
19	Variations in insecticidal activity and chemical compositions of leaf essential oils from Cryptomeria japonica at different ages. Bioresource Technology, 2009, 100, 465-470.	9.6	124
20	Antitermitic and Antifungal Activities of Essential Oil of Calocedrus formosana Leaf and Its Composition. Journal of Chemical Ecology, 2004, 30, 1957-1967.	1.8	103
21	Influences of extractives on the photodegradation of wood. Polymer Degradation and Stability, 2010, 95, 516-521.	5.8	97
22	Cytotoxicity of extractives from Taiwania cryptomerioides heartwood. Phytochemistry, 2000, 55, 227-232.	2.9	96
23	Comparison of the Antifungal Activity of Cadinane Skeletal Sesquiterpenoids from Taiwania (Taiwania) Tj ETQq1 1	9.78431	4 ggBT /Over
24	Antifungal Compounds in the Ethyl Acetate Soluble Fraction of the Extractives of Taiwania (Taiwania) Tj ETQq0 0	D₁gBT /Ov	verlock 10 Tf
25	Synergistic effects of cinnamaldehyde in combination with eugenol against wood decay fungi. Bioresource Technology, 2008, 99, 232-236.	9.6	92
26	Insecticidal activities of leaf and twig essential oils from <i>Clausena excavata</i> against <i>Aedes aegypti</i> and <i>Aedes albopictus</i> larvae. Pest Management Science, 2009, 65, 339-343.	3.4	85
27	Anti-inflammatory activities of essential oils and their constituents from different provenances of indigenous cinnamon (<i>Cinnamomum osmophloeum</i>) leaves. Pharmaceutical Biology, 2010, 48, 1130-1136.	2.9	85
28	Antitermitic activity of essential oils and components from Taiwania (Taiwania cryptomerioides). Journal of Chemical Ecology, 2001, 27, 717-724.	1.8	84
29	Anti-termitic activities of essential oils from coniferous trees against Coptotermes formosanus. Bioresource Technology, 2007, 98, 456-459.	9.6	84
30	Online RP-HPLC-DPPH Screening Method for Detection of Radical-Scavenging Phytochemicals from Flowers of Acacia confusa. Journal of Agricultural and Food Chemistry, 2008, 56, 328-332.	5.2	84
31	Protective effect of Acacia confusa bark extract and its active compound gallic acid against carbon tetrachloride-induced chronic liver injury in rats. Food and Chemical Toxicology, 2009, 47, 1385-1392.	3.6	81
32	Larvicidal activity of tectoquinone isolated from red heartwood-type Cryptomeria japonica against two mosquito species. Bioresource Technology, 2008, 99, 3617-3622.	9.6	79
33	Phenolic Antioxidants from the Heartwood ofAcacia confusa. Journal of Agricultural and Food Chemistry, 2005, 53, 5917-5921.	5.2	73
34	Essential oil from leaves of Cinnamomum osmophloeum acts as a xanthine oxidase inhibitor and reduces the serum uric acid levels in oxonate-induced mice. Phytomedicine, 2008, 15, 940-945.	5.3	73
35	Antimite Activity of Essential Oils and Their Constituents from <i>Taiwania cryptomerioides</i> . Journal of Medical Entomology, 2001, 38, 455-457.	1.8	71
36	Antiinflammatory activity of <i>Lindera erythrocarpa</i> fruits. Phytotherapy Research, 2008, 22, 213-216.	5.8	68

#	Article	IF	CITATIONS
37	Antrocamphin A, an Anti-inflammatory Principal from the Fruiting Body of Taiwanofungus camphoratus, and Its Mechanisms. Journal of Agricultural and Food Chemistry, 2010, 58, 3153-3158.	5.2	63
38	Antibacterial activities of plant essential oils against Legionella pneumophila. Water Research, 2008, 42, 278-286.	11.3	59
39	Anti-Inflammatory Activity of Sugiol, A Diterpene Isolated fromCalocedrus formosanaBark. Planta Medica, 2005, 71, 300-305.	1.3	58
40	Chemical composition and antifungal activity of essential oil isolated from Chamaecyparis formosensis Matsum. wood. Holzforschung, 2005, 59, 295-299.	1.9	58
41	Methods for Thermal Stability Enhancement of Leaf Essential Oils and Their Main Constituents from Indigenous Cinnamon (Cinnamomum osmophloeum). Journal of Agricultural and Food Chemistry, 2013, 61, 6293-6298.	5.2	57
42	Moisture excluding efficiency and dimensional stability of wood improved by acylation. Bioresource Technology, 2002, 85, 201-204.	9.6	56
43	Antioxidant activities and phytochemical characteristics of extracts from Acacia confusa bark. Bioresource Technology, 2009, 100, 509-514.	9.6	56
44	Terminating red imported fire ants using Cinnamomum osmophloeum leaf essential oil. Bioresource Technology, 2008, 99, 889-893.	9.6	54
45	Antifungal property of the essential oils and their constituents fromCinnamomum osmophloeum leaf against tree pathogenic fungi. Journal of the Science of Food and Agriculture, 2005, 85, 2047-2053.	3.5	51
46	Effect of Phytocompounds from the Heartwood of Acacia confusa on Inflammatory Mediator Production. Journal of Agricultural and Food Chemistry, 2008, 56, 1567-1573.	5.2	51
47	Evaluation of anxiolytic potency of essential oil and S-(+)-linalool from Cinnamomum osmophloeum ct. linalool leaves in mice. Journal of Traditional and Complementary Medicine, 2015, 5, 27-34.	2.7	51
48	Essential oil from the leaves of Cryptomeria japonica acts as a silverfish (Lepisma saccharina) repellent and insecticide. Journal of Wood Science, 2006, 52, 522-526.	1.9	50
49	Antifungal properties of ethanolic extract and its active compounds from Calocedrus macrolepis var. formosana (Florin) heartwood. Bioresource Technology, 2008, 99, 4871-4877.	9.6	50
50	Free radical-scavenging phytochemicals of hot water extracts of Acacia confusa leaves detected by an on-line screening method. Food Chemistry, 2009, 115, 1019-1024.	8.2	50
51	Neuropharmacological activities of phytoncide released from Cryptomeria japonica. Journal of Wood Science, 2009, 55, 27-31.	1.9	47
52	Inhibition of Xanthine Oxidase by Acacia confusa Extracts and Their Phytochemicals. Journal of Agricultural and Food Chemistry, 2010, 58, 781-786.	5.2	47
53	Structure-activity relationships of cadinane-type sesquiterpene derivatives against wood-decay fungi. Holzforschung, 2005, 59, 620-627.	1.9	45
54	Hepatoprotective phytocompounds from Cryptomeria japonica are potent modulators of inflammatory mediators. Phytochemistry, 2008, 69, 1348-1358.	2.9	45

#	Article	IF	CITATIONS
55	Phytochemicals from Acacia confusa Heartwood Extracts Reduce Serum Uric Acid Levels in Oxonate-Induced Mice: Their Potential Use as Xanthine Oxidase Inhibitors. Journal of Agricultural and Food Chemistry, 2010, 58, 9936-9941.	5.2	45
56	Modification of wood with isopropyl glycidyl ether and its effects on decay resistance and light stability. Bioresource Technology, 2006, 97, 1265-1271.	9.6	44
57	Stabilizing effect of extractives on the photo-oxidation of Acacia confusa wood. Polymer Degradation and Stability, 2010, 95, 1518-1522.	5.8	44
58	In Vivo Antioxidant Activities of Essential Oils and Their Constituents from Leaves of the Taiwanese Cinnamomum osmophloeum. Journal of Agricultural and Food Chemistry, 2012, 60, 3092-3097.	5.2	43
59	Antioxidative Activities of Both Oleic Acid and Camellia tenuifolia Seed Oil Are Regulated by the Transcription Factor DAF-16/FOXO in Caenorhabditis elegans. PLoS ONE, 2016, 11, e0157195.	2.5	43
60	Phytochemicals from <i>Cunninghamia konishii</i> Hayata Act as Antifungal Agents. Journal of Agricultural and Food Chemistry, 2012, 60, 124-128.	5.2	42
61	Antihyperglycemic and antioxidant activities of twig extract from Cinnamomum osmophloeum. Journal of Traditional and Complementary Medicine, 2016, 6, 281-288.	2.7	42
62	Protection of wood surfaces against photooxidation. Journal of Applied Polymer Science, 1985, 30, 1429-1448.	2.6	39
63	Evaluation of antifungal properties of octyl gallate and its synergy with cinnamaldehyde. Bioresource Technology, 2007, 98, 734-738.	9.6	38
64	Characterizing the conservation effect of clear coatings on photodegradation of wood. Bioresource Technology, 2008, 99, 1073-1079.	9.6	38
65	Antifungal Activities and Chemical Composition of Wood and Leaf Essential Oils from <i>Cunninghamia konishii</i> . Journal of Wood Chemistry and Technology, 2011, 31, 204-217.	1.7	38
66	Antioxidant activity of the ethanolic extract from the bark of <i>Chamaecyparis obtusa</i> var. <i>formosana</i> . Journal of the Science of Food and Agriculture, 2008, 88, 1400-1405.	3.5	37
67	Green-color conservation of ma bamboo (Dendrocalamus latiflorus) treated with chromium-based reagents. Journal of Wood Science, 2000, 46, 40-44.	1.9	35
68	Study on inhibition mechanisms of light-induced wood radicals by Acacia confusa heartwood extracts. Polymer Degradation and Stability, 2014, 105, 42-47.	5.8	35
69	Essential Oil Alloaromadendrene from Mixed-Type <i>Cinnamomum osmophloeum</i> Leaves Prolongs the Lifespan in <i>Caenorhabditis elegans</i> . Journal of Agricultural and Food Chemistry, 2014, 62, 6159-6165.	5.2	35
70	A review of antioxidant and pharmacological properties of phenolic compounds in Acacia confusa. Journal of Traditional and Complementary Medicine, 2018, 8, 443-450.	2.7	35
71	Antioxidant Activities and Xanthine Oxidase Inhibitory Effects of Phenolic Phytochemicals from <i>Acacia confusa</i> Twigs and Branches. Journal of Agricultural and Food Chemistry, 2010, 58, 1578-1583.	5.2	34
72	Effects of alkyl chain length of gallates on their antifungal property and potency as an environmentally benign preservative against wood-decay fungi. International Biodeterioration and Biodegradation, 2009, 63, 543-547.	3.9	33

#	Article	IF	CITATIONS
73	Antioxidant activity of extracts from Calocedrus formosana leaf, bark, and heartwood. Journal of Wood Science, 2004, 50, 422-426.	1.9	32
74	Studies on photostability of butyrylated, milled wood lignin using spectroscopic analyses. Polymer Degradation and Stability, 2006, 91, 816-822.	5.8	31
75	Mosquito larvicidal activities of extractives from black heartwood-type Cryptomeria japonica. Parasitology Research, 2009, 105, 1455-1458.	1.6	31
76	Potential Source of <i>S</i> -(+)-Linalool from <i>Cinnamomum osmophloeum</i> ct. linalool Leaf: Essential Oil Profile and Enantiomeric Purity. Journal of Agricultural and Food Chemistry, 2012, 60, 7623-7628.	5.2	31
77	Ultrasoundâ€essisted extraction of phenolic antioxidants from <i>Acacia confusa</i> flowers and buds. Journal of Separation Science, 2011, 34, 844-851.	2.5	29
78	Characterization of S-(+)-linalool synthase from several provenances of Cinnamomum osmophloeum. Tree Genetics and Genomes, 2014, 10, 75-86.	1.6	29
79	Activity of Cinnamomum osmophloeum leaf essential oil against Anopheles gambiae s.s. Parasites and Vectors, 2014, 7, 209.	2.5	29
80	Photodiscoloration inhibition of wood coated with UV-curable acrylic clear coatings and its elucidation. Polymer Degradation and Stability, 2000, 69, 355-360.	5.8	28
81	Insecticidal activity of essential oil from Chamaecyparis formosensis Matsum. Holzforschung, 2007, 61, 595-599.	1.9	28
82	Structural characterization and bioactivity of proanthocyanidins from indigenous cinnamon (<i>Cinnamomum osmophloeum</i>). Journal of the Science of Food and Agriculture, 2016, 96, 4749-4759.	3.5	26
83	Repellency of Essential Oils of Cryptomeria japonica (Pinaceae) against Adults of the Mosquitoes Aedes aegypti and Aedes albopictus (Diptera:Culicidae). Journal of Agricultural and Food Chemistry, 2009, 57, 11127-11133.	5.2	25
84	Larvicidal efficacy of Cryptomeria japonica leaf essential oils against Anopheles gambiae. Parasites and Vectors, 2014, 7, 426.	2.5	25
85	Thermal Degradation of Linalool-Chemotype Cinnamomum osmophloeum Leaf Essential Oil and Its Stabilization by Microencapsulation with β-Cyclodextrin. Molecules, 2021, 26, 409.	3.8	25
86	Photo-discoloration of UV-curable acrylic coatings and the underlying wood. Polymer Degradation and Stability, 1999, 63, 435-439.	5.8	24
87	A Potential Low-Coumarin Cinnamon Substitute: Cinnamomum osmophloeum Leaves. Journal of Agricultural and Food Chemistry, 2014, 62, 1706-1712.	5.2	23
88	Correlation between softwood discoloration induced by accelerated lightfastness testing and by indoor exposure. Polymer Degradation and Stability, 2001, 72, 361-365.	5.8	22
89	Kaempferol glycosides from the twigs of Cinnamomum osmophloeum and their nitric oxide production inhibitory activities. Carbohydrate Research, 2012, 364, 49-53.	2.3	22
90	Chemical Composition and Antitermitic Activity against <i>Coptotermes formosanus</i> <scp>Shiraki</scp> of <i>Cryptomeria japonica</i> Leaf Essential Oil. Chemistry and Biodiversity, 2012, 9, 352-358.	2.1	22

#	Article	IF	CITATIONS
91	Profiling of volatile compounds of Phyllostachys pubescens shoots in Taiwan. Food Chemistry, 2012, 134, 1732-1737.	8.2	22
92	Antioxidant Activity and Delayed Aging Effects of Hot Water Extract from <i>Chamaecyparis obtusa</i> var. <i>formosana</i> Leaves. Journal of Agricultural and Food Chemistry, 2014, 62, 4159-4165.	5.2	22
93	Effects of Alkali Pretreatment on Surface Properties and Green Color Conservation of Moso Bamboo (Phyllostachys pubescens Mazel). Holzforschung, 2000, 54, 487-491.	1.9	21
94	Inhibition of the Photodiscoloration of Wood by Butyrylation. Holzforschung, 2001, 55, 255-259.	1.9	21
95	Rapid Differentiation of Three Chamaecyparis Species (Cupressaceae) Grown in Taiwan Using Solid-Phase Microextraction–Gas Chromatography/Mass Spectrometry, Cluster Analysis, and Principal Component Analysis. Journal of Agricultural and Food Chemistry, 2011, 59, 10854-10859.	5.2	21
96	Hypolipidemic effects of S -(+)-linalool and essential oil from Cinnamomum osmophloeum ct. linalool leaves in mice. Journal of Traditional and Complementary Medicine, 2018, 8, 46-52.	2.7	21
97	Improvements in dimensional stability and lightfastness of wood by butyrylation using microwave heating. Journal of Wood Science, 2003, 49, 455-460.	1.9	20
98	Effects of copper-phosphorous salt treatments on green colour protection and fastness of ma bamboo (Dendrocalamus latiflorus). Polymer Degradation and Stability, 2002, 78, 379-384.	5.8	19
99	Chemical Composition and Immunohistological Variations of a Growing Bamboo Shoot. Journal of Wood Chemistry and Technology, 2013, 33, 144-155.	1.7	19
100	Multiple photostabilization actions of heartwood extract from Acacia confusa. Wood Science and Technology, 2017, 51, 1133-1153.	3.2	19
101	Stabilizing Effect of Chromated Salt Treatment on the Green Color of Ma Bamboo (Dendrocalamus) Tj ETQq1 1	0.784314 1.9	rg₽Ţ /Overloc
102	Monitoring the emission of volatile organic compounds from the leaves of Calocedrus macrolepis var. formosana using solid-phase micro-extraction. Journal of Wood Science, 2010, 56, 140-147.	1.9	18
103	Antidyslipidemic Activity of Hotâ€water Extracts from Leaves of <i>Cinnamomum osmophloeum</i> Kaneh. Phytotherapy Research, 2011, 25, 1317-1322.	5.8	18
104	Exploitation of Acacia confusa heartwood extract as natural photostabilizers. Wood Science and Technology, 2015, 49, 811-823.	3.2	18
105	Characteristics of proanthocyanidins in leaves of <i>Chamaecyparis obtusa</i> var. <i>formosana</i> as strong <i>i±</i> â€glucosidase inhibitors. Journal of the Science of Food and Agriculture, 2018, 98, 3806-3814.	3.5	18
106	Mechanism of decay resistance of heartwood extracts from Acacia confusa against the brown-rot fungus Laetiporus sulphureus. Wood Science and Technology, 2014, 48, 451-465.	3.2	17
107	Chemical Polymorphism and Composition of Leaf Essential Oils of <i>Cinnamomum kanehirae</i> Using Gas Chromatography/Mass Spectrometry, Cluster Analysis, and Principal Component Analysis. Journal of Wood Chemistry and Technology, 2015, 35, 207-219.	1.7	17
108	Extraction and determination of chlorophylls from moso bamboo (Phyllostachys pubescens) culm. Perspectives on Global Development and Technology, 2002, 1, 171-180.	0.4	16

#	Article	IF	CITATIONS
109	Xanthine Oxidase Inhibitory Activity and Thermostability of Cinnamaldehyde-Chemotype Leaf Oil of Cinnamomum osmophloeum Microencapsulated with β-Cyclodextrin. Molecules, 2018, 23, 1107.	3.8	16
110	Environmental effects on the color of sugi (Cryptomeria japonica D. Don) heartwood. Journal of Wood Science, 2000, 46, 390-394.	1.9	15
111	Green colour protection of makino bamboo (Phyllostachys makinoi) treated with ammoniacal copper quaternary and copper azole preservatives. Polymer Degradation and Stability, 2005, 90, 167-172.	5.8	15
112	Environmental-benign methods for the color protection of stripe long-shoot bamboo (Bambusa) Tj ETQq0 0 0 rg	gBT /Overla 6.9	ock 10 Tf 50 6
113	Rapid extraction of epidermis chlorophyll of moso bamboo (Phyllostachys pubescens) culm using ultrasonics. Journal of Wood Science, 1998, 44, 78-80.	1.9	14
114	Effects of chromated-phosphate treatment process on the green color protection of ma bamboo (Dendrocalamus latiflorus). Journal of Wood Science, 2002, 48, 227-231.	1.9	14
115	Insecticidal activities of <i>Cunninghamia konishii</i> Hayata against Formosan subterranean termite, <i>Coptotermes formosanus</i> (Isoptera: Rhinotermitidae). Pest Management Science, 2014, 70, 1215-1219.	3.4	14
116	Mechanisms for the surface colour protection of bamboo treated with chromated phosphate. Polymer Degradation and Stability, 2001, 74, 551-557.	5.8	13
117	Influence of pH on bioactivity of cinnamon oil against Legionella pneumophila and its disinfection efficacy in hot springs. Water Research, 2008, 42, 5022-5030.	11.3	13
118	Molecular cloning and characterization of flavonol synthase in Acacia confusa. Tree Genetics and Genomes, 2013, 9, 85-92.	1.6	13
119	Antimelanogenesis Effects of Leaf Extract and Phytochemicals from Ceylon Olive (Elaeocarpus) Tj ETQq1 1 0.78	4314.rgBT 4.5	Överlock 10
120	Antipathogenic Activities and Chemical Composition of <i>Cinnamomum osmophloeum</i> and <i>Cinnamomum zeylanicum</i> Leaf Essential Oils. Journal of Wood Chemistry and Technology, 2011, 31, 73-87.	1.7	12
121	Phylogenetic Relationships of the Genus <i>Chamaecyparis</i> Inferred from Leaf Essential Oil. Chemistry and Biodiversity, 2011, 8, 1083-1097.	2.1	12
122	Characteristic Aroma-Active Compounds of Floral Scent in Situ from Barringtonia racemosa and Their Dynamic Emission Rates. Journal of Agricultural and Food Chemistry, 2013, 61, 12531-12538.	5.2	12
123	An improved bioassay facilitates the screening of repellents against cat flea, <i>Ctenocephalides felis</i> (Siphonaptera: Pulicidae). Pest Management Science, 2014, 70, 264-270.	3.4	12
124	Red color enhancement of sugi (Cryptomeria japonica D. Don) heartwood by light irradiation. Journal of Wood Science, 1999, 45, 271-273.	1.9	11
125	Effects of Environmental Factors on the Color of Sugi (Cryptomeria japonica D. Don) Yellowish Heartwood. Holzforschung, 2001, 55, 459-463.	1.9	11
126	Green color protection of bamboo culms using one-step alkali pretreatment-free process. Journal of Wood Science, 2005, 51, 622-627.	1.9	11

#	Article	IF	CITATIONS
127	Monitoring the dynamic emission of biogenic volatile organic compounds from Cryptomeria japonica by enclosure measurement. Atmospheric Environment, 2015, 122, 163-170.	4.1	11
128	Distribution of Living Ray Parenchyma Cells and Major Bioactive Compounds During the Heartwood Formation of Taiwania cryptomerioides Hayata. Journal of Wood Chemistry and Technology, 2018, 38, 84-95.	1.7	11
129	Reaction Characteristics on the Green Surface of Moso Bamboo (Phyllostachys pubescens Mazel) Treated with Chromated Phosphate. Holzforschung, 2002, 56, 130-134.	1.9	10
130	Evaluation of the effectiveness of alcohol-borne reagents on the green colour protection of makino bamboo (Phyllostachys makinoi). Polymer Degradation and Stability, 2004, 83, 473-479.	5.8	10
131	Environmentally benign methods for producing green culms of ma bamboo (Dendrocalamus) Tj ETQq1 1 0.7843	14.rgBT /C 1.9	overlock 10 Tr
132	Novel environmentally-benign methods for green-colour protection of bamboo culms and leaves. Polymer Degradation and Stability, 2011, 96, 541-546.	5.8	10
133	Antifungal agents from heartwood extract of Taiwania cryptomerioides against brown root rot fungus Phellinus noxius. Wood Science and Technology, 2017, 51, 639-651.	3.2	10
134	Effect of Hinoki and Meniki Essential Oils on Human Autonomic Nervous System Activity and Mood States. Natural Product Communications, 2015, 10, 1934578X1501000.	0.5	9
135	Rapid Discrimination and Feature Extraction of Three Chamaecyparis Species by Static-HS/GC–MS. Journal of Agricultural and Food Chemistry, 2015, 63, 810-820.	5.2	9
136	Content and distribution of lignans in <i>Taiwania cryptomerioides</i> Hayata. Holzforschung, 2016, 70, 511-518.	1.9	9
137	Wood photostabilization roles of the condensed tannins and flavonoids from the EtOAc fraction in the heartwood extract of Acacia confusa. Wood Science and Technology, 2018, 52, 855-871.	3.2	9
138	Antihyperglycemic activities of twig extract of indigenous cinnamon (<i>Cinnamomum) Tj ETQq0 0 0 rgBT /Overl Science of Food and Agriculture, 2018, 98, 5908-5915.</i>	ock 10 Tf 3.5	50 307 Td (o 9
139	Anti-inflammatory and Anti-oxidative Activities of Polyacetylene from <i>Dendropanax dentiger</i> . Natural Product Communications, 2014, 9, 1934578X1400901.	0.5	8
140	Profiling of volatile compounds from five interior decoration timbers in Taiwan using TD/GC–MS/FID. Journal of Wood Science, 2018, 64, 823-835.	1.9	8
141	Evaluation of Motor Coordination and Antidepressant Activities of Cinnamomum osmophloeum ct. Linalool Leaf Oil in Rodent Model. Molecules, 2021, 26, 3037.	3.8	8
142	Antioxidant-Enriched Leaf Water Extracts of Cinnamomum osmophloeum from Eleven Provenances and their Bioactive Flavonoid Glycosides. BioResources, 2012, 8, .	1.0	7
143	Antitermitic activities of wood essential oil and its constituents from Chamaecyparis formosensis. Wood Science and Technology, 2016, 50, 663-676.	3.2	7
144	Environmentally benign treatments for inhibiting the release of aqueous extracts from merbau heartwood. Wood Science and Technology, 2016, 50, 333-348.	3.2	7

#	Article	IF	CITATIONS
145	Reaction mechanisms inhibiting the release of aqueous extracts from merbau heartwood by iron(II) and copper(II). Wood Science and Technology, 2017, 51, 653-668.	3.2	7
146	Investigation of Photo-Induced Discoloration on Wood Treated with the Polyphenols from <i>Acacia Confusa</i> Heartwood. Journal of Wood Chemistry and Technology, 2019, 39, 270-281.	1.7	7
147	A genetic marker of 4-coumarate: coenzyme A ligase gene in the cinnamaldehyde-chemotype Cinnamomum osmophloeum. Holzforschung, 2012, 66, 897-904.	1.9	6
148	Photostabilization mechanisms of the main wood photostabilizers from the heartwood extract in Acacia confusa: okanin and melanoxetin. Wood Science and Technology, 2019, 53, 335-348.	3.2	6
149	Complementary relationship between trans-cinnamaldehyde and trans-cinnamyl acetate and their seasonal variations in Cinnamomum osmophloeum ct. cinnamaldehyde. Industrial Crops and Products, 2019, 127, 172-178.	5.2	6
150	Contact and fumigant actions of trans-cinnamaldehyde against wood-decay fungi evaluated by using solid-phase microextraction. Wood Science and Technology, 2020, 54, 237-247.	3.2	6
151	Cytotoxicity and Apoptosis Induction of 6,7-Dehydroroyleanone from Taiwania cryptomerioides Bark Essential Oil in Hepatocellular Carcinoma Cells. Pharmaceutics, 2022, 14, 351.	4.5	6
152	Variation in antioxidant activity of extracts of Acacia confusa of different ages. Natural Product Communications, 2010, 5, 73-6.	0.5	6
153	Novel methods for dyeing the epidermis of bamboo culms and their colour fastness. Coloration Technology, 2014, 130, 112-119.	1.5	5
154	Proteomics Investigation Reveals Cell Death-Associated Proteins of Basidiomycete Fungus <i>Trametes versicolor</i> Treated with Ferruginol. Journal of Agricultural and Food Chemistry, 2015, 63, 85-91.	5.2	5
155	Dyeing treatments for protecting colour and colour fastness of green bamboo culms. Coloration Technology, 2017, 133, 305-311.	1.5	5
156	Potential source of environmentally benign antifungal agents from Cinnamomum osmophloeum leaves against Phellinus noxius. Plant Protection Science, 2019, 55, 43-53.	1.4	5
157	Seasonal variations in emission rates and composition of terpenoids emitted from Chamaecyparis formosensis (Cupressaceae) of different ages. Plant Physiology and Biochemistry, 2019, 142, 405-414.	5.8	5
158	Hypoglycemic activity of extracts of Chamaecyparis obtusa var. formosana leaf in rats with hyperglycemia induced by high-fat diets and streptozotocin. Journal of Traditional and Complementary Medicine, 2020, 10, 389-395.	2.7	5
159	Antioxidant Activities and Reduced Amyloid-β Toxicity of 7-Hydroxycalamenene Isolated from the Essential Oil of Zelkova serrata Heartwood. Natural Product Communications, 2016, 11, 1934578X1601100.	0.5	4
160	Variation in Antioxidant Activity of Extracts of Acacia confusa of Different Ages. Natural Product Communications, 2010, 5, 1934578X1000500.	0.5	3
161	Influences of merbau heartwood extracts and their metal complexes on wood photodegradation. European Journal of Wood and Wood Products, 2021, 79, 207-216.	2.9	3
162	Properties of a formaldehyde-free tannin adhesive and mechanical strength of oriented bamboo scrimber board bonded with it. Holzforschung, 2021, 75, 91-100.	1.9	3

#	Article	IF	CITATIONS
163	Antioxidant activities of ethanolic extract and lyoniresinol from bark of <i>Zelkova serrata</i> . Journal of Wood Chemistry and Technology, 2022, 42, 265-273.	1.7	3
164	Effects of growth temperature on gas exchange of Chamaecyparis formosensis and C. obtusa var. formosana seedlings occupying different ecological niches. Trees - Structure and Function, 2021, 35, 1485-1496.	1.9	2
165	Potential <scp>antiâ€Parkinsonian'</scp> s effect of <i>S</i> â€(+)â€kinalool from <i>Cinnamomum osmophloeum</i> ct. linalool leaves are associated with mitochondrial regulation via <i>gasâ€l</i> , <i>nuoâ€l</i> , and <i>mevâ€l</i> in <i>Caenorhabditis elegans</i> . Phytotherapy Research, 2022, 36, 3325-3334.	5.8	2
166	Dietary Indigenous Cinnamon (<i>Cinnamomum osmophloeum</i>) Leaf Powder Reduces Plasma Lipid in Hypercholesterolemia Hamsters. Natural Product Communications, 2019, 14, 1934578X1986066.	0.5	1
167	Rapid determination of S-(+)-linalool in leaf of Cinnamomum osmophloeum ct. linalool using ultrasound-assisted microextraction. Journal of Analytical Science and Technology, 2020, 11, .	2.1	1
168	Biogenic Volatile Organic Compounds and Protein Expressions of Chamaecyparis formosensis and Chamaecyparis obtusa var. formosana Leaves under Different Light Intensities and Temperatures. Plants, 2022, 11, 1535.	3.5	1