Rebecca C Fuller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5145608/publications.pdf

Version: 2024-02-01

62 papers 2,083 citations

257450 24 h-index 265206 42 g-index

66 all docs 66
docs citations

66 times ranked 2071 citing authors

#	Article	IF	Citations
1	Revisiting old truths: The evolution of male coloration in guppies as a function of predation. Molecular Ecology, 2022, , .	3.9	2
2	Polyphenisms and polymorphisms: Genetic variation in plasticity and color variation within and among bluefin killifish populations. Evolution; International Journal of Organic Evolution, 2022, 76, 1590-1606.	2.3	1
3	Asymmetric reinforcement in <i>Lucania < i>killifish: assessing reproductive isolation when both sexes choose. Environmental Epigenetics, 2021, 67, 215-224.</i>	1.8	4
4	Genomic landscape of reproductive isolation in <i>Lucania</i> killifish: The role of sex loci and salinity. Journal of Evolutionary Biology, 2021, 34, 157-174.	1.7	11
5	A potential role for overdominance in the maintenance of colour variation in the Neotropical tortoise beetle, <i>Chelymorpha alternans</i>). Journal of Evolutionary Biology, 2021, 34, 779-791.	1.7	2
6	Sequence Analysis and Ontogenetic Expression Patterns of Cone Opsin Genes in the Bluefin Killifish ($\langle i \rangle$ Lucania goodei $\langle i \rangle$). Journal of Heredity, 2021, 112, 357-366.	2.4	11
7	The visual ecology of selective predation: Are unhealthy hosts less stealthy hosts?. Ecology and Evolution, 2021, 11, 18591-18603.	1.9	2
8	Genomic Resources for Darters (Percidae: Etheostominae) Provide Insight into Postzygotic Barriers Implicated in Speciation. Molecular Biology and Evolution, 2020, 37, 711-729.	8.9	22
9	Introduction of Bluefin Killifish (Lucania goodei) into the Sacramento–San Joaquin Delta. San Francisco Estuary and Watershed Science, 2020, 18, .	0.4	2
10	The Eye Size of the Bluefin Killifish (Lucania goodei) Varies from Springs to Swamps. Copeia, 2020, 108, .	1.3	2
11	Seeing red: color vision in the largemouth bass. Environmental Epigenetics, 2019, 65, 43-52.	1.8	8
12	The effects of experimental design on mating preferences and reproductive isolation in killifish. Behavioral Ecology, 2019, 30, 92-100.	2.2	6
13	Extreme heterogeneity in sex chromosome differentiation and dosage compensation in livebearers. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19031-19036.	7.1	79
14	Male-driven reproductive and agonistic character displacement in darters and its implications for speciation in allopatry. Environmental Epigenetics, 2018, 64, 101-113.	1.8	23
15	Testing the potential mechanisms for the maintenance of a genetic color polymorphism in bluefin killifish populations. Environmental Epigenetics, 2018, 64, 733-743.	1.8	2
16	Using Human Vision to Detect Variation in Avian Coloration: How Bad Is It?. American Naturalist, 2018, 191, 269-276.	2.1	56
17	Hybridization and postzygotic isolation promote reinforcement of male mating preferences in a diverse group of fishes with traditional sex roles. Ecology and Evolution, 2018, 8, 9282-9294.	1.9	12
18	The pervasive effects of lighting environments on sensory drive in bluefin killifish: an investigation into male/male competition, female choice, and predation. Environmental Epigenetics, 2018, 64, 499-512.	1.8	10

#	Article	IF	Citations
19	The vertical distributions and spawning site choices of red and yellow bluefin killifish Lucania goodei colour morphs. Journal of Fish Biology, 2018, 93, 396-400.	1.6	2
20	Agonistic character displacement of genetically based male colour patterns across darters. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181248.	2.6	11
21	A perspective on sensory drive. Environmental Epigenetics, 2018, 64, 465-470.	1.8	12
22	Variation in individual temperature preferences, not behavioural fever, affects susceptibility to chytridiomycosis in amphibians. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181111.	2.6	35
23	Male and female contributions to behavioral isolation in darters as a function of genetic distance and color distance. Evolution; International Journal of Organic Evolution, 2017, 71, 2428-2444.	2.3	36
24	Exploring visual plasticity: dietary carotenoids can change color vision in guppies (Poecilia) Tj ETQq0 0 0 rgBT /OPPhysiology, 2016, 202, 527-534.	verlock 10 1.6	O Tf 50 547 To 15
25	Intrasexual competition underlies sexual selection on male breeding coloration in the orangethroat darter, Etheostoma spectabile. Ecology and Evolution, 2016, 6, 3513-3522.	1.9	18
26	Editorial Reconciling concepts, theory, and empirical patterns surrounding cascade reinforcement. Environmental Epigenetics, 2016, 62, 131-134.	1.8	5
27	Sexually asymmetric colour-based species discrimination in orangethroat darters. Animal Behaviour, 2015, 106, 171-179.	1.9	30
28	Behavioral Isolation due to Cascade Reinforcement in <i>Lucania</i> Killifish. American Naturalist, 2015, 185, 491-506.	2.1	43
29	Insight Into Genomic Changes Accompanying Divergence: Genetic Linkage Maps and Synteny of <i>Lucania goodei </i> and <i>L. parva </i> Reveal a Robertsonian Fusion. G3: Genes, Genomes, Genetics, 2014, 4, 1363-1372.	1.8	10
30	FUNCTIONAL AND POPULATION GENOMIC DIVERGENCE WITHIN AND BETWEEN TWO SPECIES OF KILLIFISH ADAPTED TO DIFFERENT OSMOTIC NICHES. Evolution; International Journal of Organic Evolution, 2014, 68, 63-80.	2.3	58
31	Patterns of Male Breeding Color Variation Differ across Species, Populations, and Body Size in Rainbow and Orangethroat Darters. Copeia, 2014, 2014, 297-308.	1.3	11
32	Diurnal lighting patterns and habitat alter opsin expression and colour preferences in a killifish. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20130796.	2.6	87
33	Differences in offspring size predict the direction of isolation asymmetry between populations of a placental fish. Biology Letters, 2013, 9, 20130327.	2.3	9
34	The effects of age, sex, and habitat on body size and shape of the blackstripe topminnow, Fundulus notatus (Cyprinodontiformes: Fundulidae) (Rafinesque 1820). Biological Journal of the Linnean Society, 2013, 108, 784-789.	1.6	17
35	Postzygotic Isolation Evolves before Prezygotic Isolation between Fresh and Saltwater Populations of the Rainwater Killifish, Lucania parva. International Journal of Evolutionary Biology, 2012, 2012, 1-11.	1.0	18
36	Reinforcement of male mate preferences in sympatric killifish species Lucania goodei and Lucania parva. Behavioral Ecology and Sociobiology, 2012, 66, 1429-1436.	1.4	22

#	Article	IF	CITATIONS
37	A TEST FOR ENVIRONMENTAL EFFECTS ON BEHAVIORAL ISOLATION IN TWO SPECIES OF KILLIFISH. Evolution; International Journal of Organic Evolution, 2012, 66, 3224-3237.	2.3	22
38	Rapid lightâ€induced shifts in opsin expression: finding new opsins, discerning mechanisms of change, and implications for visual sensitivity. Molecular Ecology, 2011, 20, 3321-3335.	3.9	81
39	Do density-driven mating system differences explain reproductive incompatibilities between populations of a placental fish?. Molecular Ecology, 2011, 20, 4140-4151.	3.9	13
40	Female mating preferences, lighting environment, and a test of the sensory bias hypothesis in the bluefin killifish. Animal Behaviour, 2010, 80, 23-35.	1.9	50
41	Teasing Apart the Many Effects of Lighting Environment on Opsin Expression and Foraging Preference in Bluefin Killifish. American Naturalist, 2010, 176, 1-13.	2.1	79
42	A TEST OF THE CRITICAL ASSUMPTION OF THE SENSORY BIAS MODEL FOR THE EVOLUTION OF FEMALE MATING PREFERENCE USING NEURAL NETWORKS. Evolution; International Journal of Organic Evolution, 2009, 63, 1697-1711.	2.3	20
43	GENETIC INCOMPATIBILITIES IN KILLIFISH AND THE ROLE OF ENVIRONMENT. Evolution; International Journal of Organic Evolution, 2008, 62, 3056-3068.	2.3	55
44	A Test for a Trade-Off in Salinity Tolerance in Early Life-History Stages in Lucania Goodei and L. Parva. Copeia, 2008, 2008, 154-157.	1.3	9
45	Distribution and Stability of Sympatric Populations of Lucania goodei and L. parva across Florida. Copeia, 2008, 2008, 699-707.	1.3	13
46	Male competition and female choice interact to determine mating success in the bluefin killifish. Behavioral Ecology, 2007, 18, 822-830.	2.2	56
47	Speciation in killifish and the role of salt tolerance. Journal of Evolutionary Biology, 2007, 20, 1962-1975.	1.7	52
48	Genetic and environmental variation in the visual properties of bluefin killifish, Lucania goodei. Journal of Evolutionary Biology, 2005, 18, 516-523.	1.7	105
49	How and When Selection Experiments Might Actually be Useful. Integrative and Comparative Biology, 2005, 45, 391-404.	2.0	110
50	Sensory Bias as an Explanation for the Evolution of Mate Preferences. American Naturalist, 2005, 166, 437-446.	2.1	148
51	GENETICS, LIGHTING ENVIRONMENT, AND HERITABLE RESPONSES TO LIGHTING ENVIRONMENT AFFECT MALE COLOR MORPH EXPRESSION IN BLUEFIN KILLIFISH, LUCANIA GOODEI. Evolution; International Journal of Organic Evolution, 2004, 58, 1086.	2.3	3
52	GENETICS, LIGHTING ENVIRONMENT, AND HERITABLE RESPONSES TO LIGHTING ENVIRONMENT AFFECT MALE COLOR MORPH EXPRESSION IN BLUEFIN KILLIFISH, LUCANIA GOODEI. Evolution; International Journal of Organic Evolution, 2004, 58, 1086-1098.	2.3	49
53	Population variation in opsin expression in the bluefin killifish, Lucania goodei: a real-time PCR study. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2004, 190, 147-154.	1.6	105
54	Intraspecific variation in retinal cone distribution in the bluefin killifish, Lucania goodei. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2003, 189, 609-616.	1.6	73

#	Article	IF	CITATIONS
55	Disentangling Female Mate Choice and Male Competition in the Rainbow Darter, Etheostoma caeruleum. Copeia, 2003, 2003, 138-148.	1.3	37
56	Lighting environment predicts the relative abundance of male colour morphs in bluefin killifish (Lucania goodei) populations. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 1457-1465.	2.6	122
57	A Low Genomic Number of Recessive Lethals in Natural Populations of Bluefin Killifish and Zebrafish. Science, 2002, 296, 2398-2401.	12.6	56
58	A Test for Male Parental Care in a Fundulid, the Bluefin Killifish, Lucania goodei. Environmental Biology of Fishes, 2001, 61, 419-426.	1.0	17
59	Patterns in Male Breeding Behaviors in the Bluefin Killifish,Lucania goodei: A Field Study (Cyprinodontiformes: Fundulidae). Copeia, 2001, 2001, 823-828.	1.3	26
60	Costs of Group Spawning to Guarding Males in the Rainbow Darter, Etheostoma caeruleum. Copeia, 1999, 1999, 1084.	1.3	8
61	Sperm competition affects male behaviour and sperm output in the rainbow darter. Proceedings of the Royal Society B: Biological Sciences, 1998, 265, 2365-2371.	2.6	64
62	A test for negative frequency-dependent mating success as a function of male colour pattern in the bluefin killifish. Biological Journal of the Linnean Society, 0, 98, 489-500.	1.6	14