Sue C Bodine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5144718/publications.pdf

Version: 2024-02-01

57758 40979 13,160 101 44 93 citations h-index g-index papers 111 111 111 13933 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Identification of Ubiquitin Ligases Required for Skeletal Muscle Atrophy. Science, 2001, 294, 1704-1708.	12.6	2,935
2	Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nature Cell Biology, 2001, 3, 1014-1019.	10.3	2,153
3	Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nature Cell Biology, 2001, 3, 1009-1013.	10.3	1,331
4	Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. American Journal of Physiology - Endocrinology and Metabolism, 2014, 307, E469-E484.	3.5	735
5	Understanding the Cellular and Molecular Mechanisms of Physical Activity-Induced Health Benefits. Cell Metabolism, 2015, 22, 4-11.	16.2	345
6	Architectural, histochemical, and contractile characteristics of a unique biarticular muscle: the cat semitendinosus Journal of Neurophysiology, 1982, 48, 192-201.	1.8	315
7	Disuse-induced muscle wasting. International Journal of Biochemistry and Cell Biology, 2013, 45, 2200-2208.	2.8	288
8	The glucocorticoid receptor and FOXO1 synergistically activate the skeletal muscle atrophy-associated MuRF1 gene. American Journal of Physiology - Endocrinology and Metabolism, 2008, 295, E785-E797.	3.5	278
9	Control of Ser2448 Phosphorylation in the Mammalian Target of Rapamycin by Insulin and Skeletal Muscle Load. Journal of Biological Chemistry, 2002, 277, 17657-17662.	3.4	234
10	A functional insulinâ€like growth factor receptor is not necessary for loadâ€induced skeletal muscle hypertrophy. Journal of Physiology, 2008, 586, 283-291.	2.9	209
11	Muscle sparing in muscle RING finger 1 null mice: response to synthetic glucocorticoids. Journal of Physiology, 2011, 589, 4759-4776.	2.9	167
12	Maximal force as a function of anatomical features of motor units in the cat tibialis anterior. Journal of Neurophysiology, 1987, 57, 1730-1745.	1.8	157
13	The Histone Deacetylase HDAC4 Connects Neural Activity to Muscle Transcriptional Reprogramming. Journal of Biological Chemistry, 2007, 282, 33752-33759.	3.4	156
14	Age-related deficits in skeletal muscle recovery following disuse are associated with neuromuscular junction instability and ER stress, not impaired protein synthesis. Aging, 2016, 8, 127-146.	3.1	152
15	Rapamycin inhibits the growth and muscle-sparing effects of clenbuterol. Journal of Applied Physiology, 2007, 102, 740-747.	2.5	150
16	Skeletal Muscle Mechanics: Implications for Rehabilitation. Physical Therapy, 1993, 73, 844-856.	2.4	149
17	Molecular Transducers of Physical Activity Consortium (MoTrPAC): Mapping the Dynamic Responses to Exercise. Cell, 2020, 181, 1464-1474.	28.9	147
18	mTOR Signaling and the Molecular Adaptation to Resistance Exercise. Medicine and Science in Sports and Exercise, 2006, 38, 1950-1957.	0.4	140

#	Article	IF	CITATION
19	Soleus motor units in chronic spinal transected cats: physiological and morphological alterations. Journal of Neurophysiology, 1986, 55, 1202-1220.	1.8	137
20	Acute resistance exercise activates rapamycinâ€sensitive and â€insensitive mechanisms that control translational activity and capacity in skeletal muscle. Journal of Physiology, 2016, 594, 453-468.	2.9	129
21	Physiological characterization of taxol-induced large-fiber sensory neuropathy in the rat. Annals of Neurology, 1998, 43, 46-55.	5.3	124
22	Control of skeletal muscle atrophy in response to disuse: clinical/preclinical contentions and fallacies of evidence. American Journal of Physiology - Endocrinology and Metabolism, 2016, 311, E594-E604.	3.5	117
23	Glucocorticoids and Skeletal Muscle. Advances in Experimental Medicine and Biology, 2015, 872, 145-176.	1.6	111
24	Upregulation of proteasome activity in muscle RING finger 1â€null mice following denervation. FASEB Journal, 2012, 26, 2986-2999.	0.5	98
25	Maintenance of muscle mass and loadâ€induced growth in Muscle <scp>RING</scp> Finger 1 null mice with age. Aging Cell, 2014, 13, 92-101.	6.7	92
26	Resistance exercise, muscle loading/unloading and the control of muscle mass. Essays in Biochemistry, 2006, 42, 61-74.	4.7	86
27	A Critical Role for Muscle Ring Finger-1 in Acute Lung Injury–associated Skeletal Muscle Wasting. American Journal of Respiratory and Critical Care Medicine, 2012, 185, 825-834.	5.6	85
28	Muscle-specific and age-related changes in protein synthesis and protein degradation in response to hindlimb unloading in rats. Journal of Applied Physiology, 2017, 122, 1336-1350.	2.5	85
29	Chronic high fat feeding attenuates loadâ€induced hypertrophy in mice. Journal of Physiology, 2009, 587, 5753-5765.	2.9	84
30	A cell-autonomous role for the glucocorticoid receptor in skeletal muscle atrophy induced by systemic glucocorticoid exposure. American Journal of Physiology - Endocrinology and Metabolism, 2012, 302, E1210-E1220.	3.5	83
31	Western Blotting Inaccuracies with Unverified Antibodies: Need for a Western Blotting Minimal Reporting Standard (WBMRS). PLoS ONE, 2015, 10, e0135392.	2.5	79
32	Localization and Regulation of MuSK at the Neuromuscular Junction. Developmental Biology, 1998, 199, 309-319.	2.0	77
33	Mechanical and morphological properties of chronically inactive cat tibialis anterior motor units Journal of Physiology, 1991, 444, 175-192.	2.9	76
34	Proteomic analysis of rat soleus muscle undergoing hindlimb suspension-induced atrophy and reweighting hypertrophy. Proteomics, 2002, 2, 543-550.	2.2	72
35	Muscle hypertrophy is associated with increases in proteasome activity that is independent of MuRF1 and MAFbx expression. Frontiers in Physiology, 2014, 5, 69.	2.8	70
36	Evaluation of Akt/mTOR activity in muscle atrophy after rotator cuff tears in a rat model. Journal of Orthopaedic Research, 2012, 30, 1440-1446.	2.3	67

#	Article	IF	Citations
37	mTOR regulates fatty infiltration through SREBPâ€1 and PPARγ after a combined massive rotator cuff tear and suprascapular nerve injury in rats. Journal of Orthopaedic Research, 2013, 31, 724-730.	2.3	63
38	Age-Related Deficit in Load-Induced Skeletal Muscle Growth. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2009, 64A, 618-628.	3.6	62
39	Muscleâ€specific changes in protein synthesis with aging and reloading after disuse atrophy. Journal of Cachexia, Sarcopenia and Muscle, 2019, 10, 1195-1209.	7.3	60
40	Skeletal Muscle Atrophy: Discovery of Mechanisms and Potential Therapies. Physiology, 2019, 34, 232-239.	3.1	57
41	Skeletal muscle regeneration after injury: An overview. Journal of Voice, 1994, 8, 53-62.	1.5	53
42	UBR5 is a novel E3 ubiquitin ligase involved in skeletal muscle hypertrophy and recovery from atrophy. Journal of Physiology, 2019, 597, 3727-3749.	2.9	53
43	Altered gene expression patterns in muscle ring finger 1 null mice during denervation- and dexamethasone-induced muscle atrophy. Physiological Genomics, 2013, 45, 1168-1185.	2.3	51
44	Changes in myosin mRNA and protein expression in denervated rat soleus and tibialis anterior. FEBS Journal, 1998, 256, 45-50.	0.2	50
45	CrossTalk opposing view: The dominant mechanism causing disuse muscle atrophy is proteolysis. Journal of Physiology, 2014, 592, 5345-5347.	2.9	50
46	Activating transcription factor 4 (ATF4) promotes skeletal muscle atrophy by forming a heterodimer with the transcriptional regulator C/EBPl². Journal of Biological Chemistry, 2020, 295, 2787-2803.	3.4	45
47	Molecular brakes regulating mTORC1 activation in skeletal muscle following synergist ablation. American Journal of Physiology - Endocrinology and Metabolism, 2014, 307, E365-E373.	3.5	38
48	Age-related Differences in Dystrophin: Impact on Force Transfer Proteins, Membrane Integrity, and Neuromuscular Junction Stability. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2016, 72, glw109.	3.6	38
49	Functional recovery following neurorrhaphy of the rat sciatic nerve by epineurial repair compared with tubulization. Journal of Orthopaedic Research, 1997, 15, 664-669.	2.3	37
50	Consistent repeated M- and H-wave recording in the hind limb of rats., 1998, 21, 1405-1413.		37
51	Hibernation: The search for treatments to prevent disuse-induced skeletal muscle atrophy. Experimental Neurology, 2013, 248, 129-135.	4.1	35
52	Analysis of Skeletal Muscle Hypertrophy in Models of Increased Loading. Methods in Molecular Biology, 2012, 798, 213-229.	0.9	35
53	Proteomic analysis of rat soleus and tibialis anterior muscle following immobilization. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2002, 769, 323-332.	2.3	34
54	Velocity, force, power, and Ca ²⁺ sensitivity of fast and slow monkey skeletal muscle fibers. Journal of Applied Physiology, 1998, 84, 1776-1787.	2.5	32

#	Article	IF	Citations
55	Extracellular matrix scaffolds for treatment of large volume muscle injuries: A review. Veterinary Surgery, 2018, 47, 524-535.	1.0	32
56	Age-dependent bone loss and recovery during hindlimb unloading and subsequent reloading in rats. BMC Musculoskeletal Disorders, 2018, 19, 223.	1.9	32
57	Contribution of mechanical unloading to trabecular bone loss following nonâ€invasive knee injury in mice. Journal of Orthopaedic Research, 2016, 34, 1680-1687.	2.3	30
58	Electromyographic (EMG) amplitude patterns in the proximal and distal compartments of the cat semitendinosus during various motor tasks. Brain Research, 1989, 479, 56-64.	2.2	29
59	Identification of a novel myosin heavy chain gene expressed in the rat larynx. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1996, 1306, 153-159.	2.4	29
60	ULK2 is essential for degradation of ubiquitinated protein aggregates and homeostasis in skeletal muscle. FASEB Journal, 2019, 33, 11735-12745.	0.5	28
61	Edward F. Adolph Distinguished Lecture. Skeletal muscle atrophy: Multiple pathways leading to a common outcome. Journal of Applied Physiology, 2020, 129, 272-282.	2.5	28
62	Identification of the MuRF1 Skeletal Muscle Ubiquitylome Through Quantitative Proteomics. Function, 2021, 2, zqab029.	2.3	28
63	Role of contraction duration in inducing fastâ€toâ€slow contractile and metabolic protein and functional changes in engineered muscle. Journal of Cellular Physiology, 2015, 230, 2489-2497.	4.1	27
64	Normal Ribosomal Biogenesis but Shortened Protein Synthetic Response to Acute Eccentric Resistance Exercise in Old Skeletal Muscle. Frontiers in Physiology, 2018, 9, 1915.	2.8	24
65	Tensile properties of the neurorrhaphy site in the rat sciatic nerve. Journal of Hand Surgery, 1998, 23, 465-470.	1.6	22
66	Exercise prevents impaired autophagy and proteostasis in a model of neurogenic myopathy. Scientific Reports, 2018, 8, 11818.	3.3	22
67	Alterations in the muscle force transfer apparatus in aged rats during unloading and reloading: impact of microRNAâ€31. Journal of Physiology, 2018, 596, 2883-2900.	2.9	21
68	Cloning and in Situ Hybridization of Type 2A and 2B Rat Skeletal Muscle Myosin Tail Region: Implications for Filament Assembly. Biochemical and Biophysical Research Communications, 1993, 197, 1312-1318.	2.1	20
69	Knockdown of the E3 ubiquitin ligase UBR5 and its role in skeletal muscle anabolism. American Journal of Physiology - Cell Physiology, 2021, 320, C45-C56.	4.6	20
70	The Potential Mechanisms of Exercise-induced Cognitive Protection: A Literature Review. Current Pharmaceutical Design, 2018, 24, 1827-1831.	1.9	20
71	Identification and characterization of Fbxl22, a novel skeletal muscle atrophy-promoting E3 ubiquitin ligase. American Journal of Physiology - Cell Physiology, 2020, 319, C700-C719.	4.6	19
72	Evidence of incomplete neural control of motor unit properties in cat tibialis anterior after selfâ€reinnervation Journal of Physiology, 1993, 472, 103-125.	2.9	16

#	Article	IF	CITATIONS
73	Effect of severe short-term malnutrition on diaphragm muscle signal transduction pathways influencing protein turnover. Journal of Applied Physiology, 2006, 100, 1799-1806.	2.5	16
74	Cardiac proteasome activity in muscle ring finger-1 null mice at rest and following synthetic glucocorticoid treatment. American Journal of Physiology - Endocrinology and Metabolism, 2011, 301, E967-E977.	3.5	15
75	The effects of diet composition and chronic obesity on muscle growth and function. Journal of Applied Physiology, 2021, 130, 124-138.	2.5	15
76	An American Physiological Society cross-journal Call for Papers on "Inter-Organ Communication in Homeostasis and Disease― American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 321, L42-L49.	2.9	13
77	An investigation of p53 in skeletal muscle aging. Journal of Applied Physiology, 2019, 127, 1075-1084.	2.5	12
78	Maintenance of muscle mass in adult male mice is independent of testosterone. PLoS ONE, 2021, 16, e0240278.	2.5	12
79	Matrix metalloproteinase-2 plays a critical role in overload induced skeletal muscle hypertrophy. Muscles, Ligaments and Tendons Journal, 2014, 4, 446-54.	0.3	12
80	Myosin heavy chain mRNA and protein expression in single fibers of the rat soleus following reinnervation. Neuroscience Letters, 1996, 215, 13-16.	2.1	9
81	\hat{l}^2 2 â€adrenoceptor activation improves skeletal muscle autophagy in neurogenic myopathy. FASEB Journal, 2020, 34, 5628-5641.	0.5	9
82	Articles with impact: insights into 10 years of research with machine learning. Journal of Applied Physiology, 2020, 129, 967-979.	2.5	8
83	Rebuttal from Michael B. Reid, Andrew R. Judge and Sue C. Bodine. Journal of Physiology, 2014, 592, 5351-5351.	2.9	7
84	An American Physiological Society cross-journal Call for Papers on "Deconstructing Organs: Single-Cell Analyses, Decellularized Organs, Organoids, and Organ-on-a-Chip Models― American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 319, L266-L272.	2.9	7
85	Ubiquitin Ligases in Longevity and Aging Skeletal Muscle. International Journal of Molecular Sciences, 2022, 23, 7602.	4.1	7
86	Applied physiology: Research that makes a difference. Journal of Applied Physiology, 2017, 123, 1-1.	2.5	4
87	World Lung Day 2020 at the <i>Journal of Applied Physiology</i> and the <i>American Journal of Physiology-Lung Cellular and Molecular Physiology</i> Cellular and Molecular Physiology, 2020, 319, L534-L537.	2.9	4
88	Matrix metalloproteinase-2 plays a critical role in overload induced skeletal muscle hypertrophy. Muscles, Ligaments and Tendons Journal, 2014, 4, 362-70.	0.3	4
89	Reduced Ia-Afferent-Mediated Hoffman Reflex in Streptozotocin-Induced Diabetic Rats. Experimental Neurology, 2001, 172, 220-227.	4.1	3
90	Activation of Crtc2/Creb1 in skeletal muscle enhances weight loss during intermittent fasting. FASEB Journal, 2021, 35, e21999.	0.5	3

#	Article	IF	CITATIONS
91	What does the transcriptome signature of resistance exercise tell us about aging and skeletal muscle adaptation?. Journal of Applied Physiology, 2012, 112, 1621-1622.	2.5	1
92	A new cover and updated scope for the <i>Journal of Applied Physiology</i> . Journal of Applied Physiology, 2018, 124, 257-258.	2.5	1
93	Development of congestive heart failure in mice with a null deletion of MAFbx. FASEB Journal, 2010, 24, 1036.17.	0.5	1
94	The MuRF1 Promoter is Synergistically Activated by the Glucocorticoid Receptor and the Forkhead Family Member, FoxO1. FASEB Journal, 2006, 20, A391.	0.5	0
95	Decreased Activation of Akt/mTOR/GSK3 Signaling in Aged Rats Following Functional Overload. FASEB Journal, 2006, 20, A383.	0.5	O
96	Lack of Cardiac Response to Running Wheel in MuRF1 KO Mice. Medicine and Science in Sports and Exercise, 2010, 42, 69-70.	0.4	0
97	High fat feeding does not impair muscle growth in MuRF1 KO mice (1163.17). FASEB Journal, 2014, 28, 1163.17.	0.5	O
98	Testosterone Is Not Required for The Maintenance of Muscle Mass in Fully Matured and Elderly Male Mice. FASEB Journal, 2019, 33, 868.8.	0.5	0
99	Overexpression of a Novel E3 Ligase leads to a Skeletal Muscle Myopathy through Alterations in Cytoskeleton Proteins and Enhanced Protein Degradation. FASEB Journal, 2019, 33, 700.2.	0.5	O
100	Transition from academia to private industryand back. Physiologist, 2011, 54, 64-5.	0.0	0
101	Overexpression of Multiple E3 Ubiquitin Ligases in Gastrocnemius Muscles from Mice. FASEB Journal, 2022, 36, .	0.5	O