Alexander J R Bishop

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5144491/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	FibroDB: Expression Analysis of Protein-Coding and Long Non-Coding RNA Genes in Fibrosis. Non-coding RNA, 2022, 8, 13.	2.6	8
2	Current Status of Epitranscriptomic Marks Affecting IncRNA Structures and Functions. Non-coding RNA, 2022, 8, 23.	2.6	6
3	Quality-controlled R-loop meta-analysis reveals the characteristics of R-loop consensus regions. Nucleic Acids Research, 2022, 50, 7260-7286.	14.5	7
4	COX-2 promotes mammary adipose tissue inflammation, local estrogen biosynthesis, and carcinogenesis in high-sugar/fat diet treated mice. Cancer Letters, 2021, 502, 44-57.	7.2	24
5	Correlation AnalyzeR: functional predictions from gene co-expression correlations. BMC Bioinformatics, 2021, 22, 206.	2.6	46
6	BRCA2 Promotes Spontaneous Homologous Recombination In Vivo. Cancers, 2021, 13, 3663.	3.7	1
7	Thioredoxin reductase-1 levels are associated with NRF2 pathway activation and tumor recurrence in non-small cell lung cancer. Free Radical Biology and Medicine, 2021, 177, 58-71.	2.9	21
8	Phase 1/2 trial of talazoparib in combination with temozolomide in children and adolescents with refractory/recurrent solid tumors including Ewing sarcoma: A Children's Oncology Group Phase 1 Consortium study (ADVL1411). Pediatric Blood and Cancer, 2020, 67, e28073.	1.5	52
9	Nucleolar RNA polymerase II drives ribosome biogenesis. Nature, 2020, 585, 298-302.	27.8	135
10	Cohesin SA1 and SA2 are RNA binding proteins that localize to RNA containing regions on DNA. Nucleic Acids Research, 2020, 48, 5639-5655.	14.5	47
11	Reconstruction of Ewing Sarcoma Developmental Context from Mass-Scale Transcriptomics Reveals Characteristics of EWSR1-FLI1 Permissibility. Cancers, 2020, 12, 948.	3.7	27
12	The molecular landscape of ETMR at diagnosis and relapse. Nature, 2019, 576, 274-280.	27.8	94
13	EWS–FLI1 increases transcription to cause R-loops and block BRCA1 repair in Ewing sarcoma. Nature, 2018, 555, 387-391.	27.8	222
14	Sorafenib improves alkylating therapy by blocking induced inflammation, invasion and angiogenesis in breast cancer cells. Cancer Letters, 2018, 425, 101-115.	7.2	24
15	Ewing sarcoma fusion oncogene: At the crossroads of transcription and DNA damage response. Molecular and Cellular Oncology, 2018, 5, e1465014.	0.7	16
16	Musashi1 Impacts Radio-Resistance in Glioblastoma by Controlling DNA-Protein Kinase Catalytic Subunit. American Journal of Pathology, 2016, 186, 2271-2278.	3.8	38
17	Alkylating Agent–Induced NRF2 Blocks Endoplasmic Reticulum Stress–Mediated Apoptosis via Control of Glutathione Pools and Protein Thiol Homeostasis. Molecular Cancer Therapeutics, 2016, 15, 3000-3014.	4.1	56
18	Combined Gene Expression and RNAi Screening to Identify Alkylation Damage Survival Pathways from Fly to Human. PLoS ONE, 2016, 11, e0153970.	2.5	8

Alexander J R Bishop

#	Article	IF	CITATIONS
19	Autophagy inhibition improves the efficacy of curcumin/temozolomide combination therapy in glioblastomas. Cancer Letters, 2015, 358, 220-231.	7.2	162
20	Potential Relationship between Inadequate Response to DNA Damage and Development of Myelodysplastic Syndrome. International Journal of Molecular Sciences, 2015, 16, 966-989.	4.1	22
21	ATR Suppresses Endogenous DNA Damage and Allows Completion of Homologous Recombination Repair. PLoS ONE, 2014, 9, e91222.	2.5	13
22	Induction of homologous recombination following in utero exposure to DNA-damaging agents. DNA Repair, 2013, 12, 912-921.	2.8	4
23	Myelodysplastic syndrome: An inability to appropriately respond to damaged DNA?. Experimental Hematology, 2013, 41, 665-674.	0.4	35
24	Identification of Genes Required for Damage Survival Using a Cell-Based RNAi Screen Against the Drosophila Genome. Methods in Molecular Biology, 2012, 920, 9-26.	0.9	0
25	Pathway Distiller - multisource biological pathway consolidation. BMC Genomics, 2012, 13, S18.	2.8	20
26	Atg7 Modulates p53 Activity to Regulate Cell Cycle and Survival During Metabolic Stress. Science, 2012, 336, 225-228.	12.6	299
27	RAD51 Mutants Cause Replication Defects and Chromosomal Instability. Molecular and Cellular Biology, 2012, 32, 3663-3680.	2.3	46
28	Mice heterozygous for CREB binding protein are hypersensitive to Î ³ -radiation and invariably develop myelodysplastic/myeloproliferative neoplasm. Experimental Hematology, 2012, 40, 295-306.e5.	0.4	28
29	14-3-3 Ïf Expression Effects G2/M Response to Oxygen and Correlates with Ovarian Cancer Metastasis. PLoS ONE, 2011, 6, e15864.	2.5	17
30	Dissection of a Mouse Eye for a Whole Mount of the Retinal Pigment Epithelium. Journal of Visualized Experiments, 2011, , .	0.3	32
31	Mutant p53 Disrupts Role of ShcA Protein in Balancing Smad Protein-dependent and -independent Signaling Activity of Transforming Growth Factor-β (TGF-β)*. Journal of Biological Chemistry, 2011, 286, 44023-44034.	3.4	10
32	A Conditional Mouse Model for Measuring the Frequency of Homologous Recombination Events <i>In Vivo</i> in the Absence of Essential Genes. Molecular and Cellular Biology, 2011, 31, 3593-3602.	2.3	12
33	Building and analyzing protein interactome networks by cross-species comparisons. BMC Systems Biology, 2010, 4, 36.	3.0	55
34	Mouse WRN Helicase Domain Is Not Required for Spontaneous Homologous Recombination-Mediated DNA Deletion. Journal of Nucleic Acids, 2010, 2010, 1-6.	1.2	4
35	PARP1 suppresses homologous recombination events in mice in vivo. Nucleic Acids Research, 2010, 38, 7538-7545.	14.5	25
36	A Network of Conserved Damage Survival Pathways Revealed by a Genomic RNAi Screen. PLoS Genetics, 2009, 5, e1000527.	3.5	47

Alexander J R Bishop

#	Article	IF	CITATIONS
37	An Analysis of Normalization Methods for Drosophila RNAi Genomic Screens and Development of a Robust Validation Scheme. Journal of Biomolecular Screening, 2008, 13, 777-784.	2.6	28
38	Involvement of Homologous Recombination in Carcinogenesis. Advances in Genetics, 2007, 58, 67-87.	1.8	58
39	p21 controls patterning but not homologous recombination in RPE development. DNA Repair, 2006, 5, 111-120.	2.8	6
40	In Vivo DNA Deletion Assay to Detect Environmental and Genetic Predisposition to Cancer. , 2004, 262, 125-140.		19
41	Ku86 deficiency leads to reduced intrachromosomal homologous recombination in vivo in mice. DNA Repair, 2004, 3, 103-111.	2.8	11
42	Role of homologous recombination in carcinogenesis. Experimental and Molecular Pathology, 2003, 74, 94-105.	2.1	103
43	Atm-, p53-, and Gadd45a-deficient mice show an increased frequency of homologous recombination at different stages during development. Cancer Research, 2003, 63, 5335-43.	0.9	46
44	Homologous Recombination and Its Role in Carcinogenesis. Journal of Biomedicine and Biotechnology, 2002, 2, 75-85.	3.0	60
45	Homologous recombination as a mechanism for genome rearrangements: environmental and genetic effects. Human Molecular Genetics, 2000, 9, 2427-2334.	2.9	72
46	Development and Characterization of a Mass Cytometry Panel for Detecting the Effect of Acute Doxorubicin Exposure on Murine Cardiac Non-myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 0, , .	3.2	1