
Joshua A Goldberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5143516/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thalamic Gating of Corticostriatal Signaling by Cholinergic Interneurons. Neuron, 2010, 67, 294-307.	8.1	401
2	Enhanced Synchrony among Primary Motor Cortex Neurons in the 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Primate Model of Parkinson's Disease. Journal of Neuroscience, 2002, 22, 4639-4653.	3.6	260
3	Neuronal Oscillations in the Basal Ganglia and Movement Disorders: Evidence from Whole Animal and Human Recordings. Journal of Neuroscience, 2004, 24, 9240-9243.	3.6	258
4	Resonant Antidromic Cortical Circuit Activation as a Consequence of High-Frequency Subthalamic Deep-Brain Stimulation. Journal of Neurophysiology, 2007, 98, 3525-3537.	1.8	251
5	RCS4-dependent attenuation of M4 autoreceptor function in striatal cholinergic interneurons following dopamine depletion. Nature Neuroscience, 2006, 9, 832-842.	14.8	227
6	Spike Synchronization in the Cortex-Basal Ganglia Networks of Parkinsonian Primates Reflects Global Dynamics of the Local Field Potentials. Journal of Neuroscience, 2004, 24, 6003-6010.	3.6	205
7	Dopamine Replacement Therapy Reverses Abnormal Synchronization of Pallidal Neurons in the 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Primate Model of Parkinsonism. Journal of Neuroscience, 2002, 22, 7850-7855.	3.6	156
8	Control of Spontaneous Firing Patterns by the Selective Coupling of Calcium Currents to Calcium-Activated Potassium Currents in Striatal Cholinergic Interneurons. Journal of Neuroscience, 2005, 25, 10230-10238.	3.6	147
9	Calcium entry induces mitochondrial oxidant stress in vagal neurons at risk in Parkinson's disease. Nature Neuroscience, 2012, 15, 1414-1421.	14.8	144
10	The Origins of Oxidant Stress in Parkinson's Disease and Therapeutic Strategies. Antioxidants and Redox Signaling, 2011, 14, 1289-1301.	5.4	132
11	Muscarinic Modulation of Striatal Function and Circuitry. Handbook of Experimental Pharmacology, 2012, , 223-241.	1.8	127
12	Spontaneous firing and evoked pauses in the tonically active cholinergic interneurons of the striatum. Neuroscience, 2011, 198, 27-43.	2.3	124
13	Dopamine Replacement Therapy Does Not Restore the Full Spectrum of Normal Pallidal Activity in the 1-Methyl-4-Phenyl-1,2,3,6-Tetra-Hydropyridine Primate Model of Parkinsonism. Journal of Neuroscience, 2006, 26, 8101-8114.	3.6	104
14	What causes the death of dopaminergic neurons in Parkinson's disease?. Progress in Brain Research, 2010, 183, 59-77.	1.4	102
15	Statistical Properties of Pauses of the High-Frequency Discharge Neurons in the External Segment of the Globus Pallidus. Journal of Neuroscience, 2007, 27, 2525-2538.	3.6	89
16	Patterns of Ongoing Activity and the Functional Architecture of the Primary Visual Cortex. Neuron, 2004, 42, 489-500.	8.1	81
17	Origin of the Slow Afterhyperpolarization and Slow Rhythmic Bursting in Striatal Cholinergic Interneurons. Journal of Neurophysiology, 2006, 95, 196-204.	1.8	76
18	Synchrony of rest tremor in multiple limbs in Parkinson's disease: evidence for multiple oscillators. Journal of Neural Transmission, 2001, 108, 287-296.	2.8	64

Joshua A Goldberg

#	Article	IF	CITATIONS
19	Reinforcement-Driven Dimensionality Reduction - A Model for Information Processing in the Basal Ganglia. Journal of Basic and Clinical Physiology and Pharmacology, 2000, 11, 305-320.	1.3	59
20	Response Properties and Synchronization of Rhythmically Firing Dendritic Neurons. Journal of Neurophysiology, 2007, 97, 208-219.	1.8	55
21	Nonequilibrium Calcium Dynamics Regulate the Autonomous Firing Pattern of Rat Striatal Cholinergic Interneurons. Journal of Neuroscience, 2009, 29, 8396-8407.	3.6	53
22	Globus Pallidus Discharge Is Coincident with Striatal Activity during Global Slow Wave Activity in the Rat. Journal of Neuroscience, 2003, 23, 10058-10063.	3.6	45
23	Cortico-cerebellar coherence and causal connectivity during slow-wave activity. Neuroscience, 2010, 166, 698-711.	2.3	45
24	Computational physiology of the neural networks of the primate globus pallidus: function and dysfunction. Neuroscience, 2011, 198, 171-192.	2.3	42
25	Recruitment and blocking properties of the CardioFit stimulation lead. Journal of Neural Engineering, 2011, 8, 034004.	3.5	39
26	Thinking Outside the Box (and Arrow): Current Themes in Striatal Dysfunction in Movement Disorders. Neuroscientist, 2019, 25, 359-379.	3.5	37
27	Oscillations in the Basal Ganglia: The good, the bad, and the unexpected. , 2005, , 1-24.		37
28	Adenosine A2a receptor antagonists attenuate striatal adaptations following dopamine depletion. Neurobiology of Disease, 2012, 45, 409-416.	4.4	32
29	Cholinergic Interneurons Amplify Corticostriatal Synaptic Responses in the Q175 Model of Huntington's Disease. Frontiers in Systems Neuroscience, 2016, 10, 102.	2.5	29
30	Selective remodeling of glutamatergic transmission to striatal cholinergic interneurons after dopamine depletion. European Journal of Neuroscience, 2019, 49, 824-833.	2.6	28
31	Mutant α-Synuclein Overexpression Induces Stressless Pacemaking in Vagal Motoneurons at Risk in Parkinson's Disease. Journal of Neuroscience, 2017, 37, 47-57.	3.6	22
32	Activity Patterns in the Neuropil of Striatal Cholinergic Interneurons in Freely Moving Mice Represent Their Collective Spiking Dynamics. ENeuro, 2019, 6, ENEURO.0351-18.2018.	1.9	22
33	Spectral reconstruction of phase response curves reveals the synchronization properties of mouse globus pallidus neurons. Journal of Neurophysiology, 2013, 110, 2497-2506.	1.8	14
34	Functional segregation of voltage-activated calcium channels in motoneurons of the dorsal motor nucleus of the vagus. Journal of Neurophysiology, 2015, 114, 1513-1520.	1.8	14
35	Population dynamics and entrainment of basal ganglia pacemakers are shaped by their dendritic arbors. PLoS Computational Biology, 2019, 15, e1006782.	3.2	14
36	The Cholinergic Interneurons of the Striatum. Handbook of Behavioral Neuroscience, 2010, , 133-149.	0.7	13

Joshua A Goldberg

#	Article	lF	CITATIONS
37	α-Synuclein 2.0 — Moving towards Cell Type Specific Pathophysiology. Neuroscience, 2019, 412, 248-256.	2.3	13
38	Transient Activation of GABAB Receptors Suppresses SK Channel Currents in Substantia Nigra Pars Compacta Dopaminergic Neurons. PLoS ONE, 2016, 11, e0169044.	2.5	11
39	α-Synuclein–induced Kv4 channelopathy in mouse vagal motoneurons drives nonmotor parkinsonian symptoms. Science Advances, 2021, 7, .	10.3	9
40	A tonic nicotinic brake controls spike timing in striatal spiny projection neurons. ELife, 2022, 11, .	6.0	6
41	Non-uniform distribution of dendritic nonlinearities differentially engages thalamostriatal and corticostriatal inputs onto cholinergic interneurons. ELife, 0, 11, .	6.0	2
42	Vagal motoneurons in Parkinson's disease. , 2020, , 327-343.		1
43	LFP Analysis: Overview. , 2014, , 1-5.		0
44	A Partial Spectra Method for Predicting Spike Correlations from Local Field Potentials. , 2005, , 47-53.		0
45	LFP Analysis: Overview. , 2022, , 66-70.		0