
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/514325/publications.pdf Version: 2024-02-01

Ι ΛΙΙΡΛ Ε ΥΙΛ

#	Article	IF	CITATIONS
1	A Rabbit Model to Study Antibiotic Penetration at the Site of Infection for Nontuberculous Mycobacterial Lung Disease: Macrolide Case Study. Antimicrobial Agents and Chemotherapy, 2022, 66, aac0221221.	3.2	13
2	Mild SARS-CoV-2 infection in rhesus macaques is associated with viral control prior to antigen-specific T cell responses in tissues. Science Immunology, 2022, 7, eabo0535.	11.9	17
3	Sputum lipoarabinomannan (LAM) as a biomarker to determine sputum mycobacterial load: exploratory and model-based analyses of integrated data from four cohorts. BMC Infectious Diseases, 2022, 22, 327.	2.9	7
4	CD4 TÂcells are rapidly depleted from tuberculosis granulomas following acute SIV co-infection. Cell Reports, 2022, 39, 110896.	6.4	15
5	PD-1 blockade exacerbates <i>Mycobacterium tuberculosis</i> infection in rhesus macaques. Science Immunology, 2021, 6, .	11.9	70
6	Fourteen-day PET/CT imaging to monitor drug combination activity in treated individuals with tuberculosis. Science Translational Medicine, 2021, 13, .	12.4	25
7	One Size Fits All? Not in In Vivo Modeling of Tuberculosis Chemotherapeutics. Frontiers in Cellular and Infection Microbiology, 2021, 11, 613149.	3.9	17
8	Visualizing the dynamics of tuberculosis pathology using molecular imaging. Journal of Clinical Investigation, 2021, 131, .	8.2	12
9	Functional inactivation of pulmonary MAIT cells following 5-OP-RU treatment of non-human primates. Mucosal Immunology, 2021, 14, 1055-1066.	6.0	23
10	Eosinophils are part of the granulocyte response in tuberculosis and promote host resistance in mice. Journal of Experimental Medicine, 2021, 218, .	8.5	38
11	Lesion Penetration and Activity Limit the Utility of Second-Line Injectable Agents in Pulmonary Tuberculosis. Antimicrobial Agents and Chemotherapy, 2021, 65, e0050621.	3.2	12
12	Quantitative 18F-FDG PET-CT scan characteristics correlate with tuberculosis treatment response. EJNMMI Research, 2020, 10, 8.	2.5	27
13	Computed Tomography-Based Biomarker for Longitudinal Assessment of Disease Burden in Pulmonary Tuberculosis. Molecular Imaging and Biology, 2019, 21, 19-24.	2.6	7
14	Inhibition of CorA-Dependent Magnesium Homeostasis Is Cidal in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	9
15	Plasticity of the Mycobacterium tuberculosis respiratory chain and its impact on tuberculosis drug development. Nature Communications, 2019, 10, 4970.	12.8	82
16	Changes in inflammatory protein and lipid mediator profiles persist after antitubercular treatment of pulmonary and extrapulmonary tuberculosis: A prospective cohort study. Cytokine, 2019, 123, 154759.	3.2	55
17	Molecular degree of perturbation of plasma inflammatory markers associated with tuberculosis reveals distinct disease profiles between Indian and Chinese populations. Scientific Reports, 2019, 9, 8002.	3.3	33
18	Tuberculosis drugs' distribution and emergence of resistance in patient's lung lesions: A mechanistic model and tool for regimen and dose optimization. PLoS Medicine, 2019, 16, e1002773.	8.4	139

#	Article	IF	CITATIONS
19	A semi-automatic technique to quantify complex tuberculous lung lesions on 18F-fluorodeoxyglucose positron emission tomography/computerised tomography images. EJNMMI Research, 2018, 8, 55.	2.5	16
20	Discovery and Structure–Activity-Relationship Study of <i>N</i> -Alkyl-5-hydroxypyrimidinone Carboxamides as Novel Antitubercular Agents Targeting Decaprenylphosphoryl-β- <scp>d</scp> -ribose 2′-Oxidase. Journal of Medicinal Chemistry, 2018, 61, 9952-9965.	6.4	29
21	Storage lipid studies in tuberculosis reveal that foam cell biogenesis is disease-specific. PLoS Pathogens, 2018, 14, e1007223.	4.7	75
22	The wide utility of rabbits as models of human diseases. Experimental and Molecular Medicine, 2018, 50, 1-10.	7.7	103
23	Extreme Drug Tolerance of Mycobacterium tuberculosis in Caseum. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	159
24	Genomic analysis of globally diverse Mycobacterium tuberculosis strains provides insights into the emergence and spread of multidrug resistance. Nature Genetics, 2017, 49, 395-402.	21.4	258
25	The within-host population dynamics of Mycobacterium tuberculosis vary with treatment efficacy. Genome Biology, 2017, 18, 71.	8.8	95
26	Evaluation of a Rapid Molecular Drug-Susceptibility Test for Tuberculosis. New England Journal of Medicine, 2017, 377, 1043-1054.	27.0	129
27	Host blood RNA signatures predict the outcome of tuberculosis treatment. Tuberculosis, 2017, 107, 48-58.	1.9	156
28	An In Vitro Caseum Binding Assay that Predicts Drug Penetration in Tuberculosis Lesions. Journal of Visualized Experiments, 2017, , .	0.3	17
29	Detection of Isoniazid-, Fluoroquinolone-, Amikacin-, and Kanamycin-Resistant Tuberculosis in an Automated, Multiplexed 10-Color Assay Suitable for Point-of-Care Use. Journal of Clinical Microbiology, 2017, 55, 183-198.	3.9	47
30	Essential but Not Vulnerable: Indazole Sulfonamides Targeting Inosine Monophosphate Dehydrogenase as Potential Leads against <i>Mycobacterium tuberculosis</i> . ACS Infectious Diseases, 2017, 3, 18-33.	3.8	77
31	Interferon-gamma response to the treatment of active pulmonary and extra-pulmonary tuberculosis. International Journal of Tuberculosis and Lung Disease, 2017, 21, 1145-1149.	1.2	13
32	Using biomarkers to predict TB treatment duration (Predict TB): a prospective, randomized, noninferiority, treatment shortening clinical trial. Gates Open Research, 2017, 1, 9.	1.1	22
33	Abstract B59: Mathematical Model of Oxygen Transport in Tuberculosis Granulomas. , 2017, , .		0
34	Multidrug-Resistant Tuberculosis Treatment Outcomes in Relation to Treatment and Initial Versus Acquired Second-Line Drug Resistance. Clinical Infectious Diseases, 2016, 62, civ910.	5.8	76
35	Bacterial Loads Measured by the Xpert MTB/RIF Assay as Markers of Culture Conversion and Bacteriological Cure in Pulmonary TB. PLoS ONE, 2016, 11, e0160062.	2.5	35
36	Inflammatory signaling in human tuberculosis granulomas is spatially organized. Nature Medicine, 2016, 22, 531-538.	30.7	273

#	Article	IF	CITATIONS
37	Persisting positron emission tomography lesion activity and Mycobacterium tuberculosis mRNA after tuberculosis cure. Nature Medicine, 2016, 22, 1094-1100.	30.7	247
38	Prediction of Drug Penetration in Tuberculosis Lesions. ACS Infectious Diseases, 2016, 2, 552-563.	3.8	110
39	Absolute Quantitative MALDI Imaging Mass Spectrometry: A Case of Rifampicin in Liver Tissues. Analytical Chemistry, 2016, 88, 2392-2398.	6.5	145
40	Mathematical Model of Oxygen Transport in Tuberculosis Granulomas. Annals of Biomedical Engineering, 2016, 44, 863-872.	2.5	29
41	High Persister Mutants in Mycobacterium tuberculosis. PLoS ONE, 2016, 11, e0155127.	2.5	123
42	Very Low Doses of Mycobacterium tuberculosis Yield Diverse Host Outcomes in Common Marmosets (Callithrix jacchus). Comparative Medicine, 2016, 66, 412-419.	1.0	14
43	Within patient microevolution of Mycobacterium tuberculosis correlates with heterogeneous responses to treatment. Scientific Reports, 2015, 5, 17507.	3.3	80
44	Granzyme <scp>B</scp> â€expressing neutrophils correlate with bacterial load in granulomas from <scp> <i>M</i> </scp> <i>ycobacterium tuberculosis</i> â€infected cynomolgus macaques. Cellular Microbiology, 2015, 17, 1085-1097.	2.1	58
45	Association between Regimen Composition and Treatment Response in Patients with Multidrug-Resistant Tuberculosis: A Prospective Cohort Study. PLoS Medicine, 2015, 12, e1001932.	8.4	37
46	Linezolid Trough Concentrations Correlate with Mitochondrial Toxicity-Related Adverse Events in the Treatment of Chronic Extensively Drug-Resistant Tuberculosis. EBioMedicine, 2015, 2, 1627-1633.	6.1	93
47	Anti-vascular endothelial growth factor treatment normalizes tuberculosis granuloma vasculature and improves small molecule delivery. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1827-1832.	7.1	167
48	Sputum culture conversion as a prognostic marker for end-of-treatment outcome in patients with multidrug-resistant tuberculosis: a secondary analysis of data from two observational cohort studies. Lancet Respiratory Medicine,the, 2015, 3, 201-209.	10.7	116
49	Host-Mediated Bioactivation of Pyrazinamide: Implications for Efficacy, Resistance, and Therapeutic Alternatives. ACS Infectious Diseases, 2015, 1, 203-214.	3.8	71
50	Additional Drug Resistance of Multidrug-Resistant Tuberculosis in Patients in 9 Countries. Emerging Infectious Diseases, 2015, 21, 977-983.	4.3	13
51	Intratracheal exposure of common marmosets to MERS-CoV Jordan-n3/2012 or MERS-CoV EMC/2012 isolates does not result in lethal disease. Virology, 2015, 485, 422-430.	2.4	47
52	The association between sterilizing activity and drug distribution into tuberculosis lesions. Nature Medicine, 2015, 21, 1223-1227.	30.7	387
53	A Sterilizing Tuberculosis Treatment Regimen Is Associated with Faster Clearance of Bacteria in Cavitary Lesions in Marmosets. Antimicrobial Agents and Chemotherapy, 2015, 59, 4181-4189.	3.2	59
54	Genotypic Susceptibility Testing of Mycobacterium tuberculosis Isolates for Amikacin and Kanamycin Resistance by Use of a Rapid Sloppy Molecular Beacon-Based Assay Identifies More Cases of Low-Level Drug Resistance than Phenotypic Lowenstein-Jensen Testing. Journal of Clinical Microbiology, 2015, 53, 43-51.	3.9	32

#	Article	IF	CITATIONS
55	Comparative Evaluation of Sloppy Molecular Beacon and Dual-Labeled Probe Melting Temperature Assays to Identify Mutations in Mycobacterium tuberculosis Resulting in Rifampin, Fluoroquinolone and Aminoglycoside Resistance. PLoS ONE, 2015, 10, e0126257.	2.5	12
56	Sensititre MYCOTB MIC Plate for Testing Mycobacterium tuberculosis Susceptibility to First- and Second-Line Drugs. Antimicrobial Agents and Chemotherapy, 2014, 58, 11-18.	3.2	86
57	PET/CT imaging reveals a therapeutic response to oxazolidinones in macaques and humans with tuberculosis. Science Translational Medicine, 2014, 6, 265ra167.	12.4	116
58	PET/CT imaging correlates with treatment outcome in patients with multidrug-resistant tuberculosis. Science Translational Medicine, 2014, 6, 265ra166.	12.4	126
59	Fitness costs of rifampicin resistance in <scp><i>M</i></scp> <i>ycobacterium tuberculosis</i> are amplified under conditions of nutrient starvation and compensated by mutation in the β′ subunit of <scp>RNA</scp> polymerase. Molecular Microbiology, 2014, 91, 1106-1119.	2.5	85
60	Extensive Drug Resistance Acquired During Treatment of Multidrug-Resistant Tuberculosis. Clinical Infectious Diseases, 2014, 59, 1049-1063.	5.8	129
61	Predictors of pulmonary tuberculosis treatment outcomes in South Korea: a prospective cohort study, 2005-2012. BMC Infectious Diseases, 2014, 14, 360.	2.9	48
62	Nuclear imaging: A powerful novel approach for tuberculosis. Nuclear Medicine and Biology, 2014, 41, 777-784.	0.6	28
63	Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk. Nature, 2014, 511, 99-103.	27.8	650
64	Microenvironments in Tuberculous Granulomas Are Delineated by Distinct Populations of Macrophage Subsets and Expression of Nitric Oxide Synthase and Arginase Isoforms. Journal of Immunology, 2013, 191, 773-784.	0.8	292
65	Utility of the REBA MTB-rifa® assay for rapid detection of rifampicin resistant Mycobacterium Tuberculosis. BMC Infectious Diseases, 2013, 13, 478.	2.9	9
66	Efficacy and Safety of Metronidazole for Pulmonary Multidrug-Resistant Tuberculosis. Antimicrobial Agents and Chemotherapy, 2013, 57, 3903-3909.	3.2	67
67	Association of lipoarabinomannan with high density lipoprotein in blood: Implications for diagnostics. Tuberculosis, 2013, 93, 301-307.	1.9	46
68	Exploring Alternative Biomaterials for Diagnosis of Pulmonary Tuberculosis in HIV-Negative Patients by Use of the GeneXpert MTB/RIF Assay. Journal of Clinical Microbiology, 2013, 51, 4161-4166.	3.9	42
69	Differential Virulence and Disease Progression following Mycobacterium tuberculosis Complex Infection of the Common Marmoset (Callithrix jacchus). Infection and Immunity, 2013, 81, 2909-2919.	2.2	107
70	Impact of Diabetes and Smoking on Mortality in Tuberculosis. PLoS ONE, 2013, 8, e58044.	2.5	71
71	Frequency of adverse reactions to first- and second-line anti-tuberculosis chemotherapy in a Korean cohort. International Journal of Tuberculosis and Lung Disease, 2012, 16, 961-966.	1.2	48
72	Pharmacokinetic Evaluation of the Penetration of Antituberculosis Agents in Rabbit Pulmonary Lesions. Antimicrobial Agents and Chemotherapy, 2012, 56, 446-457.	3.2	154

#	Article	IF	CITATIONS
73	Linezolid for Treatment of Chronic Extensively Drug-Resistant Tuberculosis. New England Journal of Medicine, 2012, 367, 1508-1518.	27.0	496
74	Rapid, High-Throughput Detection of Rifampin Resistance and Heteroresistance in Mycobacterium tuberculosis by Use of Sloppy Molecular Beacon Melting Temperature Coding. Journal of Clinical Microbiology, 2012, 50, 2194-2202.	3.9	38
75	Rhabdomyolysis in a Patient Treated With Linezolid for Extensively Drug-Resistant Tuberculosis. Clinical Infectious Diseases, 2012, 54, 1624-1627.	5.8	21
76	Infection Dynamics and Response to Chemotherapy in a Rabbit Model of Tuberculosis using [¹⁸ F]2-Fluoro-Deoxy- <scp>d</scp> -Glucose Positron Emission Tomography and Computed Tomography. Antimicrobial Agents and Chemotherapy, 2012, 56, 4391-4402.	3.2	89
77	Natural killer cells are recruited during pulmonary tuberculosis and their <i>ex vivo</i> responses to mycobacteria vary between healthy human donors in association with <scp>KIR</scp> haplotype. Cellular Microbiology, 2012, 14, 1734-1744.	2.1	55
78	Prevalence of and risk factors for resistance to second-line drugs in people with multidrug-resistant tuberculosis in eight countries: a prospective cohort study. Lancet, The, 2012, 380, 1406-1417.	13.7	193
79	Meropenem-Clavulanic Acid Shows Activity against Mycobacterium tuberculosis In Vivo. Antimicrobial Agents and Chemotherapy, 2012, 56, 3384-3387.	3.2	89
80	Clinical Research and Development of Tuberculosis Diagnostics: Moving From Silos to Synergy. Journal of Infectious Diseases, 2012, 205, S159-S168.	4.0	30
81	Metronidazole prevents reactivation of latent <i>Mycobacterium tuberculosis</i> infection in macaques. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14188-14193.	7.1	109
82	Rapid detection of Mycobacterium tuberculosis biomarkers in a sandwich immunoassay format using a waveguide-based optical biosensor. Tuberculosis, 2012, 92, 407-416.	1.9	78
83	The Transcription Factor NFATp Plays a Key Role in Susceptibility to TB in Mice. PLoS ONE, 2012, 7, e41427.	2.5	6
84	Mycolic acids as diagnostic markers for tuberculosis case detection in humans and drug efficacy in mice. EMBO Molecular Medicine, 2012, 4, 27-37.	6.9	61
85	High-Sensitivity MALDI-MRM-MS Imaging of Moxifloxacin Distribution in Tuberculosis-Infected Rabbit Lungs and Granulomatous Lesions. Analytical Chemistry, 2011, 83, 2112-2118.	6.5	235
86	The Medicinal Chemistry of Tuberculosis Chemotherapy. Topics in Medicinal Chemistry, 2011, , 47-124.	0.8	17
87	Linezolid For Extensively Drug Resistant Pulmonary Tuberculosis. , 2011, , .		1
88	Uptake of unnatural trehalose analogs as a reporter for Mycobacterium tuberculosis. Nature Chemical Biology, 2011, 7, 228-235.	8.0	202
89	Reagent Precoated Targets for Rapid In-Tissue Derivatization of the Anti-Tuberculosis Drug Isoniazid Followed by MALDI Imaging Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2011, 22, 1409-1419.	2.8	65
90	Rapid Detection of Fluoroquinolone-Resistant and Heteroresistant Mycobacterium tuberculosis by Use of Sloppy Molecular Beacons and Dual Melting-Temperature Codes in a Real-Time PCR Assay. Journal of Clinical Microbiology, 2011, 49, 932-940.	3.9	48

#	Article	IF	CITATIONS
91	Improved rapid molecular diagnosis of multidrug-resistant tuberculosis using a new reverse hybridization assay, REBA MTB-MDR. Journal of Medical Microbiology, 2011, 60, 1447-1454.	1.8	25
92	Mutations in <i>gidB</i> Confer Low-Level Streptomycin Resistance in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2011, 55, 2515-2522.	3.2	130
93	Mutations in Extensively Drugâ€Resistant <i>Mycobacterium tuberculosis</i> That Do Not Code for Known Drugâ€Resistance Mechanisms. Journal of Infectious Diseases, 2010, 201, 881-888.	4.0	22
94	Neutrophils Are the Predominant Infected Phagocytic Cells in the Airways of Patients With Active Pulmonary TB. Chest, 2010, 137, 122-128.	0.8	444
95	Association of Antigen-Stimulated Release of Tumor Necrosis Factor-Alpha in Whole Blood with Response to Chemotherapy in Patients with Pulmonary Multidrug-Resistant Tuberculosis. Respiration, 2010, 80, 275-284.	2.6	23
96	Genetic Diversity of <i>Mycobacterium tuberculosis</i> Isolates from a Tertiary Care Tuberculosis Hospital in South Korea. Journal of Clinical Microbiology, 2010, 48, 387-394.	3.9	73
97	Polymorphisms Associated with Resistance and Cross-Resistance to Aminoglycosides and Capreomycin in <i>Mycobacterium tuberculosis</i> Isolates from South Korean Patients with Drug-Resistant Tuberculosis. Journal of Clinical Microbiology, 2010, 48, 402-411.	3.9	83
98	Metaplastic ossification in the cartilage of the bronchus of a patient with chronic multi-drug resistant tuberculosis: a case report. Journal of Medical Case Reports, 2010, 4, 156.	0.8	8
99	Evaluation of the diagnostic utility of a whole-blood interferon-γ assay for determining the risk of exposure to Mycobacterium tuberculosis in Bacille Calmette-Guerin (BCG)-vaccinated individuals. Diagnostic Microbiology and Infectious Disease, 2008, 61, 181-186.	1.8	19
100	Tuberculous Granulomas Are Hypoxic in Guinea Pigs, Rabbits, and Nonhuman Primates. Infection and Immunity, 2008, 76, 2333-2340.	2.2	570
101	Extensively Drug-Resistant Tuberculosis in South Korea: Risk Factors and Treatment Outcomes among Patients at a Tertiary Referral Hospital. Clinical Infectious Diseases, 2008, 46, 42-49.	5.8	94
102	Interleukin (IL)-15 and IL-2 Reciprocally Regulate Expression of the Chemokine Receptor CX3CR1 through Selective NFAT1- and NFAT2-dependent Mechanisms. Journal of Biological Chemistry, 2004, 279, 48520-48534.	3.4	34
103	Effects of cytokines on mycobacterial phagosome maturation. Journal of Cell Science, 1998, 111 (Pt 7), 897-905.	2.0	138
104	Arrest of Mycobacterial Phagosome Maturation Is Caused by a Block in Vesicle Fusion between Stages Controlled by rab5 and rab7. Journal of Biological Chemistry, 1997, 272, 13326-13331.	3.4	487
105	Mycobacterial phagosome maturation, rab proteins, and intracellular trafficking. Electrophoresis, 1997, 18, 2542-2547.	2.4	320
106	Elements of signal transduction in Mycobacterium tuberculosis: in vitro phosphorylation and in vivo expression of the response regulator MtrA. Journal of Bacteriology, 1996, 178, 3314-3321.	2.2	111
107	The extreme sensitivity of Mycobacterium tuberculosis to the front-line antituberculosis drug isoniazid. Nature Biotechnology, 1996, 14, 1557-1561.	17.5	55
108	Mycobacterium tuberculosis is a natural mutant with an inactivated oxidative-stress regulatory gene:implications for sensitivity to isoniazid. Molecular Microbiology, 1995, 17, 889-900.	2.5	182

#	Article	IF	CITATIONS
109	Green fluorescent protein as a marker for gene expression and cell biology of mycobacterial interactions with macrophages. Molecular Microbiology, 1995, 17, 901-912.	2.5	194
110	Comparison of methods for isolation of Mycobacterium avium complex DNA for use in PCR and RAPD fingerprinting. Journal of Microbiological Methods, 1995, 21, 151-161.	1.6	22
111	Predicting TB treatment outcomes using baseline risk and treatment response markers: developing the PredictTB early treatment completion criteria. Gates Open Research, 0, 4, 157.	1.1	0