Pierre-Olivier Cheptou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5143101/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Differences in seed dormancy and germination in amphicarpic legumes: manifold bet-hedging in space and time. Journal of Plant Ecology, 2021, 14, 662-672.	2.3	0
2	Does seed mass drive interspecies variation in the effect of management practices on weed demography?. Ecology and Evolution, 2021, 11, 13166-13174.	1.9	3
3	Rapid divergent evolution of an annual plant across a latitudinal gradient revealed by seed resurrection. Evolution; International Journal of Organic Evolution, 2021, 75, 2759-2772.	2.3	5
4	Seasonâ€dependent effect of cleistogamy in <i>Lamium amplexicaule</i> : flower type origin versus inbreeding status. American Journal of Botany, 2020, 107, 155-163.	1.7	13
5	Weeds: Against the Rules?. Trends in Plant Science, 2020, 25, 1107-1116.	8.8	25

Paternity tests support a diallelic self $\hat{\epsilon}$ incompatibility system in a wild olive (<i>Olea europaea</i>) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

7	A spatial Markovian framework for estimating regional and local dynamics of annual plants with dormancy. Theoretical Population Biology, 2019, 127, 120-132.	1.1	3
8	Dividing a Maternal Pie among Half-Sibs: Genetic Conflicts and the Control of Resource Allocation to Seeds in Maize. American Naturalist, 2018, 192, 577-592.	2.1	15
9	A general method for estimating seed dormancy and colonisation in annual plants from the observation of existing flora. Ecology Letters, 2018, 21, 1311-1318.	6.4	11
10	Global biogeography of mating system variation in seed plants. Ecology Letters, 2017, 20, 375-384.	6.4	85
11	Adaptation to fragmentation: evolutionary dynamics driven by human influences. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160037.	4.0	118
12	Self ompatibility is overâ€represented on islands. New Phytologist, 2017, 215, 469-478.	7.3	84
13	Mowing influences communityâ€level variation in resourceâ€use strategies and flowering phenology along an ecological succession on Mediterranean road slopes. Applied Vegetation Science, 2017, 20, 376-387.	1.9	11
14	Effects of fragmentation on plant adaptation to urban environments. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160038.	4.0	42
15	Natural selection on plant physiological traits in an urban environment. Acta Oecologica, 2016, 77, 67-74.	1.1	32
16	CSR ecological strategies and plant mating systems: outcrossing increases with competitiveness but stressâ€ŧolerance is related to mixed mating. Oikos, 2016, 125, 1296-1303.	2.7	38
17	The scope of Baker's law. New Phytologist, 2015, 208, 656-667.	7.3	178
18	The Robustness of Plant-Pollinator Assemblages: Linking Plant Interaction Patterns and Sensitivity to Pollinator Loss. PLoS ONE, 2015, 10, e0117243.	2.5	34

PIERRE-OLIVIER CHEPTOU

#	Article	IF	CITATIONS
19	Persistence of Plants and Pollinators in the Face of Habitat Loss. Advances in Ecological Research, 2015, 53, 201-257.	2.7	17
20	High incidence of dioecy in young successional tropical forests. Journal of Ecology, 2015, 103, 725-732.	4.0	15
21	Gene-flow through space and time: dispersal, dormancy and adaptation to changing environments. Evolutionary Ecology, 2015, 29, 813-831.	1.2	47
22	Does cleistogamy variation translate into outcrossing variation in the annual species Lamium amplexicaule (Lamiaceae)?. Plant Systematics and Evolution, 2014, 300, 2105-2114.	0.9	12
23	Isolation and Characterization of Microsatellite Markers for the Cleistogamous SpeciesLamium amplexicaule(Lamiaceae). Applications in Plant Sciences, 2013, 1, 1200259.	2.1	3
24	Flowering plants under global pollinator decline. Trends in Plant Science, 2013, 18, 353-359.	8.8	137
25	Inferring seed bank from hidden <scp>M</scp> arkov models: new insights into metapopulation dynamics in plants. Journal of Ecology, 2013, 101, 1572-1580.	4.0	19
26	Competition/colonization syndrome mediated by early germination in non-dispersing achenes in the heteromorphic species Crepis sancta. Annals of Botany, 2012, 110, 1245-1251.	2.9	50
27	Determinants of extinction in fragmented plant populations: Crepis sancta (asteraceae) in urban environments. Oecologia, 2012, 169, 703-712.	2.0	26
28	Life-history traits evolution across distribution ranges: how the joint evolution of dispersal and mating system favor the evolutionary stability of range limits?. Evolutionary Ecology, 2012, 26, 771-778.	1.2	16
29	Environmentâ€dependent inbreeding depression: its ecological and evolutionary significance. New Phytologist, 2011, 189, 395-407.	7.3	135
30	Colonization and extinction dynamics of an annual plant metapopulation in an urban environment. Oikos, 2011, 120, 1240-1246.	2.7	23
31	EVOLUTIONARY SYNDROMES LINKING DISPERSAL AND MATING SYSTEM: THE EFFECT OF AUTOCORRELATION IN POLLINATION CONDITIONS. Evolution; International Journal of Organic Evolution, 2011, 65, 591-598.	2.3	35
32	WHEN SHOULD WE EXPECT THE EVOLUTIONARY ASSOCIATION OF SELFâ€FERTILIZATION AND DISPERSAL?. Evolution; International Journal of Organic Evolution, 2011, 65, 1217-1220.	2.3	24
33	Exploring the difficulties of studying futures in ecology: what do ecological scientists think?. Oikos, 2010, 119, 1364-1376.	2.7	8
34	Ploidy and the Evolution of Endosperm of Flowering Plants. Genetics, 2010, 184, 439-453.	2.9	14
35	Plant mating systems in a changing world. Trends in Ecology and Evolution, 2010, 25, 35-43.	8.7	458
36	Correlations among Fertility Components Can Maintain Mixed Mating in Plants. American Naturalist, 2009, 173, 1-11.	2.1	110

PIERRE-OLIVIER CHEPTOU

#	Article	IF	CITATIONS
37	Pollination Fluctuations Drive Evolutionary Syndromes Linking Dispersal and Mating System. American Naturalist, 2009, 174, 46-55.	2.1	83
38	The rise of research on futures in ecology: rebalancing scenarios and predictions. Ecology Letters, 2009, 12, 1277-1286.	6.4	79
39	The town Crepis and the country Crepis: How does fragmentation affect a plant–pollinator interaction?. Acta Oecologica, 2009, 35, 1-7.	1.1	54
40	Combining population genetics and demographical approaches in evolutionary studies of plant mating systems. Oikos, 2007, 116, 271-279.	2.7	34
41	Nine polymorphic microsatellite markers inCrepis sancta(Asteraceae). Molecular Ecology Notes, 2007, 7, 681-683.	1.7	3
42	Spectral analysis of simulated species distribution maps provides insights into metapopulation dynamics. Ecological Modelling, 2007, 205, 314-322.	2.5	11
43	Pollination processes and the Allee effect in highly fragmented populations: consequences for the mating system in urban environments. New Phytologist, 2006, 172, 774-783.	7.3	98
44	Enemy release but no evolutionary loss of defence in a plant invasion: an inter-continental reciprocal transplant experiment. Oecologia, 2005, 146, 404-414.	2.0	74
45	Frequencyâ€Dependent Inbreeding Depression in Amsinckia. American Naturalist, 2003, 162, 744-753.	2.1	21
46	The evolution of self-fertilization in density-regulated populations. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 1177-1186.	2.6	49
47	THE COST OF FLUCTUATING INBREEDING DEPRESSION. Evolution; International Journal of Organic Evolution, 2002, 56, 1059-1062.	2.3	27