
## Pierre-Olivier Cheptou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5143101/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Plant mating systems in a changing world. Trends in Ecology and Evolution, 2010, 25, 35-43.                                                                                      | 8.7 | 458       |
| 2  | The scope of Baker's law. New Phytologist, 2015, 208, 656-667.                                                                                                                   | 7.3 | 178       |
| 3  | Flowering plants under global pollinator decline. Trends in Plant Science, 2013, 18, 353-359.                                                                                    | 8.8 | 137       |
| 4  | Environmentâ€dependent inbreeding depression: its ecological and evolutionary significance. New<br>Phytologist, 2011, 189, 395-407.                                              | 7.3 | 135       |
| 5  | Adaptation to fragmentation: evolutionary dynamics driven by human influences. Philosophical<br>Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160037.   | 4.0 | 118       |
| 6  | Correlations among Fertility Components Can Maintain Mixed Mating in Plants. American Naturalist, 2009, 173, 1-11.                                                               | 2.1 | 110       |
| 7  | Pollination processes and the Allee effect in highly fragmented populations: consequences for the mating system in urban environments. New Phytologist, 2006, 172, 774-783.      | 7.3 | 98        |
| 8  | Global biogeography of mating system variation in seed plants. Ecology Letters, 2017, 20, 375-384.                                                                               | 6.4 | 85        |
| 9  | Self ompatibility is overâ€represented on islands. New Phytologist, 2017, 215, 469-478.                                                                                          | 7.3 | 84        |
| 10 | Pollination Fluctuations Drive Evolutionary Syndromes Linking Dispersal and Mating System.<br>American Naturalist, 2009, 174, 46-55.                                             | 2.1 | 83        |
| 11 | The rise of research on futures in ecology: rebalancing scenarios and predictions. Ecology Letters, 2009, 12, 1277-1286.                                                         | 6.4 | 79        |
| 12 | Enemy release but no evolutionary loss of defence in a plant invasion: an inter-continental reciprocal<br>transplant experiment. Oecologia, 2005, 146, 404-414.                  | 2.0 | 74        |
| 13 | The town Crepis and the country Crepis: How does fragmentation affect a plant–pollinator interaction?. Acta Oecologica, 2009, 35, 1-7.                                           | 1.1 | 54        |
| 14 | Competition/colonization syndrome mediated by early germination in non-dispersing achenes in the heteromorphic species Crepis sancta. Annals of Botany, 2012, 110, 1245-1251.    | 2.9 | 50        |
| 15 | The evolution of self-fertilization in density-regulated populations. Proceedings of the Royal Society<br>B: Biological Sciences, 2002, 269, 1177-1186.                          | 2.6 | 49        |
| 16 | Gene-flow through space and time: dispersal, dormancy and adaptation to changing environments.<br>Evolutionary Ecology, 2015, 29, 813-831.                                       | 1.2 | 47        |
| 17 | Effects of fragmentation on plant adaptation to urban environments. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160038.                 | 4.0 | 42        |
| 18 | CSR ecological strategies and plant mating systems: outcrossing increases with competitiveness but<br>stressâ€ŧolerance is related to mixed mating. Oikos, 2016, 125, 1296-1303. | 2.7 | 38        |

| #  | Article                                                                                                                                                                                                      | IF         | CITATIONS      |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------|
| 19 | EVOLUTIONARY SYNDROMES LINKING DISPERSAL AND MATING SYSTEM: THE EFFECT OF AUTOCORRELATION IN POLLINATION CONDITIONS. Evolution; International Journal of Organic Evolution, 2011, 65, 591-598.               | 2.3        | 35             |
| 20 | Combining population genetics and demographical approaches in evolutionary studies of plant mating systems. Oikos, 2007, 116, 271-279.                                                                       | 2.7        | 34             |
| 21 | The Robustness of Plant-Pollinator Assemblages: Linking Plant Interaction Patterns and Sensitivity to Pollinator Loss. PLoS ONE, 2015, 10, e0117243.                                                         | 2.5        | 34             |
| 22 | Natural selection on plant physiological traits in an urban environment. Acta Oecologica, 2016, 77,<br>67-74.                                                                                                | 1.1        | 32             |
| 23 | THE COST OF FLUCTUATING INBREEDING DEPRESSION. Evolution; International Journal of Organic Evolution, 2002, 56, 1059-1062.                                                                                   | 2.3        | 27             |
| 24 | Determinants of extinction in fragmented plant populations: Crepis sancta (asteraceae) in urban<br>environments. Oecologia, 2012, 169, 703-712.                                                              | 2.0        | 26             |
| 25 | Weeds: Against the Rules?. Trends in Plant Science, 2020, 25, 1107-1116.                                                                                                                                     | 8.8        | 25             |
| 26 | WHEN SHOULD WE EXPECT THE EVOLUTIONARY ASSOCIATION OF SELFâ€FERTILIZATION AND DISPERSAL?.<br>Evolution; International Journal of Organic Evolution, 2011, 65, 1217-1220.                                     | 2.3        | 24             |
| 27 | Colonization and extinction dynamics of an annual plant metapopulation in an urban environment.<br>Oikos, 2011, 120, 1240-1246.                                                                              | 2.7        | 23             |
| 28 | Frequencyâ€Dependent Inbreeding Depression in Amsinckia. American Naturalist, 2003, 162, 744-753.                                                                                                            | 2.1        | 21             |
| 29 | Inferring seed bank from hidden <scp>M</scp> arkov models: new insights into metapopulation dynamics in plants. Journal of Ecology, 2013, 101, 1572-1580.                                                    | 4.0        | 19             |
| 30 | Persistence of Plants and Pollinators in the Face of Habitat Loss. Advances in Ecological Research, 2015, 53, 201-257.                                                                                       | 2.7        | 17             |
| 31 | Life-history traits evolution across distribution ranges: how the joint evolution of dispersal and mating system favor the evolutionary stability of range limits?. Evolutionary Ecology, 2012, 26, 771-778. | 1.2        | 16             |
| 32 | Paternity tests support a diallelic selfâ€incompatibility system in a wild olive ( <i>Olea europaea</i> ) Tj ETQq0 0 (                                                                                       | D rgBT /Ov | erlock 10 Tf 5 |
| 33 | High incidence of dioecy in young successional tropical forests. Journal of Ecology, 2015, 103, 725-732.                                                                                                     | 4.0        | 15             |
| 34 | Dividing a Maternal Pie among Half-Sibs: Genetic Conflicts and the Control of Resource Allocation to Seeds in Maize. American Naturalist, 2018, 192, 577-592.                                                | 2.1        | 15             |
| 35 | Ploidy and the Evolution of Endosperm of Flowering Plants. Genetics, 2010, 184, 439-453.                                                                                                                     | 2.9        | 14             |
| 36 | Seasonâ€dependent effect of cleistogamy in <i>Lamium amplexicaule</i> : flower type origin versus<br>inbreeding status. American Journal of Botany, 2020, 107, 155-163.                                      | 1.7        | 13             |

| #  | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Does cleistogamy variation translate into outcrossing variation in the annual species Lamium amplexicaule (Lamiaceae)?. Plant Systematics and Evolution, 2014, 300, 2105-2114.                                     | 0.9 | 12        |
| 38 | Spectral analysis of simulated species distribution maps provides insights into metapopulation dynamics. Ecological Modelling, 2007, 205, 314-322.                                                                 | 2.5 | 11        |
| 39 | Mowing influences communityâ€level variation in resourceâ€use strategies and flowering phenology<br>along an ecological succession on Mediterranean road slopes. Applied Vegetation Science, 2017, 20,<br>376-387. | 1.9 | 11        |
| 40 | A general method for estimating seed dormancy and colonisation in annual plants from the observation of existing flora. Ecology Letters, 2018, 21, 1311-1318.                                                      | 6.4 | 11        |
| 41 | Exploring the difficulties of studying futures in ecology: what do ecological scientists think?. Oikos, 2010, 119, 1364-1376.                                                                                      | 2.7 | 8         |
| 42 | Rapid divergent evolution of an annual plant across a latitudinal gradient revealed by seed resurrection. Evolution; International Journal of Organic Evolution, 2021, 75, 2759-2772.                              | 2.3 | 5         |
| 43 | Nine polymorphic microsatellite markers inCrepis sancta(Asteraceae). Molecular Ecology Notes, 2007,<br>7, 681-683.                                                                                                 | 1.7 | 3         |
| 44 | Isolation and Characterization of Microsatellite Markers for the Cleistogamous SpeciesLamium amplexicaule(Lamiaceae). Applications in Plant Sciences, 2013, 1, 1200259.                                            | 2.1 | 3         |
| 45 | A spatial Markovian framework for estimating regional and local dynamics of annual plants with dormancy. Theoretical Population Biology, 2019, 127, 120-132.                                                       | 1.1 | 3         |
| 46 | Does seed mass drive interspecies variation in the effect of management practices on weed demography?. Ecology and Evolution, 2021, 11, 13166-13174.                                                               | 1.9 | 3         |
| 47 | Differences in seed dormancy and germination in amphicarpic legumes: manifold bet-hedging in space and time. Journal of Plant Ecology, 2021, 14, 662-672.                                                          | 2.3 | 0         |