Raffaele Mezzenga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5142969/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Turning Food Protein Waste into Sustainable Technologies. Chemical Reviews, 2023, 123, 2112-2154.	23.0	58
2	Renewable Water Harvesting by Amyloid Aerogels and Sun. Advanced Sustainable Systems, 2022, 6, 2100309.	2.7	13
3	Amyloid Fibril Templated MOF Aerogels for Water Purification. Small, 2022, 18, e2105502.	5.2	43
4	Biomass vs inorganic and plastic-based aerogels: Structural design, functional tailoring, resource-efficient applications and sustainability analysis. Progress in Materials Science, 2022, 125, 100915.	16.0	73
5	Transformerâ€Induced Metamorphosis of Polymeric Nanoparticle Shape at Room Temperature. Angewandte Chemie - International Edition, 2022, 61, e202113424.	7.2	24
6	Transformerâ€Induced Metamorphosis of Polymeric Nanoparticle Shape at Room Temperature. Angewandte Chemie, 2022, 134, .	1.6	7
7	Amyloidâ€Templated Palladium Nanoparticles for Water Purification by Electroreduction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	15
8	Amyloid fibril-UiO-66-NH ₂ aerogels for environmental remediation. Chemical Communications, 2022, 58, 5104-5107.	2.2	7
9	Hybrid Theranostic Cubosomes for Efficient NIR-Induced Photodynamic Therapy. ACS Nano, 2022, 16, 5427-5438.	7.3	27
10	Potential of curcumin-loaded cubosomes for topical treatment of cervical cancer. Journal of Colloid and Interface Science, 2022, 620, 419-430.	5.0	26
11	Oat Plant Amyloids for Sustainable Functional Materials. Advanced Science, 2022, 9, e2104445.	5.6	26
12	Plant-based amyloids from food waste for removal of heavy metals from contaminated water. Chemical Engineering Journal, 2022, 445, 136513.	6.6	25
13	Shape and structural relaxation of colloidal tactoids. Nature Communications, 2022, 13, 2778.	5.8	7
14	Neurotoxic amyloidogenic peptides in the proteome of SARS-COV2: potential implications for neurological symptoms in COVID-19. Nature Communications, 2022, 13, .	5.8	41
15	Amyloid-based carbon aerogels for water purification. Chemical Engineering Journal, 2022, 449, 137703.	6.6	21
16	Multi-length scale structural investigation of lysozyme self-assembly. IScience, 2022, 25, 104586.	1.9	3
17	Evolution of Conformation, Nanomechanics, and Infrared Nanospectroscopy of Single Amyloid Fibrils Converting into Microcrystals. Advanced Science, 2021, 8, 2002182.	5.6	20
18	Covalent β-lactoglobulin-maltodextrin amyloid fibril conjugate prepared by the Maillard reaction. Food Chemistry, 2021, 342, 128388.	4.2	22

#	Article	IF	CITATIONS
19	Elastic constants of biological filamentous colloids: estimation and implications on nematic and cholesteric tactoid morphologies. Soft Matter, 2021, 17, 2158-2169.	1.2	12
20	Engineering of biofilms with a glycosylation circuit for biomaterial applications. Biomaterials Science, 2021, 9, 3650-3661.	2.6	8
21	Cryogenic activity and stability of benzaldehyde lyase enzyme in lipidic mesophases-nanoconfined water. Chemical Communications, 2021, 57, 5650-5653.	2.2	5
22	Liquid–liquid crystalline phase separation in biological filamentous colloids: nucleation, growth and order–order transitions of cholesteric tactoids. Soft Matter, 2021, 17, 6627-6636.	1.2	21
23	Polysaccharide-reinforced amyloid fibril hydrogels and aerogels. Nanoscale, 2021, 13, 12534-12545.	2.8	19
24	Amyloid fibril-based membranes for PFAS removal from water. Environmental Science: Water Research and Technology, 2021, 7, 1873-1884.	1.2	15
25	Shape retaining self-healing metal-coordinated hydrogels. Nanoscale, 2021, 13, 4073-4084.	2.8	45
26	Particle size distributions for cellulose nanocrystals measured by atomic force microscopy: an interlaboratory comparison. Cellulose, 2021, 28, 1387-1403.	2.4	27
27	Arsenic removal from Peruvian drinking water using milk protein nanofibril–carbon filters: a field study. Environmental Science: Water Research and Technology, 2021, 7, 2223-2230.	1.2	3
28	Water-processable, biodegradable and coatable aquaplastic from engineered biofilms. Nature Chemical Biology, 2021, 17, 732-738.	3.9	64
29	Understanding the Formation of Apoferritin Amyloid Fibrils. Biomacromolecules, 2021, 22, 2057-2066.	2.6	9
30	Designing cryo-enzymatic reactions in subzero liquid water by lipidic mesophase nanoconfinement. Nature Nanotechnology, 2021, 16, 802-810.	15.6	12
31	A rationally designed oral vaccine induces immunoglobulin A in the murine gut that directs the evolution of attenuated Salmonella variants. Nature Microbiology, 2021, 6, 830-841.	5.9	21
32	Protein nanofibrils for next generation sustainable water purification. Nature Communications, 2021, 12, 3248.	5.8	143
33	Effect of Polysaccharide Conformation on Ultrafiltration Separation Performance. Carbohydrate Polymers, 2021, 260, 117830.	5.1	16
34	An antiviral trap made of protein nanofibrils and iron oxyhydroxide nanoparticles. Nature Nanotechnology, 2021, 16, 918-925.	15.6	61
35	Sustainable Removal of Microplastics and Natural Organic Matter from Water by Coagulation–Flocculation with Protein Amyloid Fibrils. Environmental Science & Technology, 2021, 55, 8848-8858.	4.6	67
36	Different Folding States from the Same Protein Sequence Determine Reversible vs Irreversible Amyloid Fate. Journal of the American Chemical Society, 2021, 143, 11473-11481.	6.6	45

#	Article	IF	CITATIONS
37	Interconnect-Free Multibit Arithmetic and Logic Unit in a Single Reconfigurable 3 μm ² Plasmonic Cavity. ACS Nano, 2021, 15, 13351-13359.	7.3	6
38	Sustainable Bioplastics from Amyloid Fibril-Biodegradable Polymer Blends. ACS Sustainable Chemistry and Engineering, 2021, 9, 11916-11926.	3.2	36
39	Probing Water State during Lipidic Mesophases Phase Transitions. Angewandte Chemie, 2021, 133, 25478-25484.	1.6	2
40	Modification approaches of plant-based proteins to improve their techno-functionality and use in food products. Food Hydrocolloids, 2021, 118, 106789.	5.6	191
41	Probing Water State during Lipidic Mesophases Phase Transitions. Angewandte Chemie - International Edition, 2021, 60, 25274-25280.	7.2	10
42	Natureâ€Inspired Circularâ€Economy Recycling for Proteins: Proof of Concept. Advanced Materials, 2021, 33, e2104581.	11.1	14
43	Membrane-based technologies for per- and poly-fluoroalkyl substances (PFASs) removal from water: Removal mechanisms, applications, challenges and perspectives. Environment International, 2021, 157, 106876.	4.8	27
44	Removal of radioactive cesium from contaminated water by whey protein amyloids–carbon hybrid filters. RSC Advances, 2021, 11, 32454-32458.	1.7	8
45	VEGF and VEGFR2 bind to similar pH-sensitive sites on fibronectin, exposed by heparin-mediated conformational changes. Journal of Biological Chemistry, 2021, 296, 100584.	1.6	6
46	Plasmonic Amyloid Tactoids. Advanced Materials, 2021, 33, e2106155.	11.1	7
47	Natureâ€Inspired Circularâ€Economy Recycling for Proteins: Proof of Concept (Adv. Mater. 44/2021). Advanced Materials, 2021, 33, 2170345.	11.1	0
48	Grand Challenges in Soft Matter. , 2021, 1, .		2
49	Hierarchically Fabricated Amyloid Fibers <i>via</i> Evaporation-Induced Self-Assembly. ACS Nano, 2021, 15, 20261-20266.	7.3	8
50	Plasmonic Amyloid Tactoids (Adv. Mater. 51/2021). Advanced Materials, 2021, 33, .	11.1	0
51	Modulating the Mechanical Performance of Macroscale Fibers through Shearâ€Induced Alignment and Assembly of Protein Nanofibrils. Small, 2020, 16, e1904190.	5.2	39
52	Light Gold: A Colloidal Approach Using Latex Templates. Advanced Functional Materials, 2020, 30, 1908458.	7.8	6
53	Rigid, Fibrillar Quaternary Structures Induced by Divalent Ions in a Carboxylated Linear Polysaccharide. ACS Macro Letters, 2020, 9, 115-121.	2.3	23

 $_{54}$ Amyloid Beta Pathogenesis: Accelerated Amyloid Beta Pathogenesis by Bacterial Amyloid FapC (Adv. Sci.) Tj ETQq0 $_{5.6}^{0.0}$ rgBT / $_{0}^{0.0}$ rgBT / $_{0$

4

#	Article	IF	CITATIONS
55	Amyloid Fibrilâ€Templated Highâ€Performance Conductive Aerogels with Sensing Properties. Small, 2020, 16, e2004932.	5.2	19
56	Accelerated Amyloid Beta Pathogenesis by Bacterial Amyloid FapC. Advanced Science, 2020, 7, 2001299.	5.6	47
57	Amyloid Evolution: Antiparallel Replaced by Parallel. Biophysical Journal, 2020, 118, 2526-2536.	0.2	28
58	Human neuropeptide substance P self-assembles into semi-flexible nanotubes that can be manipulated for nanotechnology. Nanoscale, 2020, 12, 22680-22687.	2.8	6
59	Conductive Aerogels: Amyloid Fibrilâ€Templated Highâ€Performance Conductive Aerogels with Sensing Properties (Small 45/2020). Small, 2020, 16, 2070246.	5.2	0
60	Selfâ€Winding Gelatin–Amyloid Wires for Soft Actuators and Sensors. Advanced Materials, 2020, 32, e2004941.	11.1	29
61	Investigating the Mechanism of Cyclodextrins in the Treatment of Niemannâ€Pick Disease Type C Using Crosslinked 2â€Hydroxypropylâ€Î²â€cyclodextrin. Small, 2020, 16, e2004735.	5.2	16
62	Flow-induced order–order transitions in amyloid fibril liquid crystalline tactoids. Nature Communications, 2020, 11, 5416.	5.8	20
63	Amyloid hybrid membranes for removal of clinical and nuclear radioactive wastewater. Environmental Science: Water Research and Technology, 2020, 6, 3249-3254.	1.2	18
64	Amyloid hybrid membranes for bacterial & genetic material removal from water and their anti-biofouling properties. Nanoscale Advances, 2020, 2, 4665-4670.	2.2	7
65	Formation of Higher Structural Levels in λ-Carrageenan Induced by the Antimalarial Drug Chloroquine. ACS Macro Letters, 2020, 9, 1310-1317.	2.3	5
66	Relaxation dynamics in bio-colloidal cholesteric liquid crystals confined to cylindrical geometry. Nature Communications, 2020, 11, 4616.	5.8	32
67	Interfaces Determine the Fate of Seeded α‣ynuclein Aggregation. Advanced Materials Interfaces, 2020, 7, 2000446.	1.9	7
68	Transition Metal Dichalcogenide–Silk Nanofibril Membrane for One-Step Water Purification and Precious Metal Recovery. ACS Applied Materials & Interfaces, 2020, 12, 24521-24530.	4.0	68
69	Structure–property relationships of cellulose nanofibril hydro- and aerogels and their building blocks. Nanoscale, 2020, 12, 11638-11646.	2.8	11
70	Single plasmon spatial and spectral sorting on a crystalline two-dimensional plasmonic platform. Nanoscale, 2020, 12, 13414-13420.	2.8	6
71	Drying of African leafy vegetables for their effective preservation: the difference in moisture sorption isotherms explained by their microstructure. Food and Function, 2020, 11, 955-964.	2.1	11
72	Interplay between Confinement and Drag Forces Determine the Fate of Amyloid Fibrils. Physical Review Letters, 2020, 124, 118102.	2.9	0

#	Article	IF	CITATIONS
73	Environmental Remediation: Amyloid Fibrils Aerogel for Sustainable Removal of Organic Contaminants from Water (Adv. Mater. 12/2020). Advanced Materials, 2020, 32, 2070094.	11.1	0
74	Airâ€Water Interfaces: Interfaces Determine the Fate of Seeded α‧ynuclein Aggregation (Adv. Mater.) Tj ETQq(0 0 0 rgBT 1.9	overlock 1
75	Half a century of amyloids: past, present and future. Chemical Society Reviews, 2020, 49, 5473-5509.	18.7	345
76	The physics of lipidic mesophase delivery systems. Physics Today, 2020, 73, 38-44.	0.3	17
77	Stereochemical Purity Can Induce a New Crystalline Mesophase in Phytantriol Lipids. Langmuir, 2020, 36, 9132-9141.	1.6	4
78	Probing the Structure of Filamentous Nonergodic Gels by Dynamic Light Scattering. Macromolecules, 2020, 53, 5950-5956.	2.2	13
79	Design principles of food gels. Nature Food, 2020, 1, 106-118.	6.2	261
80	Amyloid–Polyphenol Hybrid Nanofilaments Mitigate Colitis and Regulate Gut Microbial Dysbiosis. ACS Nano, 2020, 14, 2760-2776.	7.3	94
81	Amyloid Fibrils Aerogel for Sustainable Removal of Organic Contaminants from Water. Advanced Materials, 2020, 32, e1907932.	11.1	117
82	Recent advances of non-lamellar lyotropic liquid crystalline nanoparticles in nanomedicine. Current Opinion in Colloid and Interface Science, 2020, 48, 28-39.	3.4	52

83	Lipid-based mesophases as matrices for nanoscale reactions. Nanoscale Horizons, 2020, 5, 914-927.	4.1	13
84	Metal ions confinement defines the architecture of G-quartet, G-quadruplex fibrils and their assembly into nematic tactoids. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9832-9839.	3.3	32
85	Ubiquitous aluminium contamination in water and amyloid hybrid membranes as a sustainable possible solution. Chemical Communications, 2019, 55, 11143-11146.	2.2	26
86	Multifunctional Nanoâ€Biointerfaces: Cytocompatible Antimicrobial Nanocarriers from Stabilizerâ€Free Cubosomes. Advanced Functional Materials, 2019, 29, 1904007.	7.8	38
87	Soft condensed matter physics of foods and macronutrients. Nature Reviews Physics, 2019, 1, 551-566.	11.9	42
88	Can one determine the density of an individual synthetic macromolecule?. Soft Matter, 2019, 15, 6547-6556.	1.2	0
89	Structural Transformation in Vesicles upon Hydrolysis of Phosphatidylethanolamine and Phosphatidylcholine with Phospholipase C. Langmuir, 2019, 35, 14949-14958.	1.6	12

Creating gradients of amyloid fibrils from the liquid–liquid interface. Soft Matter, 2019, 15, 8437-8440. 1.2 7

#	Article	IF	CITATIONS
91	A Short Peptide Hydrogel with High Stiffness Induced by 3 ₁₀ â€Helices to βâ€Sheet Transition in Water. Advanced Science, 2019, 6, 1901173.	5.6	36
92	Designing Cellulose Nanofibrils for Stabilization of Fluid Interfaces. Biomacromolecules, 2019, 20, 4574-4580.	2.6	25
93	Amphiphilic Lipids: Natureâ€Inspired Design and Application of Lipidic Lyotropic Liquid Crystals (Adv.) Tj ETQq1 1	0,784314	ł rgBT /Overla
94	Six-fold director field configuration in amyloid nematic and cholesteric phases. Scientific Reports, 2019, 9, 12654.	1.6	18
95	Sustainable technologies for water purification from heavy metals: review and analysis. Chemical Society Reviews, 2019, 48, 463-487.	18.7	967
96	Nanostructural Properties and Twist Periodicity of Cellulose Nanofibrils with Variable Charge Density. Biomacromolecules, 2019, 20, 1288-1296.	2.6	47
97	Assembly-Induced Bright-Light Emission from Solution-Processed Platinum(II) Inorganic Polymers. ACS Omega, 2019, 4, 10192-10204.	1.6	6
98	Natureâ€Inspired Design and Application of Lipidic Lyotropic Liquid Crystals. Advanced Materials, 2019, 31, e1900818.	11.1	117
99	Protein-Eye View of the in Meso Crystallization Mechanism. Langmuir, 2019, 35, 8344-8356.	1.6	9
100	Overcoming Endocytosis Deficiency by Cubosome Nanocarriers. ACS Applied Bio Materials, 2019, 2, 2490-2499.	2.3	23
101	Food protein amyloid fibrils: Origin, structure, formation, characterization, applications and health implications. Advances in Colloid and Interface Science, 2019, 269, 334-356.	7.0	312
102	Stable Immobilization of Enzymes in a Macro- and Mesoporous Silica Monolith. ACS Omega, 2019, 4, 7795-7806.	1.6	30
103	Supramolecular chirality and crystallization from biocatalytic self-assembly in lipidic cubic mesophases. Nanoscale, 2019, 11, 5891-5895.	2.8	7
104	Ion-Induced Formation of Nanocrystalline Cellulose Colloidal Glasses Containing Nematic Domains. Langmuir, 2019, 35, 4117-4124.	1.6	46
105	The interplay of channel geometry and molecular features determines diffusion in lipidic cubic phases. Journal of Chemical Physics, 2019, 150, 094901.	1.2	13
106	Soft biomimetic nanoconfinement promotes amorphous water over ice. Nature Nanotechnology, 2019, 14, 609-615.	15.6	49
107	Application of gold nanoparticles embedded in the amyloids fibrils as enhancers in the laser induced breakdown spectroscopy for the metal quantification in microdroplets. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2019, 155, 115-122.	1.5	29
108	Impact of Molecular Partitioning and Partial Equilibration on the Estimation of Diffusion Coefficients from Release Experiments. Langmuir, 2019, 35, 5663-5671.	1.6	5

#	Article	IF	CITATIONS
109	Spatiotemporal Control of Enzymeâ€Induced Crystallization Under Lyotropic Liquid Crystal Nanoconfinement. Angewandte Chemie, 2019, 131, 7367-7371.	1.6	2
110	Spatiotemporal Control of Enzymeâ€Induced Crystallization Under Lyotropic Liquid Crystal Nanoconfinement. Angewandte Chemie - International Edition, 2019, 58, 7289-7293.	7.2	11
111	Selective and Efficient Removal of Fluoride from Water: In Situ Engineered Amyloid Fibril/ZrO ₂ Hybrid Membranes. Angewandte Chemie, 2019, 131, 6073-6077.	1.6	14
112	Selective and Efficient Removal of Fluoride from Water: In Situ Engineered Amyloid Fibril/ZrO ₂ Hybrid Membranes. Angewandte Chemie - International Edition, 2019, 58, 6012-6016.	7.2	205
113	Primary, Secondary, Tertiary and Quaternary Structure Levels in Linear Polysaccharides: From Random Coil, to Single Helix to Supramolecular Assembly. Biomacromolecules, 2019, 20, 1731-1739.	2.6	81
114	Assessing the Binding Performance of Amyloid–Carbon Membranes toward Heavy Metal Ions. Langmuir, 2019, 35, 4161-4170.	1.6	74
115	Amyloid fibril-directed synthesis of silica core–shell nanofilaments, gels, and aerogels. Proceedings of the United States of America, 2019, 116, 4012-4017.	3.3	61
116	Kinetic Control of Parallel versus Antiparallel Amyloid Aggregation via Shape of the Growing Aggregate. Scientific Reports, 2019, 9, 15987.	1.6	4
117	Apoferritin Protein Amyloid Fibrils with Tunable Chirality and Polymorphism. Journal of the American Chemical Society, 2019, 141, 1606-1613.	6.6	20
118	Amyloid Fibrils Length Controls Shape and Structure of Nematic and Cholesteric Tactoids. ACS Nano, 2019, 13, 591-600.	7.3	68
119	The Molecular Dance of Fibronectin: Conformational Flexibility Leads to Functional Versatility. Biomacromolecules, 2019, 20, 55-72.	2.6	31
120	Confinementâ€Induced Ordering and Selfâ€Folding of Cellulose Nanofibrils. Advanced Science, 2019, 6, 1801540.	5.6	21
121	Lipidic Mesophase-Embedded Palladium Nanoparticles: Synthesis and Tunable Catalysts in Suzuki–Miyaura Cross-Coupling Reactions. Langmuir, 2019, 35, 120-127.	1.6	12
122	Curvature and bottlenecks control molecular transport in inverse bicontinuous cubic phases. Journal of Chemical Physics, 2018, 148, 054902.	1.2	34
123	Amyloidâ€Polymorphie in der Energielandschaft der Faltung und Aggregation von Proteinen. Angewandte Chemie, 2018, 130, 8502-8515.	1.6	16
124	Rheology of Ultraswollen Bicontinuous Lipidic Cubic Phases. Langmuir, 2018, 34, 5052-5059.	1.6	17
125	Elasticity in Physically Cross-Linked Amyloid Fibril Networks. Physical Review Letters, 2018, 120, 158103.	2.9	46
126	Amyloid Polymorphism in the Protein Folding and Aggregation Energy Landscape. Angewandte Chemie - International Edition, 2018, 57, 8370-8382.	7.2	229

#	Article	IF	CITATIONS
127	Design of ultra-swollen lipidic mesophases for the crystallization of membrane proteins with large extracellular domains. Nature Communications, 2018, 9, 544.	5.8	69
128	Lipidic Mesophases as Novel Nanoreactor Scaffolds for Organocatalysts: Heterogeneously Catalyzed Asymmetric Aldol Reactions in Confined Water. ACS Applied Materials & Interfaces, 2018, 10, 5114-5124.	4.0	33
129	Designing Plasmonic Eigenstates for Optical Signal Transmission in Planar Channel Devices. ACS Photonics, 2018, 5, 2328-2335.	3.2	16
130	Polyphenol-Binding Amyloid Fibrils Self-Assemble into Reversible Hydrogels with Antibacterial Activity. ACS Nano, 2018, 12, 3385-3396.	7.3	210
131	Confinement-induced liquid crystalline transitions in amyloid fibril cholesteric tactoids. Nature Nanotechnology, 2018, 13, 330-336.	15.6	105
132	Amyloid Templated Organic–Inorganic Hybrid Aerogels. Advanced Functional Materials, 2018, 28, 1703609.	7.8	39
133	Nanoscale inhibition of polymorphic and ambidextrous IAPP amyloid aggregation with small molecules. Nano Research, 2018, 11, 3636-3647.	5.8	35
134	Adsorption and Interfacial Layer Structure of Unmodified Nanocrystalline Cellulose at Air/Water Interfaces. Langmuir, 2018, 34, 15195-15202.	1.6	56
135	Liquid crystalline filamentous biological colloids: Analogies and differences. Current Opinion in Colloid and Interface Science, 2018, 38, 30-44.	3.4	23
136	Structure and Nanomechanics of Dry and Hydrated Intermediate Filament Films and Fibers Produced from Hagfish Slime Fibers. ACS Applied Materials & amp; Interfaces, 2018, 10, 40460-40473.	4.0	9
137	Trans-Scale 2D Synthesis of Millimeter-Large Au Single Crystals via Silk Fibroin Templates. ACS Sustainable Chemistry and Engineering, 2018, 6, 12419-12425.	3.2	15
138	Efficient Asymmetric Synthesis of Carbohydrates by Aldolase Nano-Confined in Lipidic Cubic Mesophases. ACS Catalysis, 2018, 8, 5810-5815.	5.5	28
139	Nanocellulose Fragmentation Mechanisms and Inversion of Chirality from the Single Particle to the Cholesteric Phase. ACS Nano, 2018, 12, 5141-5148.	7.3	68
140	Cell Alignment on Graphene–Amyloid Composites. Advanced Materials Interfaces, 2018, 5, 1800621.	1.9	10
141	Modifying the Contact Angle of Anisotropic Cellulose Nanocrystals: Effect on Interfacial Rheology and Structure. Langmuir, 2018, 34, 10932-10942.	1.6	22
142	Controlling Supramolecular Chiral Nanostructures by Self-Assembly of a Biomimetic β-Sheet-Rich Amyloidogenic Peptide. ACS Nano, 2018, 12, 9152-9161.	7.3	28
143	In Vivo Mitigation of Amyloidogenesis through Functional–Pathogenic Double-Protein Coronae. Nano Letters, 2018, 18, 5797-5804.	4.5	39
144	Dynamic formation of nanostructured particles from vesicles via invertase hydrolysis for on-demand delivery. RSC Advances, 2017, 7, 4368-4377.	1.7	12

#	Article	IF	CITATIONS
145	Amyloid fibril systems reduce, stabilize and deliver bioavailable nanosized iron. Nature Nanotechnology, 2017, 12, 642-647.	15.6	216
146	Efficient purification of arsenic-contaminated water using amyloid–carbon hybrid membranes. Chemical Communications, 2017, 53, 5714-5717.	2.2	72
147	Continuous Isotropic-Nematic Transition in Amyloid Fibril Suspensions Driven by Thermophoresis. Scientific Reports, 2017, 7, 1211.	1.6	22
148	Self-assembling peptide and protein amyloids: from structure to tailored function in nanotechnology. Chemical Society Reviews, 2017, 46, 4661-4708.	18.7	670
149	Diffusion of Polymers through Periodic Networks of Lipid-Based Nanochannels. Langmuir, 2017, 33, 3491-3498.	1.6	13
150	Absolute Quantification of Amyloid Propagons by Digital Microfluidics. Analytical Chemistry, 2017, 89, 12306-12313.	3.2	21
151	Silk micrococoons for protein stabilisation and molecular encapsulation. Nature Communications, 2017, 8, 15902.	5.8	96
152	Amyloid Fibrils form Hybrid Colloidal Gels and Aerogels with Dispersed CaCO ₃ Nanoparticles. Advanced Functional Materials, 2017, 27, 1700897.	7.8	38
153	Ice-Templated and Cross-Linked Amyloid Fibril Aerogel Scaffolds for Cell Growth. Biomacromolecules, 2017, 18, 2858-2865.	2.6	46
154	Enzyme-Mimetic Antioxidant Luminescent Nanoparticles for Highly Sensitive Hydrogen Peroxide Biosensing. ACS Nano, 2017, 11, 12210-12218.	7.3	96
155	Copolyampholytes Produced from RAFT Polymerization of Protic Ionic Liquids. Macromolecules, 2017, 50, 8965-8978.	2.2	13
156	Squid Suckerin Biomimetic Peptides Form Amyloid-like Crystals with Robust Mechanical Properties. Biomacromolecules, 2017, 18, 4240-4248.	2.6	21
157	Competition between crystal and fibril formation in molecular mutations of amyloidogenic peptides. Nature Communications, 2017, 8, 1338.	5.8	76
158	Active Gating, Molecular Pumping, and Turnover Determination in Biomimetic Lipidic Cubic Mesophases with Reconstituted Membrane Proteins. ACS Nano, 2017, 11, 11687-11693.	7.3	13
159	Cofibrillization of Pathogenic and Functional Amyloid Proteins with Gold Nanoparticles against Amyloidogenesis. Biomacromolecules, 2017, 18, 4316-4322.	2.6	50
160	Implications of peptide assemblies in amyloid diseases. Chemical Society Reviews, 2017, 46, 6492-6531.	18.7	262
161	Solvent-mediated conductance increase of dodecanethiol-stabilized gold nanoparticle monolayers. Beilstein Journal of Nanotechnology, 2016, 7, 2057-2064.	1.5	4
162	Gelatin–Graphene Nanocomposites with Ultralow Electrical Percolation Threshold. Advanced Materials, 2016, 28, 6914-6920.	11.1	57

#	Article	IF	CITATIONS
163	Microtubuleâ€Binding R3 Fragment from Tau Selfâ€Assembles into Giant Multistranded Amyloid Ribbons. Angewandte Chemie - International Edition, 2016, 55, 618-622.	7.2	43
164	Amyloid Fibrils as Building Blocks for Natural and Artificial Functional Materials. Advanced Materials, 2016, 28, 6546-6561.	11.1	430
165	Lipidic Cubic Phases as a Versatile Platform for the Rapid Detection of Biomarkers, Viruses, Bacteria, and Parasites. Advanced Functional Materials, 2016, 26, 181-190.	7.8	55
166	Lipid self-assembled structures for reactivity control in food. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150136.	1.6	17
167	A macroscopic H ⁺ and Cl ^{â^'} ions pump via reconstitution of EcClC membrane proteins in lipidic cubic mesophases. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7491-7496.	3.3	27
168	Quantifying the transport properties of lipid mesophases by theoretical modelling of diffusion experiments. Journal of Chemical Physics, 2016, 145, 084903.	1.2	12
169	Disease Diagnostics: Lipidic Cubic Phases as a Versatile Platform for the Rapid Detection of Biomarkers, Viruses, Bacteria, and Parasites (Adv. Funct. Mater. 2/2016). Advanced Functional Materials, 2016, 26, 158-158.	7.8	0
170	Lyotropic Liquid Crystalline Cubic Phases as Versatile Host Matrices for Membrane-Bound Enzymes. Journal of Physical Chemistry Letters, 2016, 7, 1507-1512.	2.1	33
171	Responsive self-assembled nanostructured lipid systems for drug delivery and diagnostics. Journal of Colloid and Interface Science, 2016, 484, 320-339.	5.0	111
172	Scanning-SAXS of microfluidic flows: nanostructural mapping of soft matter. Lab on A Chip, 2016, 16, 4028-4035.	3.1	42
173	Application of superabsorbent polymers (SAP) as desiccants to dry maize and reduce aflatoxin contamination. Journal of Food Science and Technology, 2016, 53, 3157-3165.	1.4	20
174	Interactions of Lipidic Cubic Phase Nanoparticles with Lipid Membranes. Langmuir, 2016, 32, 9640-9648.	1.6	24
175	Micro- and nanoscale hierarchical structure of core–shell protein microgels. Journal of Materials Chemistry B, 2016, 4, 7989-7999.	2.9	26
176	Magnetic assembly of transparent and conducting graphene-based functional composites. Nature Communications, 2016, 7, 12078.	5.8	97
177	Amyloid Templated Gold Aerogels. Advanced Materials, 2016, 28, 472-478.	11.1	149
178	Continuous Paranematic Ordering of Rigid and Semiflexible Amyloid-Fe ₃ O ₄ Hybrid Fibrils in an External Magnetic Field. Biomacromolecules, 2016, 17, 2555-2561.	2.6	12
179	Amyloid–carbon hybrid membranes for universal water purification. Nature Nanotechnology, 2016, 11, 365-371.	15.6	506
180	Mechanically Enhanced Liquid Interfaces at Human Body Temperature Using Thermosensitive Methylated Nanocrystalline Cellulose. Langmuir, 2016, 32, 1396-1404.	1.6	27

#	Article	IF	CITATIONS
181	Nematic field transfer in a two-dimensional protein fibril assembly. Soft Matter, 2016, 12, 1830-1835.	1.2	6
182	Freeze–Thaw Cycling Induced Isotropic–Nematic Coexistence of Amyloid Fibrils Suspensions. Langmuir, 2016, 32, 2492-2499.	1.6	22
183	Recreating the synthesis of starch granules in yeast. ELife, 2016, 5, .	2.8	27
184	Magnetic Control of Macromolecular Conformations in Supramolecular Anionic Polysaccharide–Iron Complexes. Angewandte Chemie - International Edition, 2015, 54, 13289-13292.	7.2	9
185	Fibrillar Networks of Glycyrrhizic Acid for Hybrid Nanomaterials with Catalytic Features. Angewandte Chemie - International Edition, 2015, 54, 5408-5412.	7.2	111
186	Enzyme immobilization on silicate glass through simple adsorption of dendronized polymer–enzyme conjugates for localized enzymatic cascade reactions. RSC Advances, 2015, 5, 44530-44544.	1.7	41
187	Hybrid Amyloid Membranes for Continuous Flow Catalysis. Langmuir, 2015, 31, 13867-13873.	1.6	76
188	Direct visualization of dispersed lipid bicontinuous cubic phases by cryo-electron tomography. Nature Communications, 2015, 6, 8915.	5.8	116
189	Macroscopic Singleâ€Crystal Gold Microflakes and Their Devices. Advanced Materials, 2015, 27, 1945-1950.	11.1	47
190	FiberApp: An Open-Source Software for Tracking and Analyzing Polymers, Filaments, Biomacromolecules, and Fibrous Objects. Macromolecules, 2015, 48, 1269-1280.	2.2	248
191	Anomalous Stiffening and Ion-Induced Coil–Helix Transition of Carrageenans under Monovalent Salt Conditions. Biomacromolecules, 2015, 16, 985-991.	2.6	49
192	Stimuliâ€Responsive Lipidic Cubic Phase: Triggered Release and Sequestration of Guest Molecules. Chemistry - A European Journal, 2015, 21, 1873-1877.	1.7	22
193	Influence of the βâ€Sheet Content on the Mechanical Properties of Aggregates during Amyloid Fibrillization. Angewandte Chemie, 2015, 127, 2492-2496.	1.6	22
194	Phase Behavior of a Designed Cyclopropyl Analogue of Monoolein: Implications for Lowâ€∓emperature Membrane Protein Crystallization. Angewandte Chemie - International Edition, 2015, 54, 1027-1031.	7.2	29
195	Influence of the βâ€Sheet Content on the Mechanical Properties of Aggregates during Amyloid Fibrillization. Angewandte Chemie - International Edition, 2015, 54, 2462-2466.	7.2	129
196	Oil and drug control the release rate from lyotropic liquid crystals. Journal of Controlled Release, 2015, 204, 78-84.	4.8	74
197	Design of Light-Triggered Lyotropic Liquid Crystal Mesophases and Their Application as Molecular Switches in "On Demand―Release. Langmuir, 2015, 31, 6981-6987.	1.6	29
198	Understanding nanocellulose chirality and structure–properties relationship at the single fibril level. Nature Communications, 2015, 6, 7564.	5.8	379

#	Article	IF	CITATIONS
199	Biomimetic self-assembly of recombinant marine snail egg capsule proteins into structural coiled-coil units. Journal of Materials Chemistry B, 2015, 3, 2671-2684.	2.9	11
200	Enzyme Kinetics in Liquid Crystalline Mesophases: Size Matters, But Also Topology. Langmuir, 2015, 31, 4558-4565.	1.6	35
201	Controlled aggregation of peptide–DNA hybrids into amyloid-like fibrils. European Polymer Journal, 2015, 65, 268-275.	2.6	19
202	pH-responsive lyotropic liquid crystals and their potential therapeutic role in cancer treatment. Chemical Communications, 2015, 51, 6671-6674.	2.2	86
203	Isolation and Characterization of Monodisperse Core–Shell Nanoparticle Fractions. Langmuir, 2015, 31, 11179-11185.	1.6	4
204	Supramolecular chiral self-assembly and supercoiling behavior of carrageenans at varying salt conditions. Nanoscale, 2015, 7, 16182-16188.	2.8	48
205	Biotinylated Cubosomes: A Versatile Tool for Active Targeting and Codelivery of Paclitaxel and a Fluorescein-Based Lipid Dye. Langmuir, 2015, 31, 12770-12776.	1.6	60
206	Sol–gel transition of charged fibrils composed of a model amphiphilic peptide. Journal of Colloid and Interface Science, 2015, 437, 244-251.	5.0	21
207	Oil Transfer Converts Phosphatidylcholine Vesicles into Nonlamellar Lyotropic Liquid Crystalline Particles. Langmuir, 2015, 31, 96-104.	1.6	17
208	The Influence of Arginine on the Response of Enamel Matrix Derivative (EMD) Proteins to Thermal Stress: Towards Improving the Stability of EMD-Based Products. PLoS ONE, 2015, 10, e0144641.	1.1	2
209	Re-entrant isotropic-nematic phase behavior in polymer-depleted amyloid fibrils. Journal of Physics Condensed Matter, 2014, 26, 464112.	0.7	10
210	Soft condensed matter in food science. Journal of Physics Condensed Matter, 2014, 26, 460301.	0.7	0
211	Universal Behavior in the Mesoscale Properties of Amyloid Fibrils. Physical Review Letters, 2014, 113, 268103.	2.9	44
212	Resonance Light Scattering in Dye-Aggregates Forming in Dewetting Droplets. ACS Nano, 2014, 8, 10057-10065.	7.3	16
213	Facile Dispersion and Control of Internal Structure in Lyotropic Liquid Crystalline Particles by Auxiliary Solvent Evaporation. Langmuir, 2014, 30, 14452-14459.	1.6	24
214	Light ontrolled Actuation, Transduction, and Modulation of Magnetic Strength in Polymer Nanocomposites. Advanced Functional Materials, 2014, 24, 3179-3186.	7.8	26
215	Spinning Angora Rabbit Woolâ€Like Porous Fibers from a Nonâ€Equilibrated Gelatin/Water/2â€Propanol Mixture. Advanced Functional Materials, 2014, 24, 1831-1839.	7.8	10
216	Phospholipid-based nonlamellar mesophases for delivery systems: Bridging the gap between empirical and rational design. Advances in Colloid and Interface Science, 2014, 209, 127-143.	7.0	35

#	Article	IF	CITATIONS
217	Polynuclear Iron(II)–Aminotriazole Spincrossover Complexes (Polymers) In Solution. Inorganic Chemistry, 2014, 53, 3546-3557.	1.9	24
218	Unravelling Secondary Structure Changes on Individual Anionic Polysaccharide Chains by Atomic Force Microscopy. Angewandte Chemie - International Edition, 2014, 53, 5376-5379.	7.2	58
219	Biomimetic Composites: Amyloid-Hydroxyapatite Bone Biomimetic Composites (Adv. Mater. 20/2014). Advanced Materials, 2014, 26, 3206-3206.	11.1	2
220	Amyloidâ€Hydroxyapatite Bone Biomimetic Composites. Advanced Materials, 2014, 26, 3207-3212.	11.1	188
221	Directed Growth of Silk Nanofibrils on Graphene and Their Hybrid Nanocomposites. ACS Macro Letters, 2014, 3, 146-152.	2.3	131
222	Diyne-Functionalized Fullerene Self-Assembly for Thin Film Solid-State Polymerization. Macromolecules, 2014, 47, 721-728.	2.2	28
223	Wetting behaviour and direct observation of thermally responsive polystyrene- <i>block</i> -poly(<i>N</i> -isopropylacrylamide)- <i>block</i> -polystyrene electrospun fibres in aqueous environment. Polymer International, 2014, 63, 37-43.	1.6	8
224	Adsorption at Liquid Interfaces Induces Amyloid Fibril Bending and Ring Formation. ACS Nano, 2014, 8, 11071-11079.	7.3	44
225	Self-Assembly of a Model Peptide Incorporating a Hexa-Histidine Sequence Attached to an Oligo-Alanine Sequence, and Binding to Gold NTA/Nickel Nanoparticles. Biomacromolecules, 2014, 15, 3412-3420.	2.6	24
226	Reconstitution of OmpF membrane protein on bended lipid bilayers: perforated hexagonal mesophases. Chemical Communications, 2014, 50, 2642.	2.2	19
227	Bridging the Gap between the Nanostructural Organization and Macroscopic Interfacial Rheology of Amyloid Fibrils at Liquid Interfaces. Langmuir, 2014, 30, 10090-10097.	1.6	61
228	Influence of Electrostatic Interactions on the Release of Charged Molecules from Lipid Cubic Phases. Langmuir, 2014, 30, 4280-4288.	1.6	31
229	Amyloid Fibrils Enhance Transport of Metal Nanoparticles in Living Cells and Induced Cytotoxicity. Biomacromolecules, 2014, 15, 2793-2799.	2.6	47
230	Generation of Geometrically Ordered Lipid-Based Liquid-Crystalline Nanoparticles Using Biologically Relevant Enzymatic Processing. Langmuir, 2014, 30, 5373-5377.	1.6	36
231	Correlation between Nanomechanics and Polymorphic Conformations in Amyloid Fibrils. ACS Nano, 2014, 8, 11035-11041.	7.3	51
232	ILQINS Hexapeptide, Identified in Lysozyme Left-Handed Helical Ribbons and Nanotubes, Forms Right-Handed Helical Ribbons and Crystals. Journal of the American Chemical Society, 2014, 136, 4732-4739.	6.6	84
233	Engineered Lysozyme Amyloid Fibril Networks Support Cellular Growth and Spreading. Biomacromolecules, 2014, 15, 599-608.	2.6	97
234	Viscoelasticity and Interface Bending Properties of Lecithin Reverse Wormlike Micelles Studied by Diffusive Wave Spectroscopy in Hydrophobic Environment. Langmuir, 2014, 30, 10751-10759.	1.6	15

#	Article	IF	CITATIONS
235	Scale-up of Nanoparticle Synthesis by Flame Spray Pyrolysis: The High-Temperature Particle Residence Time. Industrial & Engineering Chemistry Research, 2014, 53, 10734-10742.	1.8	125
236	Modulating Materials by Orthogonally Oriented βâ€&trands: Composites of Amyloid and Silk Fibroin Fibrils. Advanced Materials, 2014, 26, 4569-4574.	11.1	119
237	Controlling enzymatic activity and kinetics in swollen mesophases by physical nano-confinement. Nanoscale, 2014, 6, 6853-6859.	2.8	48
238	The Presence of an Air–Water Interface Affects Formation and Elongation of α-Synuclein Fibrils. Journal of the American Chemical Society, 2014, 136, 2866-2875.	6.6	229
239	Controlling molecular transport and sustained drug release in lipid-based liquid crystalline mesophases. Journal of Controlled Release, 2014, 188, 31-43.	4.8	143
240	Gels, xerogels and films of polynuclear iron(<scp>ii</scp>)–aminotriazole spin-crossover polymeric complexes. RSC Advances, 2014, 4, 60842-60852.	1.7	15
241	Optimal phase segregation in graft copolymers. Polymer, 2013, 54, 4629-4636.	1.8	6
242	Hybrid Nanocomposites of Gold Singleâ€Crystal Platelets and Amyloid Fibrils with Tunable Fluorescence, Conductivity, and Sensing Properties. Advanced Materials, 2013, 25, 3694-3700.	11.1	111
243	The effect of pH on the self-assembly of a collagen derived peptide amphiphile. Soft Matter, 2013, 9, 6033.	1.2	57
244	Reversible Aggregation of DNA-Decorated Gold Nanoparticles Controlled by Molecular Recognition. Langmuir, 2013, 29, 10824-10830.	1.6	36
245	Hierarchically Structured Microfibers of "Single Stack―Perylene Bisimide and Quaterthiophene Nanowires. ACS Nano, 2013, 7, 8498-8508.	7.3	88
246	Structure and Enzymatic Properties of Molecular Dendronized Polymer–Enzyme Conjugates and Their Entrapment inside Giant Vesicles. Langmuir, 2013, 29, 10831-10840.	1.6	40
247	Enhanced properties of polyurea elastomeric nanocomposites with anisotropic functionalised nanofillers. Polymer, 2013, 54, 4194-4203.	1.8	18
248	Polymorphism in bovine serum albumin fibrils: morphology and statistical analysis. Faraday Discussions, 2013, 166, 151.	1.6	52
249	Polymorphism Complexity and Handedness Inversion in Serum Albumin Amyloid Fibrils. ACS Nano, 2013, 7, 10465-10474.	7.3	106
250	A Reverse Micellar Mesophase of Face-Centered Cubic <i>Fm</i> 3Ì <i>m</i> Symmetry in Phosphatidylcholine/Water/Organic Solvent Ternary Systems. Langmuir, 2013, 29, 15805-15812.	1.6	21
251	Self-assembly and fibrillization of a Fmoc-functionalized polyphenolic amino acid. Soft Matter, 2013, 9, 10239.	1.2	30
252	Strain-induced macroscopic magnetic anisotropy from smectic liquid-crystalline elastomer–maghemite nanoparticle hybrid nanocomposites. Nanoscale, 2013, 5, 5539.	2.8	19

#	Article	IF	CITATIONS
253	Thermo-responsive peptide-based triblock copolymer hydrogels. Soft Matter, 2013, 9, 4304.	1.2	18
254	Liquidâ€Crystalline Elastomerâ€Nanoparticle Hybrids with Reversible Switch of Magnetic Memory. Advanced Materials, 2013, 25, 1787-1791.	11.1	87
255	Colloidal Ordered Assemblies in a Polymer Shell—A Novel Type of Magnetic Nanobeads for Theranostic Applications. Chemistry of Materials, 2013, 25, 1055-1062.	3.2	56
256	The self-assembly, aggregation and phase transitions of food protein systems in one, two and three dimensions. Reports on Progress in Physics, 2013, 76, 046601.	8.1	295
257	Core–shell nanoparticle monolayers at planar liquid–liquid interfaces: effects of polymer architecture on the interface microstructure. Soft Matter, 2013, 9, 3789.	1.2	59
258	Self-assembly of PS-b-P4VP block copolymers of varying architectures in aerosol nanospheres. Soft Matter, 2013, 9, 1492-1499.	1.2	31
259	Modulating the crystal size and morphology of in meso-crystallized lysozyme by precisely controlling the water channel size of the hosting mesophase. Soft Matter, 2013, 9, 1010-1014.	1.2	17
260	Controlling Anisotropic Drug Diffusion in Lipid-Fe3O4Nanoparticle Hybrid Mesophases by Magnetic Alignment. Langmuir, 2013, 29, 999-1004.	1.6	42
261	Non-equilibrium nature of two-dimensional isotropic and nematic coexistence in amyloid fibrils at liquid interfaces. Nature Communications, 2013, 4, 1917.	5.8	123
262	Nanotopographic Surfaces with Defined Surface Chemistries from Amyloid Fibril Networks Can Control Cell Attachment. Biomacromolecules, 2013, 14, 2305-2316.	2.6	56
263	Magnetic-Responsive Hybrids of Fe ₃ O ₄ Nanoparticles with β-Lactoglobulin Amyloid Fibrils and Nanoclusters. ACS Nano, 2013, 7, 6146-6155.	7.3	66
264	Growth and Alignment of Thin Film Organic Single Crystals from Dewetting Patterns. ACS Nano, 2013, 7, 5506-5513.	7.3	20
265	Novel Mechanistic Insight into the Molecular Basis of Amyloid Polymorphism and Secondary Nucleation during Amyloid Formation. Journal of Molecular Biology, 2013, 425, 1765-1781.	2.0	129
266	Perforated Bicontinuous Cubic Phases with pHâ€Responsive Topological Channel Interconnectivity. Small, 2013, 9, 3602-3609.	5.2	61
267	The interplay between carbon nanomaterials and amyloid fibrils in bio-nanotechnology. Nanoscale, 2013, 5, 6207.	2.8	141
268	Towards lysozyme nanotube and 3D hybrid self-assembly. Nanoscale, 2013, 5, 7197.	2.8	51
269	Tunable Carbon Nanotube/Protein Coreâ€6hell Nanoparticles with NIR―and Enzymaticâ€Responsive Cytotoxicity. Advanced Materials, 2013, 25, 1010-1015.	11.1	43
270	Oil Powders and Gels from Particle-Stabilized Emulsions. Langmuir, 2012, 28, 1694-1697.	1.6	80

#	Article	IF	CITATIONS
271	Inhibiting, promoting, and preserving stability of functional proteinfibrils. Soft Matter, 2012, 8, 876-895.	1.2	122
272	Plenty of room to crystallize: swollen lipidic mesophases for improved and controlled in-meso protein crystallization. Soft Matter, 2012, 8, 6535.	1.2	41
273	Self-Assembly of Ovalbumin into Amyloid and Non-Amyloid Fibrils. Biomacromolecules, 2012, 13, 4213-4221.	2.6	122
274	Hierarchical Structures of Hydrogen-Bonded Liquid-Crystalline Side-Chain Diblock Copolymers in Nanoparticles. Macromolecules, 2012, 45, 8743-8751.	2.2	17
275	Thermally Sensitive Block Copolymer Particles Prepared via Aerosol Flow Reactor Method: Morphological Characterization and Behavior in Water. Macromolecules, 2012, 45, 8401-8411.	2.2	18
276	Resolving Self-Assembly of Bile Acids at the Molecular Length Scale. Langmuir, 2012, 28, 5999-6005.	1.6	34
277	Hierarchical Structures in Lamellar Hydrogen Bonded LC Side Chain Diblock Copolymers. Macromolecules, 2012, 45, 7091-7097.	2.2	39
278	Gelation, Phase Behavior, and Dynamics of \hat{I}^2 -Lactoglobulin Amyloid Fibrils at Varying Concentrations and Ionic Strengths. Biomacromolecules, 2012, 13, 3241-3252.	2.6	96
279	Edible supramolecular chiral nanostructures by self-assembly of an amphiphilic phytosterol conjugate. Soft Matter, 2012, 8, 149-155.	1.2	22
280	Functionalization of Multiwalled Carbon Nanotubes and Their pH-Responsive Hydrogels with Amyloid Fibrils. Langmuir, 2012, 28, 10142-10146.	1.6	49
281	Study of amyloid fibrils via atomic force microscopy. Current Opinion in Colloid and Interface Science, 2012, 17, 369-376.	3.4	123
282	Diffusion, Molecular Separation, and Drug Delivery from Lipid Mesophases with Tunable Water Channels. Langmuir, 2012, 28, 16455-16462.	1.6	136
283	Self-Healing Fish Gelatin/Sodium Montmorillonite Biohybrid Coacervates: Structural and Rheological Characterization. Biomacromolecules, 2012, 13, 2136-2147.	2.6	45
284	Twofold Light and Magnetic Responsive Behavior in Nanoparticle–Lyotropic Liquid Crystal Systems. Langmuir, 2012, 28, 5589-5595.	1.6	37
285	Simultaneous Control of pH and Ionic Strength during Interfacial Rheology of β-Lactoglobulin Fibrils Adsorbed at Liquid/Liquid Interfaces. Langmuir, 2012, 28, 12536-12543.	1.6	86
286	Proteins Fibrils from a Polymer Physics Perspective. Macromolecules, 2012, 45, 1137-1150.	2.2	171
287	Measurement of intrinsic properties of amyloid fibrils by the peak force QNM method. Nanoscale, 2012, 4, 4426.	2.8	175
288	Dewetting-driven hierarchical self-assembly of small semiconducting molecules. Soft Matter, 2012, 8, 5804.	1.2	5

#	Article	IF	CITATIONS
289	Synthesis, morphology, and fieldâ€effect transistor characteristics of new crystalline–crystalline diblock copolymers of poly(3â€hexylthiopheneâ€ <i>block</i> â€steryl acrylate). Journal of Polymer Science Part A, 2012, 50, 686-695.	2.5	12
290	Carbon Nanotubes in the Liquid Phase: Addressing the Issue of Dispersion. Small, 2012, 8, 1299-1313.	5.2	122
291	Nanotube Dispersion: Carbon Nanotubes in the Liquid Phase: Addressing the Issue of Dispersion (Small) Tj ETQq1	1_0,78431 5.2	4 rgBT /Ov∈
292	Biodegradable nanocomposites of amyloid fibrils and graphene with shape-memory and enzyme-sensing properties. Nature Nanotechnology, 2012, 7, 421-427.	15.6	413
293	Low-Temperature Preparation of Tailored Carbon Nanostructures in Water. Nano Letters, 2012, 12, 2573-2578.	4.5	34
294	Thermoreversible Gel–Sol Behavior of Rod–Coil–Rod Peptide-Based Triblock Copolymers. Macromolecules, 2012, 45, 1982-1990.	2.2	53
295	Amyloid Directed Synthesis of Titanium Dioxide Nanowires and Their Applications in Hybrid Photovoltaic Devices. Advanced Functional Materials, 2012, 22, 3424-3428.	7.8	72
296	Modulating self-assembly of a nanotape-forming peptideamphiphile with an oppositely charged surfactant. Soft Matter, 2012, 8, 217-226.	1.2	52
297	Templating effects of lyotropic liquid crystals in the encapsulation of amyloid fibrils and their stimuli-responsive magnetic behavior. Soft Matter, 2011, 7, 3348.	1.2	15
298	Unravelling adsorption and alignment of amyloid fibrils at interfaces by probe particle tracking. Soft Matter, 2011, 7, 8127.	1.2	61
299	Tuneable thickness barriers for composite o/w and w/o capsules, films, and their decoration with particles. Soft Matter, 2011, 7, 9206.	1.2	19
300	Controlled embedment and release of DNA from lipidic reverse columnar hexagonal mesophases. Soft Matter, 2011, 7, 8162.	1.2	33
301	Particle Tracking Microrheology of Lyotropic Liquid Crystals. Langmuir, 2011, 27, 6171-6178.	1.6	34
302	Photoresponsive Reversible Aggregation and Dissolution of Rod–Coil Polypeptide Diblock Copolymers. Macromolecules, 2011, 44, 4569-4573.	2.2	124
303	General Self-Assembly Mechanism Converting Hydrolyzed Globular Proteins Into Giant Multistranded Amyloid Ribbons. Biomacromolecules, 2011, 12, 1868-1875.	2.6	199
304	A supramolecular bottle-brush approach to disassemble amyloid fibrils. Soft Matter, 2011, 7, 3571.	1.2	33
305	Snapshots of fibrillation and aggregation kinetics in multistranded amyloid β-lactoglobulin fibrils. Soft Matter, 2011, 7, 493-499.	1.2	92
306	Bent-Core Based Main-Chain Polymers Showing the Dark Conglomerate Liquid Crystal Phase. Macromolecules, 2011, 44, 9586-9594.	2.2	19

#	Article	IF	CITATIONS
307	New biocompatible thermo-reversible hydrogels from PNiPAM-decorated amyloid fibrils. Chemical Communications, 2011, 47, 2913.	2.2	47
308	pH-Responsive Lyotropic Liquid Crystals for Controlled Drug Delivery. Langmuir, 2011, 27, 5296-5303.	1.6	286
309	Sub-Persistence-Length Complex Scaling Behavior in Lysozyme Amyloid Fibrils. Physical Review Letters, 2011, 107, 238101.	2.9	30
310	Complexation of β-Lactoglobulin Fibrils and Sulfated Polysaccharides. Biomacromolecules, 2011, 12, 3056-3065.	2.6	62
311	Synthesis and morphology of new asymmetric star polymers of poly[4-(9,9-dihexylfloren-2-yl)styrene]-block-poly(2-vinylpyridine) and their non-volatile memory device applications. Soft Matter, 2011, 7, 8440.	1.2	6
312	Disassembly and Reassembly of Amyloid Fibrils in Waterâ^'Ethanol Mixtures. Biomacromolecules, 2011, 12, 187-193.	2.6	67
313	Phase Behavior of Lipid–Based Lyotropic Liquid Crystals in Presence of Colloidal Nanoparticles. Langmuir, 2011, 27, 9792-9800.	1.6	31
314	Tuning <i>in-meso-</i> Crystallized Lysozyme Polymorphism by Lyotropic Liquid Crystal Symmetry. Langmuir, 2011, 27, 6418-6425.	1.6	31
315	Influence of End-Capping on the Self-Assembly of Model Amyloid Peptide Fragments. Journal of Physical Chemistry B, 2011, 115, 2107-2116.	1.2	52
316	Adjustable twisting periodic pitch of amyloid fibrils. Soft Matter, 2011, 7, 5437.	1.2	145
317	Single-step direct measurement of amyloid fibrils stiffness by peak force quantitative nanomechanical atomic force microscopy. Applied Physics Letters, 2011, 98, .	1.5	211
318	Amyloid-mediated synthesis of giant, fluorescent, gold single crystals and their hybrid sandwiched composites driven by liquid crystalline interactions. Journal of Colloid and Interface Science, 2011, 361, 90-96.	5.0	64
319	Orientational Behavior of Ellipsoidal Silicaâ€Coated Hematite Nanoparticles Integrated within an Elastomeric Matrix and its Mechanical Reinforcement. Macromolecular Chemistry and Physics, 2011, 212, 627-634.	1.1	15
320	Macroscopic Alignment of Lyotropic Liquid Crystals Using Magnetic Nanoparticles. Advanced Materials, 2011, 23, 3932-3937.	11.1	63
321	Direct Observation of Timeâ€Resolved Polymorphic States in the Selfâ€Assembly of Endâ€Capped Heptapeptides. Angewandte Chemie - International Edition, 2011, 50, 5495-5498.	7.2	119
322	Controlling Hierarchical Self-Assembly in Supramolecular Tailed-Dendron Systems. Macromolecules, 2010, 43, 4752-4760.	2.2	15
202			

#	Article	IF	CITATIONS
005	Synthesis, Morphology, and Properties of Poly(3â€hexylthiophene)â€ <i>block</i> â€Poly(vinylphenyl) Tj ETQq1 1	0.784314	rgBT /Over
325	Advanced Functional Materials, 2010, 20, 3012-3024.	7.8	113
326	A New Supramolecular Route for Using Rod oil Block Copolymers in Photovoltaic Applications. Advanced Materials, 2010, 22, 763-768.	11.1	159
327	Liquid Crystalline Period Variations in Selfâ€Assembled Block Copolypeptides–Surfactant Ionic Complexes. Macromolecular Rapid Communications, 2010, 31, 265-269.	2.0	8
328	Poly(3â€hexylthiophene)â€ <i>b</i> â€poly(3â€cyclohexylthiophene): Synthesis, microphase separation, thin film transistors, and photovoltaic applications. Journal of Polymer Science Part A, 2010, 48, 614-626.	2.5	60
329	Understanding amyloid aggregation by statistical analysis of atomic force microscopy images. Nature Nanotechnology, 2010, 5, 423-428.	15.6	526
330	Inorganic–organic elastomer nanocomposites from integrated ellipsoidal silica-coated hematite nanoparticles as crosslinking agents. Nanotechnology, 2010, 21, 185603.	1.3	32
331	Interfacial Activity and Interfacial Shear Rheology of Native β-Lactoglobulin Monomers and Their Heat-Induced Fibers. Langmuir, 2010, 26, 15366-15375.	1.6	144
332	Water-in-oil nanostructured emulsions: towards the structural hierarchy of liquid crystalline materials. Soft Matter, 2010, 6, 5615.	1.2	39
333	Effects of Charge Double Layer and Colloidal Aggregation on the Isotropicâ^`Nematic Transition of Protein Fibers in Water. Langmuir, 2010, 26, 10401-10405.	1.6	73
334	Self-Assembly and Induced Circular Dichroism in Dendritic Supramolecules with Cholesteric Pendant Groups. Journal of the American Chemical Society, 2010, 132, 10882-10890.	6.6	39
335	Secondary Structure-Induced Micro- and Macrophase Separation in Rod-Coil Polypeptide Diblock, Triblock, and Star-Block Copolymers. Macromolecules, 2010, 43, 1093-1100.	2.2	59
336	Liquid Crystalline Phase Behavior of Protein Fibers in Water: Experiments versus Theory. Langmuir, 2010, 26, 504-514.	1.6	127
337	Fibrillation of β-Lactoglobulin at Low pH in the Presence of a Complexing Anionic Polysaccharide. Langmuir, 2010, 26, 17449-17458.	1.6	47
338	Structure, Diffusion, and Permeability of Protein-Stabilized Monodispersed Oil in Water Emulsions and Their Gels: A Self-Diffusion NMR Study. Langmuir, 2010, 26, 6184-6192.	1.6	16
339	Spray-Dried Oil Powder with Ultrahigh Oil Content. Langmuir, 2010, 26, 16658-16661.	1.6	59
340	Novel Phase Morphologies in a Microphase-Separated Dendritic Polymer Melt. Macromolecules, 2009, 42, 849-859.	2.2	37
341	Synthesis and Self-Assembly Behavior of Poly(fluorenylstyrene)-block-poly(2-vinylpyridine) Block Copolymers and Their Blends with Single Wall Carbon Nanotubes (SWCNTs). Macromolecules, 2009, 42, 5793-5801.	2.2	23
342	Oleoylethanolamide-Based Lyotropic Liquid Crystals as Vehicles for Delivery of Amino Acids in Aqueous Environment. Biophysical Journal, 2009, 96, 1537-1546.	0.2	50

#	Article	IF	CITATIONS
343	Metallosupramolecular Side-Chain Polymers and Polyelectrolyte- Metallosupramolecular Surfactant Complexes. Chemistry of Materials, 2009, 21, 2169-2172.	3.2	5
344	Frustrated self-assembly of dendron and dendrimer-based supramolecular liquid crystals. Soft Matter, 2009, 5, 92-97.	1.2	43
345	Hierarchical self-organization in polyelectrolyte-surfactant complexes based on heteroarm star block copolyampholytes. Soft Matter, 2009, 5, 2371.	1.2	22
346	Crystalline Diblock Conjugated Copolymers: Synthesis, Self-Assembly, and Microphase Separation of Poly(3-butylthiophene)- <i>b</i> -poly(3-octylthiophene). Macromolecules, 2009, 42, 2317-2320.	2.2	190
347	Dendrons, Dendrimers…. Octopus!. Chimia, 2009, 63, 230-230.	0.3	Ο
348	Selfâ€Organization on Multiple Length Scales in "Hairy Rodâ€â€Coil Block Copolymer Supramolecular Complexes. Macromolecular Rapid Communications, 2008, 29, 299-303.	2.0	21
349	Synthesis of poly(paraphenylene vinylene)—polystyreneâ€based rodâ€coil block copolymer by atom transfer radical polymerization: Toward a selfâ€organized lamellar semiconducting material. Journal of Applied Polymer Science, 2008, 110, 3664-3670.	1.3	25
350	A New Level of Hierarchical Structure Control by Use of Supramolecular Selfâ€Assembled Dendronized Block Copolymers. Advanced Materials, 2008, 20, 4530-4534.	11.1	46
351	Poly[2,7-(9,9-dihexylfluorene)]- <i>block</i> -poly(2-vinylpyridine) Rodâ^'Coil and Coilâ^'Rodâ^'Coil Block Copolymers: Synthesis, Morphology and Photophysical Properties in Methanol/THF Mixed Solvents. Macromolecules, 2008, 41, 8759-8769.	2.2	60
352	Structure of Heat-Induced β-Lactoglobulin Aggregates and their Complexes with Sodium-Dodecyl Sulfate. Biomacromolecules, 2008, 9, 2477-2486.	2.6	274
353	Direct Imaging of Nanoscopic Plastic Deformation below Bulk Tg and Chain Stretching in Temperature-Responsive Block Copolymer Hydrogels by Cryo-TEM. Macromolecules, 2008, 41, 3243-3249.	2.2	29
354	Supramolecular routes towards liquid crystalline side-chain polymers. Soft Matter, 2008, 4, 952.	1.2	81
355	Food structure and functionality: a soft matter perspective. Soft Matter, 2008, 4, 1569.	1.2	180
356	Self-Assembly of Polypeptide/Ï€-Conjugated Polymer/Polypeptide Triblock Copolymers in Rodâ^'Rodâ^'Rod and Coilâ^'Rodâ^'Coil Conformations. Macromolecules, 2008, 41, 1846-1852.	2.2	74
357	Structureâ^'Properties Relationship in Proton Conductive Sulfonated Polystyreneâ^'Polymethyl Methacrylate Block Copolymers (sPSâ^'PMMA). Macromolecules, 2008, 41, 8130-8137.	2.2	62
358	Self-Assembly of Rod-Coil Block Copolymers for Photovoltaic Applications. Macromolecular Symposia, 2008, 268, 28-32.	0.4	16
359	Functional Columnar Liquid Crystalline Phases From Ionic Complexes of Dendronized Polymers and Sulfate Alkyl Tails. Macromolecular Symposia, 2008, 270, 58-64.	0.4	8
360	Real Space Imaging and Molecular Packing of Dendronized Polymerâ	2.2	53

#	Article	IF	CITATIONS
361	Weakly Segregated Smectic C Lamellar Clusters in Blends of Rods and Rodâ^'Coil Block Copolymers. Macromolecules, 2007, 40, 3277-3286.	2.2	56
362	Structural and Rheological Investigation of <i>Fd</i> 3 <i>m</i> Inverse Micellar Cubic Phases. Langmuir, 2007, 23, 9618-9628.	1.6	61
363	Functional Carbon Nanoflakes with High Aspect Ratio by Pyrolysis of Cured Templates of Block Copolymer and Phenolic Resin. Chemistry of Materials, 2007, 19, 3093-3095.	3.2	6
364	Synthesis and Characterization of Linear Poly(dialkylstannane)s. Macromolecules, 2007, 40, 7878-7889.	2.2	60
365	Comblike Liquid-Crystalline Polymers from Ionic Complexation of Dendronized Polymers and Lipids. Macromolecules, 2007, 40, 2822-2830.	2.2	48
366	Thermotropic Ionic Liquid Crystals via Self-Assembly of Cationic Hyperbranched Polypeptides and Anionic Surfactants. Macromolecules, 2007, 40, 8374-8383.	2.2	47
367	Anomalous Phase Sequences in Lyotropic Liquid Crystals. Physical Review Letters, 2007, 99, 187801.	2.9	50
368	Self-Assembly of Poly(diethylhexyloxy- <i>p</i> -phenylenevinylene)- <i>b</i> - poly(4-vinylpyridine) Rodâ^'Coil Block Copolymer Systems. Macromolecules, 2007, 40, 6990-6997.	2.2	111
369	Phase Behavior and Temperature-Responsive Molecular Filters Based on Self-Assembly of Polystyrene- <i>block</i> -poly(<i>N</i> -isopropylacrylamide)- <i>block</i> -polystyrene. Macromolecules, 2007, 40, 5827-5834.	2.2	149
370	Equilibrium and non-equilibrium structures in complex food systems. Food Hydrocolloids, 2007, 21, 674-682.	5.6	44
371	Emulsion-Templated Fully Reversible Protein-in-Oil Gels. Langmuir, 2006, 22, 7812-7818.	1.6	136
372	Liquid-Crystalline Polymers from Cationic Dendronized Polymerâ^'Anionic Lipid Complexes. Journal of the American Chemical Society, 2006, 128, 13998-13999.	6.6	62
373	Design of liquid-crystalline foods via field theoretic computer simulations. Trends in Food Science and Technology, 2006, 17, 220-226.	7.8	24
374	Investigating reversed liquid crystalline mesophases. Current Opinion in Colloid and Interface Science, 2006, 11, 224-229.	3.4	115
375	Understanding foods as soft materials. Nature Materials, 2005, 4, 729-740.	13.3	597
376	Shear Rheology of Lyotropic Liquid Crystals: A Case Study. Langmuir, 2005, 21, 3322-3333.	1.6	317
377	Polysaccharide-Induced Order-to-Order Transitions in Lyotropic Liquid Crystals. Langmuir, 2005, 21, 6165-6169.	1.6	73
378	Cross Linking and Rheological Characterization of Adsorbed Protein Layers at the Oilâ^'Water Interface. Langmuir, 2005, 21, 9689-9697.	1.6	49

#	Article	IF	CITATIONS
379	Morphology and Thermodynamic Behavior of Syndiotactic Polypropyleneâ^Poly(ethylene-co-propylene) Block Polymers Prepared by Living Olefin Polymerization. Macromolecules, 2005, 38, 851-860.	2.2	68
380	Water in Glassy Carbohydrates:Â Opening It Up at the Nanolevel. Journal of Physical Chemistry B, 2004, 108, 12436-12441.	1.2	91
381	Design of Double Emulsions by Osmotic Pressure Tailoring. Langmuir, 2004, 20, 3574-3582.	1.6	168
382	On the Role of Block Copolymers in Self-Assembly of Dense Colloidal Polymeric Systems. Langmuir, 2003, 19, 8144-8147.	1.6	20
383	Tailoring Morphologies in Polymeric High Internal Phase Emulsions by Selective Solvent Casting. Macromolecules, 2003, 36, 4457-4465.	2.2	21
384	High Internal Phase Polymeric Emulsions by Self-Assembly of Colloidal Systems. Macromolecules, 2003, 36, 4466-4471.	2.2	43
385	Templating Organic Semiconductors via Self-Assembly of Polymer Colloids. Science, 2003, 299, 1872-1874.	6.0	175
386	Enthalpic, Entropic, and Square Gradient Contributions to the Surface Energetics of Amine-Cured Epoxy Systems. Journal of Colloid and Interface Science, 2002, 250, 121-127.	5.0	6
387	Phase separation and gelation of epoxy resin/hyperbranched polymer blends. Polymer Engineering and Science, 2002, 42, 249-257.	1.5	17
388	A review of dendritic hyperbranched polymer as modifiers in epoxy composites. Composites Science and Technology, 2001, 61, 787-795.	3.8	223
389	Morphology build-up in dendritic hyperbranched polymer modified epoxy resins: modelling and characterization. Polymer, 2001, 42, 305-317.	1.8	73
390	Phase separation in epoxy resin-reactive dendritic hyperbranched polymer blends. Polymer Engineering and Science, 2001, 41, 43-52.	1.5	17
391	Chemically induced phase separated morphologies in epoxy resin-hyperbranched polymer blends. Macromolecular Symposia, 2000, 149, 17-22.	0.4	22
392	Surface Energetics Evolution during Processing of Epoxy Resins. Journal of Colloid and Interface Science, 2000, 222, 55-62.	5.0	31
393	Evaluation of solubility parameters during polymerisation of amine-cured epoxy resins. Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 1883-1892.	2.4	24
394	A thermodynamic model for thermoset polymer blends with reactive modifiers. Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 1893-1902.	2.4	29
395	Effects of the Branching Architecture on the Reactivity of Epoxyâ^'Amine Groups. Macromolecules, 2000, 33, 4373-4379.	2.2	78
396	Investigation of Relaxation Processes in Nanocomposites by Transient Grating Experiments. Materials Science Forum, 0, 714, 79-83.	0.3	3

#	Article	IF	CITATIONS
397	Amyloidâ€Templated Palladium Nanoparticles for Water Purification by Electroreduction. Angewandte Chemie, 0, , .	1.6	5