Ester Marotta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5142863/publications.pdf

Version: 2024-02-01

172457 243625 2,187 77 29 44 citations h-index g-index papers 77 77 77 2786 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Atmospheric plasma-based approaches for the degradation of dimethyl phthalate (DMP) in water. Journal of Environmental Management, 2022, 301, 113885.	7.8	10
2	Nitrogenâ€containing organic products from the treatment of liquid toluene with plasmaâ€activated N ₂ gas. Plasma Processes and Polymers, 2021, 18, 2100012.	3.0	10
3	Spectroscopic study of self-pulsing discharge with liquid electrode. Journal of Applied Physics, 2021, 129, .	2.5	7
4	Chemical and Antimicrobial Effects of Air Non-Thermal Plasma Processing of Fresh Apple Juice with Focus on Safety Aspects. Foods, 2021, 10, 2055.	4.3	9
5	Comparative performance assessment of plasma reactors for the treatment of PFOA; reactor design, kinetics, mineralization and energy yield. Chemical Engineering Journal, 2020, 382, 123031.	12.7	64
6	Application of Fluorescence-Based Probes for the Determination of Superoxide in Water Treated with Air Non-thermal Plasma. ACS Sensors, 2020, 5, 2866-2875.	7.8	7
7	Atmospheric Pressure Non-thermal Plasma for Air Purification: Ions and Ionic Reactions Induced by dc+ Corona Discharges in Air Contaminated with Acetone and Methanol. Plasma Chemistry and Plasma Processing, 2020, 40, 1091-1107.	2.4	16
8	Comment on "Water-Soluble Fluorescent Probe with Dual Mitochondria/Lysosome Targetability for Selective Superoxide Detection in Live Cells and in Zebrafish Embryos― ACS Sensors, 2019, 4, 3080-3083.	7.8	11
9	Radicals and Ions Formed in Plasma-Treated Organic Solvents: A Mechanistic Investigation to Rationalize the Enhancement of Electrospinnability of Polycaprolactone. Frontiers in Chemistry, 2019, 7, 344.	3.6	4
10	Papers by Selected Lecturers at the 11th International Symposium on Non-thermal/Thermal Plasma Pollution Control Technology & Sustainable Energy (ISNTPT 11). Plasma Chemistry and Plasma Processing, 2019, 39, 519-522.	2.4	2
11	A new rapid procedure for simultaneous determination of glyphosate and AMPA in water at sub $1\frac{1}{4}g/L$ level. Journal of Chromatography A, 2019, 1600, 65-72.	3.7	31
12	Efficiency, products and mechanisms of ethyl acetate oxidative degradation in air non-thermal plasma. Journal Physics D: Applied Physics, 2019, 52, 295206.	2.8	14
13	Air non-thermal plasma treatment of the herbicides mesotrione and metolachlor in water. Chemical Engineering Journal, 2019, 372, 171-180.	12.7	32
14	Kinetics and Products of Air Plasma Induced Oxidation in Water of Imidacloprid and Thiamethoxam Treated Individually and in Mixture. Plasma Chemistry and Plasma Processing, 2019, 39, 545-559.	2.4	14
15	Removal of persistent organic pollutants from water using a newly developed atmospheric plasma reactor. Plasma Processes and Polymers, 2018, 15, 1700207.	3.0	33
16	Complete mineralization of organic pollutants in water by treatment with air non-thermal plasma. Chemical Engineering Journal, 2018, 337, 567-575.	12.7	43
17	Characterization and comparative evaluation of two atmospheric plasma sources for water treatment. Plasma Processes and Polymers, 2018, 15, 1700130.	3.0	16

ROS production and removal of the herbicide metolachlor by air non-thermal plasma produced by DBD, DCâ^¹â€‰â€‰and DC+  discharges implemented within the same reactor. Journal Physics D: Applie₂ Physics,26 2018, 51, 274002.

#	Article	IF	CITATIONS
19	Indirect Inactivation of Candida guilliermondii by Using a Plasma Synthetic Jet Actuator: Effect of Advected Charged Particles. Plasma Medicine, 2018, 8, 255-268.	0.6	5
20	Characterization of a plasma source for biomedical applications by electrical, optical, and chemical measurements. Plasma Processes and Polymers, 2018, 15, 1800105.	3.0	13
21	A versatile prototype plasma reactor for water treatment supporting different discharge regimes. Journal Physics D: Applied Physics, 2018, 51, 274001.	2.8	13
22	Air non-thermal plasma treatment of Irgarol 1051 deposited on TiO2. Chemosphere, 2018, 210, 653-661.	8.2	7
23	Dissipation of terbuthylazine, metolachlor, and mesotrione in soils with contrasting texture. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2018, 53, 661-668.	1.5	6
24	Oxidation of clofibric acid in aqueous solution using a non-thermal plasma discharge or gamma radiation. Chemosphere, 2017, 187, 395-403.	8.2	13
25	6th Central European Symposium on Plasma Chemistry (CESPC-6). EPJ Applied Physics, 2016, 75, 24701.	0.7	0
26	Products and mechanism of verapamil removal in water by air non-thermal plasma treatment. Chemical Engineering Journal, 2016, 292, 35-41.	12.7	41
27	Investigation on Plasmaâ€Driven Methane Dry Reforming in a Selfâ€Triggered Spark Reactor. Plasma Processes and Polymers, 2015, 12, 808-816.	3.0	38
28	Synthesis and Evaluation as Prodrugs of Hydrophilic Carbamate Ester Analogues of Resveratrol. Molecular Pharmaceutics, 2015, 12, 3441-3454.	4.6	21
29	Treatment of methyl orange by nitrogen non-thermal plasma in a corona reactor: The role of reactive nitrogen species. Journal of Hazardous Materials, 2015, 300, 754-764.	12.4	44
30	Development and Testing of a Self-Triggered Spark Reactor for Plasma Driven Dry Reforming of Methane. Plasma Processes and Polymers, 2014, 11, 787-797.	3.0	30
31	Oxidation Mechanisms of CF ₂ Br ₂ and CH ₂ Br ₂ Induced by Air Nonthermal Plasma. Environmental Science & Environm	10.0	20
32	Comparison of the rates of phenol advanced oxidation in deionized and tap water within a dielectric barrier discharge reactor. Water Research, 2012, 46, 6239-6246.	11.3	72
33	Effect of vegetative filter strips on herbicide runoff under various types of rainfall. Chemosphere, 2012, 88, 113-119.	8.2	31
34	Oxygen Isotope (1802) Evidence on the Role of Oxygen in the Plasma-Driven Catalysis of VOC Oxidation. Catalysis Letters, 2011, 141, 277-282.	2.6	33
35	Determination of Atomic Oxygen in Atmospheric Plasma from Oxygen Isotope Exchange. Plasma Processes and Polymers, 2011, 8, 859-866.	3.0	2
36	Advanced Oxidation Process for Degradation of Aqueous Phenol in a Dielectric Barrier Discharge Reactor. Plasma Processes and Polymers, 2011, 8, 867-875.	3.0	73

#	Article	IF	CITATIONS
37	Structure elucidation of the dye Acid Red 131: complete ¹ H, ¹³ C and ¹⁵ N NMR data assignment. Magnetic Resonance in Chemistry, 2011, 49, 523-528.	1.9	7
38	Redox Properties and Cytotoxicity of Synthetic Isomeric Mitochondriotropic Derivatives of the Natural Polyphenol Quercetin. European Journal of Organic Chemistry, 2011, 2011, 5577-5586.	2.4	16
39	Impact of mitochondriotropic quercetin derivatives on mitochondria. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 189-196.	1.0	43
40	Products and mechanisms of the oxidation of organic compounds in atmospheric air plasmas. Journal Physics D: Applied Physics, 2010, 43, 124011.	2.8	21
41	Determination of Quercetin and Resveratrol in Whole Bloodâ€"Implications for Bioavailability Studies. Molecules, 2010, 15, 6570-6579.	3.8	63
42	Regioselective O-Derivatization of Quercetin via Ester Intermediates. An Improved Synthesis of Rhamnetin and Development of a New Mitochondriotropic Derivative. Molecules, 2010, 15, 4722-4736.	3.8	48
43	Heterogeneity and Standardization of Phase II Metabolism in Cultured Cells. Cellular Physiology and Biochemistry, 2009, 23, 425-430.	1.6	4
44	Absorption and Metabolism of Resveratrol Carboxyesters and Methanesulfonate by Explanted Rat Intestinal Segments. Cellular Physiology and Biochemistry, 2009, 24, 557-566.	1.6	24
45	A mass spectrometry study of alkanes in air plasma at atmospheric pressure. Journal of the American Society for Mass Spectrometry, 2009, 20, 697-707.	2.8	49
46	Soluble polyphenols: Synthesis and bioavailability of 3,4′,5-tri(α-d-glucose-3-O-succinyl) resveratrol. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 6721-6724.	2.2	42
47	Comparison of Toluene Removal in Air at Atmospheric Conditions by Different Corona Discharges. Environmental Science & Environmental Science & Environ	10.0	76
48	DC Corona Electric Discharges for Air Pollution Control, 2—lonic Intermediates and Mechanisms of Hydrocarbon Processing. Plasma Processes and Polymers, 2008, 5, 146-154.	3.0	30
49	A Mitochondriotropic Derivative of Quercetin: A Strategy to Increase the Effectiveness of Polyphenols. ChemBioChem, 2008, 9, 2633-2642.	2.6	60
50	Development of mitochondria-targeted derivatives of resveratrol. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 5594-5597.	2.2	105
51	Aggregation Behavior of Octyl Viologen Di[bis(trifluoromethanesulfonyl)amide] in Nonpolar Solvents. Journal of Physical Chemistry B, 2008, 112, 16566-16574.	2.6	21
52	DC Corona Electric Discharges for Air Pollution Control. Part 1. Efficiency and Products of Hydrocarbon Processing. Environmental Science & Environmen	10.0	58
53	Ester-Based Precursors to Increase the Bioavailability of Quercetin. Journal of Medicinal Chemistry, 2007, 50, 241-253.	6.4	85
54	Efficient solid-state microwave-promoted complexation of a mixed dioxa-diaza macrocycle with an alkali salt. Synthesis of a sodium ethyl 4-benzeneazophosphonate complex. Polyhedron, 2007, 26, 1663-1668.	2.2	31

#	Article	IF	CITATIONS
55	Novel CFCs-substitutes recommended by EPA (hydrofluorocarbon-245fa and hydrofluoroether-7100): lon chemistry in air plasma and reactions with atmospheric ions. Journal of the American Society for Mass Spectrometry, 2005, 16, 1081-1092.	2.8	8
56	The inside and outside protonation of a 15-membered O2N2-macrocycle. Synthesis and structural characterization of the protonated ligand salts. Polyhedron, 2005, 24, 97-111.	2.2	10
57	Positive ion chemistry of esters of carboxylic acids in air plasma at atmospheric pressure. Journal of Mass Spectrometry, 2005, 40, 1583-1589.	1.6	12
58	Ionic Reactions of Chlorinated Volatile Organic Compounds in Air Plasma at Atmospheric Pressure. Plasma Processes and Polymers, 2005, 2, 209-217.	3.0	31
59	Positive and negative ion chemistry of the anesthetic halothane (1-bromo-1-chloro-2,2,2-trifluoroethane) in air plasma at atmospheric pressure. Rapid Communications in Mass Spectrometry, 2005, 19, 391-396.	1.5	12
60	Gas-phase positive ion chemistry of 1-bromo-1-chloro-2,2,2-trifluoroethane (halothane) upon electron ionization within an ion trap mass spectrometer. Rapid Communications in Mass Spectrometry, 2005, 19, 1447-1453.	1.5	1
61	Synthesis, Solution-State and Solid-State Structural Characterization of Monocationic Nitrido Heterocomplexes $[M(N)(DTC)(PNP)]+(M=99Tc, Re; DTC=Dithiocarbamate; PNP=Heterodiphosphane)$. European Journal of Inorganic Chemistry, 2004, 2004, 1902-1913.	2.0	41
62	An atmospheric pressure chemical ionization study of the positive and negative ion chemistry of the hydrofluorocarbons 1,1-difluoroethane(HFC-152a) and 1,1,1,2-tetrafluoroethane(HFC-134a) and of perfluoro-n-hexane(FC-72) in air plasma at atmospheric pressure. Journal of Mass Spectrometry, 2004, 39, 791-801.	1.6	19
63	ESI/MSn in the structural characterisation of some nitrido-Re heterocomplexes. International Journal of Mass Spectrometry, 2004, 232, 239-247.	1.5	8
64	Enzymatic digestion and mass spectrometry in the study of advanced glycation end products/peptides. Journal of the American Society for Mass Spectrometry, 2004, 15, 496-509.	2.8	150
65	Electrospray Mass Spectrometry of a Series of Mixed Nitrido 99gTc-Heterocomplexes Conjugated with Bio-Active Molecules. European Journal of Mass Spectrometry, 2004, 10, 605-611.	1.0	6
66	Accurate mass measurements by Fourier transform mass spectrometry in the study of advanced glycation end products/peptides. Journal of Mass Spectrometry, 2003, 38, 196-205.	1.6	37
67	On the formation of negative ions in atmospheric pressure photoionization conditions. Journal of Mass Spectrometry, 2003, 38, 1113-1115.	1.6	31
68	Atmospheric pressure photoionization mechanisms. International Journal of Mass Spectrometry, 2003, 228, 841-849.	1.5	51
69	Electrospray ionization mass spectrometry in the structural characterization of a mixed nitrido-Tc heterocomplex of interest for myocardial imaging. Rapid Communications in Mass Spectrometry, 2003, 17, 1225-1228.	1.5	9
70	Atmospheric pressure photoionization mechanisms. 2. The case of benzene and toluene. Rapid Communications in Mass Spectrometry, 2003, 17, 2423-2429.	1.5	67
71	On the photo-initiated isomerization of acetonitrile. Rapid Communications in Mass Spectrometry, 2003, 17, 2846-2848.	1.5	21
72	Biodegradation of Chlorsulfuron and Metsulfuronâ€Methyl byAspergillus nigerin Laboratory Conditions. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2003, 38, 737-746.	1.5	59

#	Article	IF	Citations
73	Isomerization and dissociation of C2X5+and C2X4+ \hat{A} -ions (X = Cl, F) from chlorofluoroethanes in an ion trap mass spectrometer. Journal of Mass Spectrometry, 2002, 37, 1280-1286.	1.6	4
74	Electrospray ionization in the characterization ofmer andfac isomeric forms of [Re(N)Cl2(POP)] (POP?=?bis[(2-diphenylphosphino)ethyl]ether). Rapid Communications in Mass Spectrometry, 2001, 15, 2046-2049.	1.5	3
75	Products, rate constants and mechanisms of gas-phase reactions of CX3+, CX2+, CX+ (X = F and/or Cl) and Cl+ with $1,1,1$ - and $1,1,2$ -trichlorotrifluoroethane. Journal of Mass Spectrometry, 2001, 36, 1195-1202.	1.6	8
76	Pollutant Degradation in Gas Streams by means of Non-Thermal Plasmas. , 0, , .		5
77	Chemistry of Organic Pollutants in Atmospheric Plasmas. , 0, , 79-92.		0