
Keiko Tawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5141433/publications.pdf Version: 2024-02-01

Κεικό Τλιλλ

#	Article	IF	CITATIONS
1	Nanoantenna effect dependent on the center structure of Bull's eye-type plasmonic chip. Optics Express, 2022, 30, 7526.	3.4	6
2	Enhanced Single-Photon Emission from Single Quantum Dots Interacting with a One-Dimensional Plasmonic Chip. Journal of Physical Chemistry C, 2022, 126, 5189-5197.	3.1	3
3	Size effect of metal nanodome arrays on performance of plasmonic biosensor. Japanese Journal of Applied Physics, 2020, 59, SDDF03.	1.5	5
4	Microscopic Study on Excitation and Emission Enhancement by the Plasmon Mode on a Plasmonic Chip. Sensors, 2020, 20, 6415.	3.8	6
5	Two-Photon-Excited Emission of Quantum Dots with a Plasmonic Chip. Journal of Physical Chemistry C, 2020, 124, 16076-16082.	3.1	3
6	Plasmonic chip enhanced fluorescence biosensor in the back illumination system. Electronics and Communications in Japan, 2020, 103, 9-14.	0.5	0
7	Multi-Color Enhanced Fluorescence Imaging of a Breast Cancer Cell with A Hole-Arrayed Plasmonic Chip. Micromachines, 2020, 11, 604.	2.9	9
8	Real-time fluorescence measurement of spontaneous activity in a high-density hippocampal network cultivated on a plasmonic dish. Journal of Chemical Physics, 2020, 152, 014706.	3.0	6
9	Crystallization Control of the Photoresponsible Diarylethene Film with an Aluminum Plasmonic Chip. , 2020, , 581-593.		Ο
10	Plasmonic coloration of silver nanodome arrays for a smartphone-based plasmonic biosensor. Nanoscale Advances, 2019, 1, 3699-3708.	4.6	19
11	Long-term real-time imaging of a voltage sensitive dye in cultured hippocampal neurons using the silver plasmonic dish. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 384, 111949.	3.9	4
12	Direct Visualization of Near-Field Distributions on a Two-Dimensional Plasmonic Chip by Scanning Near-Field Optical Microscopy. Journal of Physical Chemistry C, 2019, 123, 10529-10535.	3.1	7
13	Nanoscopic Visualization of Fluorescence Excitation Probability on Two-dimensional Periodical Gold Nanohole Arrays. Chemistry Letters, 2019, 48, 1119-1121.	1.3	2
14	In situ optical and spectroscopic imaging of photochromic cyclization and crystallization of a diarylethene film with optical microscopy. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 356, 397-402.	3.9	3
15	Thickness dependence of polydopamine thin films on detection sensitivity of surface plasmon-enhanced fluorescence biosensors. Japanese Journal of Applied Physics, 2018, 57, 03EK01.	1.5	2
16	Rapid and sensitive detection of neuron specific enolase with a polydopamine coated plasmonic chip utilizing a rear-side coupling method. Analyst, The, 2018, 143, 858-864.	3.5	23
17	Study on the Mechanism of Diarylethene Crystal Growth by In Situ Microscopy and the Crystal Growth Controlled by an Aluminum Plasmonic Chip. Langmuir, 2018, 34, 4217-4223.	3.5	2
18	Catechol-Functionalized Polysiloxane Nanocoating for Surface Enhanced Raman Scattering on a Grating Surface. International Journal of the Society of Materials Engineering for Resources, 2018, 23, 84-87.	0.1	1

Κεικό Tawa

#	Article	IF	CITATIONS
19	Photoluminescence characterization of ZnS-AgInS2 (ZAIS) nanoparticles adsorbed on plasmonic chip studied with fluorescence microscopy. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 367, 347-354.	3.9	5
20	Sensitive Bio-Detection and Bioimaging by the Grating-Coupled Surface Plasmon-Field Enhanced Fluorescence Spectroscopy. Journal of the Japan Society of Colour Material, 2018, 91, 137-141.	0.1	0
21	Properties of modified surface for biosensing interface. Journal of Colloid and Interface Science, 2017, 497, 309-316.	9.4	7
22	Enhanced fluorescence microscopy with the Bull's eye-plasmonic chip. Optics Express, 2017, 25, 10622.	3.4	21
23	Dual-Color Fluorescence Imaging of EpCAM and EGFR in Breast Cancer Cells with a Bull's Eye-Type Plasmonic Chip. Sensors, 2017, 17, 2942.	3.8	11
24	Optimal Structure of a Plasmonic Chip for Sensitive Bio-Detection with the Grating-Coupled Surface Plasmon-Field Enhanced Fluorescence (GC-SPF). Materials, 2017, 10, 1063.	2.9	14
25	Fluorescence microscopy imaging of cells with a plasmonic dish integrally molded. Japanese Journal of Applied Physics, 2016, 55, 03DF12.	1.5	6
26	Polydopamine Thin Films as Protein Linker Layer for Sensitive Detection of Interleukin-6 by Surface Plasmon Enhanced Fluorescence Spectroscopy. ACS Applied Materials & Interfaces, 2016, 8, 22032-22038.	8.0	50
27	Surface plasmon-enhanced optical trapping of quantum-dot-conjugated surface molecules on neurons cultured on a plasmonic chip. Japanese Journal of Applied Physics, 2016, 55, 06GN04.	1.5	10
28	Sensitive Detection of Cell Surface Membrane Proteins in Living Breast Cancer Cells Using Multicolor Fluorescence Microscopy with a Plasmonic Chip. ACS Applied Materials & Interfaces, 2016, 8, 29893-29898.	8.0	32
29	Interleukin-6 Detection with a Plasmonic Chip. Journal of Molecular and Engineering Materials, 2016, 04, 1640009.	1.8	0
30	A plasmonic chip-based bio/chemical hybrid sensing system for the highly sensitive detection of C-reactive protein. Chemical Communications, 2016, 52, 3883-3886.	4.1	29
31	Multicolor fluorescence microscopic imaging of cancer cells on the plasmonic chip (Presentation) Tj ETQq1 1 0.3	784314 rg	BT /Overlock
32	Sensitive Detection of a Tumor Marker, α-Fetoprotein, with a Sandwich Assay on a Plasmonic Chip. Analytical Chemistry, 2015, 87, 3871-3876.	6.5	62
33	Detection of Brain-Derived Neurotrophic Factor (BDNF) with a Sandwich Assay on a Plasmonic Chip. Transactions of the Materials Research Society of Japan, 2014, 39, 361-364.	0.2	1
34	Sensitive detection of interleukin-6 on a plasmonic chip by grating-coupled surface-plasmon-field-enhanced fluorescence imaging. Japanese Journal of Applied Physics, 2014, 53, 06JL05.	1.5	20
35	In Situ Sensitive Fluorescence Imaging of Neurons Cultured on a Plasmonic Dish Using Fluorescence Microscopy. ACS Applied Materials & amp; Interfaces, 2014, 6, 20010-20015.	8.0	26
36	Application of 300× Enhanced Fluorescence on a Plasmonic Chip Modified with a Bispecific Antibody to a Sensitive Immunosensor. ACS Applied Materials & Interfaces, 2013, 5, 8628-8632.	8.0	37

Κεικό Tawa

#	Article	IF	CITATIONS
37	Optimization of Metal Quality for Grating Coupled Surface Plasmon Resonance. Physics Procedia, 2013, 48, 179-183.	1.2	7
38	Rapid and Sensitive Detection of Brain-Derived Neurotrophic Factor with a Plasmonic Chip. Japanese Journal of Applied Physics, 2013, 52, 06GK01.	1.5	6
39	Clear Images of Neuronal Cells Cultured on a Plasmonic Dish Observed with the Inverted Fluorescence Microscope. , 2013, , .		0
40	Sensitive detection of Interleukin-6 (IL-6) on the plasmonic chip by Grating Coupled-Surface Plasmon-field enhanced Fluorescence Imaging. , 2013, , .		0
41	Photochemically Induced Crystallization of Proteins Accelerated on Two-Dimensional Gold Gratings. Japanese Journal of Applied Physics, 2012, 51, 06FK09.	1.5	2
42	Sensitive Fluorescence Microscopy of Neurons Cultured on a Plasmonic Chip. Japanese Journal of Applied Physics, 2012, 51, 06FK10.	1.5	5
43	Spontaneous Emission Control of CdSe/ZnS Nanoparticle Monolayer in Polymer Nanosheet Waveguide Assembled on a One-Dimensional Silver Grating Surface. Langmuir, 2012, 28, 2313-2317.	3.5	6
44	Sensitive Fluorescence Microscopy of Neurons Cultured on a Plasmonic Chip. Japanese Journal of Applied Physics, 2012, 51, 06FK10.	1.5	7
45	Photochemically Induced Crystallization of Proteins Accelerated on Two-Dimensional Gold Gratings. Japanese Journal of Applied Physics, 2012, 51, 06FK09.	1.5	0
46	Zinc Oxide-Coated Plasmonic Chip Modified with a Bispecific Antibody for Sensitive Detection of a Fluorescent Labeled-Antigen. Analytical Chemistry, 2011, 83, 5944-5948.	6.5	28
47	XAFS study of the complex of an acetylacetonate-based ligand and copper ion. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2011, 71, 293-296.	1.6	3
48	Sensitive bioimaging in microfluidic channels on the plasmonic substrate: Application of an enhanced fluorescence based on the reverse coupling mode. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 221, 261-267.	3.9	19
49	An application of a plasmonic chip with enhanced fluorescence to a simple biosensor with extended dynamic range. Sensors and Actuators B: Chemical, 2011, 157, 703-709.	7.8	17
50	In situ imaging of micropatterned phospholipid membranes by surface plasmon fluorescence microscopy. Colloids and Surfaces B: Biointerfaces, 2010, 81, 447-451.	5.0	5
51	Tailored Plasmonic Gratings for Enhanced Fluorescence Detection and Microscopic Imaging. Advanced Functional Materials, 2010, 20, 546-553.	14.9	69
52	Enhanced Fluorescence Microscopic Imaging by Plasmonic Nanostructures: From a 1D Grating to a 2D Nanohole Array. Advanced Functional Materials, 2010, 20, 945-950.	14.9	68
53	Surface profile dependence of the photon coupling efficiency and enhanced fluorescence in the grating-coupled surface plasmon resonance. Journal of Applied Physics, 2010, 107, .	2.5	11
54	Duty ratio-dependent fluorescence enhancement through surface plasmon resonance in Ag-coated gratings. Applied Physics Letters, 2009, 95, 133117.	3.3	17

Κεικό Tawa

#	Article	IF	CITATIONS
55	Application of Grating Substrate Fabricated by Nanoimprint Lithography to Surface Plasmon Field-Enhanced Fluorescence Microscopy and Study of Its Optimum Structure. Japanese Journal of Applied Physics, 2009, 48, 062002.	1.5	5
56	Grating Substrates Fabricated by Nanoimprint Lithography for Fluorescence Microscopy. Japanese Journal of Applied Physics, 2009, 48, 06FH17.	1.5	10
57	Grating Coupled Surface Plasmon Resonance Enhanced Fluorescence and Its Application for Cell Observation. Materials Research Society Symposia Proceedings, 2009, 1208, 1.	0.1	1
58	Fluorescence and metal-ion recognition properties of acetylacetone-based ligands. Journal of Environmental Sciences, 2009, 21, S84-S87.	6.1	2
59	Influence of groove depth and surface profile on fluorescence enhancement by grating-coupled surface plasmon resonance. Optical Review, 2009, 16, 216-221.	2.0	28
60	Sensitive detection of a pseudo-polyrotaxane ultrathin film by SPR and QCM-D methods. Sensors and Actuators B: Chemical, 2009, 138, 126-133.	7.8	9
61	The Detection of Antigen-Antibody Recognition on an Array Chip by Surface Plasmon Field-Enhanced Fluorescence Imaging (SPFI). Transactions of the Materials Research Society of Japan, 2009, 34, 213-216.	0.2	1
62	100-Fold Enhancement of Fluorescence Imaging by Two-Dimensional-Grating-Coupled Surface Plasmon Resonance. , 2009, , .		0
63	Optical microscopic observation of fluorescence enhanced by grating-coupled surface plasmon resonance. Optics Express, 2008, 16, 9781.	3.4	92
64	Bio-interface Detection by Surface Plasmon-field Enhanced Fluorescence Spectroscopy (SPFS). Hyomen Kagaku, 2007, 28, 724-727.	0.0	1
65	Oriented Attachment-Based Assembly of Dendritic Silver Nanostructures at Room Temperature. Journal of Physical Chemistry B, 2006, 110, 23234-23241.	2.6	110
66	Vesicle Fusion Studied by Surface Plasmon Resonance and Surface Plasmon Fluorescence Spectroscopy. Biophysical Journal, 2006, 91, 1380-1387.	0.5	50
67	Designed Fabrication of Ordered Porous Au/Ag Nanostructured Films for Surface-Enhanced Raman Scattering Substrates. Langmuir, 2006, 22, 2605-2609.	3.5	86
68	Silver Nanoplates with Special Shapes:Â Controlled Synthesis and Their Surface Plasmon Resonance and Surface-Enhanced Raman Scattering Properties. Chemistry of Materials, 2006, 18, 4894-4901.	6.7	254
69	Matching base-pair number dependence of the kinetics of DNA–DNA hybridization studied by surface plasmon fluorescence spectroscopy. Biosensors and Bioelectronics, 2005, 21, 322-329.	10.1	63
70	Substrate-Supported Phospholipid Membranes Studied by Surface Plasmon Resonance and Surface Plasmon Fluorescence Spectroscopy. Biophysical Journal, 2005, 89, 2750-2758.	0.5	96
71	Azobenzene-Containing Polyamic Acid with Excellent Langmuirâ^'Blodgettâ^'Kuhn Film Formation Behavior Suitable for All-Optical Switching. Langmuir, 2005, 21, 7036-7043.	3.5	9
72	Mismatching base-pair dependence of the kinetics of DNA-DNA hybridization studied by surface plasmon fluorescence spectroscopy. Nucleic Acids Research, 2004, 32, 2372-2377.	14.5	111

Κεικο Tawa

#	Article	IF	CITATIONS
73	Fluorescence emission control and switching of oxymethylcrowned spirobenzopyrans by metal ion. Tetrahedron, 2004, 60, 6029-6036.	1.9	46
74	Polarized-Light Induced Orientation of Azo-Dyes in a Polymer Matrix Studied by Polarized Spectroscopy Kobunshi Ronbunshu, 2002, 59, 499-509.	0.2	0
75	Out-of-Plane Photoreorientation of Azo Dyes in Polymer Thin Films Studied by Surface Plasmon Resonance Spectroscopy. Macromolecules, 2002, 35, 7018-7023.	4.8	13
76	Photoinduced Reorientation of Azo Dyes Bonded to Polyurethane Studied by Polarized FT-IR Spectroscopy. Macromolecules, 2001, 34, 8232-8238.	4.8	36
77	Photoinduced reorientation of azo-dyes covalently linked to a styrene copolymer in bulk state. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 143, 31-38.	3.9	8
78	Macromolecular Chemistry and Physics, 2001, 202, 257-262.	2.2	17
79	Synthesis and nonlinear optical properties of 1,3- and 1,4-disubstituted type of poly(phenyleneethynylene)s containing electron-donor and acceptor group. Macromolecular Chemistry and Physics, 2000, 201, 525-532.	2.2	15
80	Local environment dependence of photoinduced anisotropy observed in azo-dye-doped polymer films. Polymer, 2000, 41, 3235-3242.	3.8	42
81	Azo-dye-structure dependence of photoinduced anisotropy observed in PMMA films. Journal of Photochemistry and Photobiology A: Chemistry, 2000, 134, 185-191.	3.9	21
82	Molecular Design for Organic Nonlinear Optics:Â Polarizability and Hyperpolarizabilities of Furan Homologues Investigated by Ab Initio Molecular Orbital Methodâ€. Journal of Physical Chemistry A, 2000, 104, 4723-4734.	2.5	114
83	On the discrepancy between theoretical calculation and experimental observation of second hyperpolarizability of furan homologues. Synthetic Metals, 2000, 115, 185-189.	3.9	8
84	Femtosecond optical Kerr study of heavy-atom effects on the third-order optical non-linearity of thiophene homologues: electronic hyperpolarizability of tellurophene. Chemical Physics Letters, 1999, 302, 615-620.	2.6	21
85	Polarized lightâ€induced anisotropy depending on polymer matrices studied by polarized ftir spectroscopy. Macromolecular Symposia, 1999, 137, 147-154.	0.7	Ο
86	Effect of heavy atom on the second hyperpolarizability of tetrahydrofuran homologs investigated by ab initio molecular orbital method. International Journal of Quantum Chemistry, 1998, 70, 737-743.	2.0	11
87	Photoinduced Anisotropy in a Polymer Doped with Azo Dyes in the Photostationary State Studied by Polarized FT-IR Spectroscopy. Applied Spectroscopy, 1998, 52, 1536-1540.	2.2	18
88	Polarized light-induced anisotropy of azo dyes studied by polarized FTIR spectroscopy. , 1998, , .		0
89	Local Chain Dynamics of Several Polymers in Î [~] Solvents Studied by the Fluorescence Depolarization Method. Nihon Reoroji Gakkaishi, 1997, 25, 203-205.	1.0	1
90	Fluorescence Depolarization Study of Local Motions in Polymers at the Ï' Temperature. Macromolecules, 1996, 29, 1584-1588.	4.8	20

Κεικο Tawa

#	Article	IF	CITATIONS
91	Local Chain Dynamics of syndiotactic Poly(methyl methacrylate) Studied by Fluorescence Depolarization Method. Polymer Journal, 1995, 27, 429-435.	2.7	18
92	Local Chain Motion of Isotactic and Syndiotactic Poly(methyl methacrylate)s Studied by the Fluorescence Depolarization Method. Macromolecules, 1995, 28, 5012-5016.	4.8	17
93	Chain Dynamics of Styrene Polymers Studied by the Fluorescence Depolarization Method. Macromolecules, 1994, 27, 6482-6486.	4.8	22
94	Local Chain Dynamics of Poly(cis-1,4-isoprene) in Dilute Solutions Studied by the Fluorescence Depolarization Method. Polymer Journal, 1994, 26, 1345-1351.	2.7	19
95	Chain Dynamics of Polystyrene in High Viscosity Solvents Studied by the Fluorescence Depolarization Method. Polymer Journal, 1994, 26, 199-205.	2.7	17