Francoise Serein-Spirau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5141107/publications.pdf

Version: 2024-02-01

73 papers

1,423 citations

20 h-index 34 g-index

75 all docs

75 docs citations

times ranked

75

2050 citing authors

#	Article	IF	Citations
1	Self-Organized Ureido Substituted Diacetylenic Organogel. Photopolymerization of One-Dimensional Supramolecular Assemblies to Give Conjugated Nanofibers. Journal of the American Chemical Society, 2006, 128, 16213-16223.	13.7	173
2	Twoâ€Photonâ€Triggered Drug Delivery in Cancer Cells Using Nanoimpellers. Angewandte Chemie - International Edition, 2013, 52, 13813-13817.	13.8	94
3	Nanostructuration of Phenylenevinylenediimide-Bridged Silsesquioxane:Â From Electroluminescent Molecular J-Aggregates to Photoresponsive Polymeric H-Aggregates. Journal of the American Chemical Society, 2006, 128, 4892-4901.	13.7	81
4	Ultra trace detection of explosives in air: Development of a portable fluorescent detector. Talanta, 2010, 81, 543-548.	5.5	68
5	DFT/TD-DFT characterization of conjugational electronic structures and spectral properties of materials based on thieno[3,2-b][1]benzothiophene for organic photovoltaic and solar cell applications. Journal of Saudi Chemical Society, 2017, 21, 563-574.	5.2	44
6	Synthesis, orientation and optical properties of thiophene–dialkoxyphenylene copolymers. Journal of Materials Chemistry, 2000, 10, 927-932.	6.7	42
7	Carbon monoxide as a building block for organic synthesis. Part III. Selective hydrocarbonylation of monoterpenes to give potentially biologically active aldehydes. Journal of Molecular Catalysis, 1991, 66, 399-407.	1.2	41
8	Confined photoactive substructures on a chiral scaffold: the design of an electroluminescent polyimide as material for PLED**. Journal of Materials Chemistry, 2005, 15, 4446.	6.7	38
9	How to Build Fully π-Conjugated Architectures with Thienylene and Phenylene Fragments. European Journal of Organic Chemistry, 2007, 2007, 4019-4031.	2.4	35
10	DFT theoretical investigations of π-conjugated molecules based on thienopyrazine and different acceptor moieties for organic photovoltaic cells. Journal of Saudi Chemical Society, 2016, 20, S415-S425.	5.2	35
11	Synthesis and ionochromic properties of chelating conjugated polymers. Journal of Materials Chemistry, 2000, 10, 263-268.	6.7	33
12	Far- and Mid-Infrared of Crystalline 2,2â€~-Bithiophene:  Ab Initio Analysis and Comparison with Infrared Response. Journal of Physical Chemistry A, 2005, 109, 1684-1691.	2.5	33
13	Novel synthesis of arylboronic acids by electroreduction of aromatic halides in the presence of trialkyl borates. New Journal of Chemistry, 2002, 26, 373-375.	2.8	31
14	Linear and Nonlinear Optical Properties of the Thiophene/Phenylene-Based Oligomer and Polymer. Journal of Physical Chemistry B, 2011, 115, 12687-12693.	2.6	29
15	Laser printing of air-stable high performing organic thin film transistors. Organic Electronics, 2012, 13, 2035-2041.	2.6	28
16	Electroactive Nanorods and Nanorings Designed by Supramolecular Association of π onjugated Oligomers. Chemistry - A European Journal, 2008, 14, 4201-4213.	3.3	26
17	Influence of various parameters on the selectivity of the production of aldehydes starting from alkenes issued from the biomass and using the catalyst precursors Rh2($1\frac{1}{4}$ -sr)2(CO)2(PA3)2. Journal of Molecular Catalysis, 1986, 36, 349-357.	1.2	25
18	A chiral polymer with alternating conjugated segments and (1 R, 2 R)-1,2-diaminocyclohexane as a unit with C 2 symmetry. Tetrahedron Letters, 2001, 42, 3073-3076.	1.4	24

#	Article	IF	Citations
19	Synthesis and characterization of thienylene–phenylene copolymers with oligo(ethylene oxide) side chains. Journal of Materials Chemistry, 2004, 14, 3043-3050.	6.7	24
20	Laser-induced forward transfer of multi-layered structures for OTFT applications. Applied Surface Science, 2015, 336, 11-15.	6.1	24
21	The optoelectronic properties of new dyes based onÂthienopyrazine. Comptes Rendus Chimie, 2017, 20, 461-466.	0.5	22
22	One pot synthesis of fluorescent π-conjugated materials: immobilization of phenylene–ethynylene polyelectrolytes in silica confined ionogels. Journal of Materials Chemistry, 2011, 21, 13588.	6.7	20
23	A thienylene-phenylene copolymer with di(ethylene oxide) side chains and its use in light emitting diodes. Synthetic Metals, 2002, 126, 241-244.	3.9	17
24	Acetylenic spacers in phenylene end-substituted oligothiophene core for highly air-stable organic field-effect transistors. Physical Chemistry Chemical Physics, 2010, 12, 3845.	2.8	17
25	Theoretical Investigations on the Electronic and Optical Properties of Bridged Oligothiophenes. Journal of Physical Chemistry A, 2012, 116, 9730-9738.	2.5	17
26	Generating Long Supramolecular Pathways with a Continuous Density of States by Physically Linking Conjugated Molecules via Their End Groups. Journal of the American Chemical Society, 2013, 135, 5693-5698.	13.7	17
27	Ellipsometric Raman Spectroscopy. Journal of Physical Chemistry C, 2016, 120, 25101-25109.	3.1	17
28	Third-Order Nonlinear Optical Properties in the Excited State of Well-Defined Thiophenea [^] Dimethylsilyl Co-oligomers. Journal of Physical Chemistry B, 1998, 102, 1487-1497.	2.6	16
29	Electrochemical synthesis of bis(2-thienyl) silanes, 2-thienylchlorosilanes, bis[5-(2-bromothienyl)]silanes, and 5-(2-bromothienyl) dimethylchlorosilane, precursors of poly[(silanylene)thiophene]s. Journal of Organometallic Chemistry, 1996, 522, 213-221.	1.8	15
30	Layered organic film growth by substrate temperature tuning for efficiency-enhanced OLEDs. Organic Electronics, 2006, 7, 38-44.	2.6	15
31	Comprehensive Analysis of Fragment Orbital Interactions to Build Highly π onjugated Thienylene‧ubstituted Phenylene Oligomers. Chemistry - A European Journal, 2013, 19, 7532-7546.	3.3	15
32	Supramolecular Ruthenium–Alkynyl Multicomponent Architectures: Engineering, Photophysical Properties, and Responsiveness to Nitroaromatics. Organometallics, 2014, 33, 665-676.	2.3	15
33	L'électrosynthèse à anode consommable : quel apport pour la chimie organique du silicium ?. Journal De Chimie Physique Et De Physico-Chimie Biologique, 1996, 93, 591-600.	0.2	15
34	Synthesis and optical properties of (thienylene)–[1,6-dithienylhexa-1,3,5-trienylene] copolymers. Journal of Materials Chemistry, 2001, 11, 718-722.	6.7	14
35	Electrochemical Stepwise Synthesis of Poly[2,5-(silanylene)thiophene] Precursors. Organometallics, 1998, 17, 2797-2804.	2.3	13
36	New chiral π-conjugated polymers based on a (1R,2R)-diiminocyclohexane chiral unit with weak interchain π stacking. Chemical Communications, 2002, , 3020-3021.	4.1	13

#	Article	IF	Citations
37	Efficient Sensing of Explosives by Using Fluorescent Nonporous Films of Oligophenyleneethynylene Derivatives Thanks to Optimal Structure Orientation and Exciton Migration. Chemistry - A European Journal, 2014, 20, 15069-15076.	3.3	13
38	Electrochemical Synthesis of Functional Aryl- and Heteroarylchlorosilanes. Application to the Preparation of Donorâ^'Acceptor or Donorâ^'Donor Organosilicon Molecules. Organometallics, 2001, 20, 1910-1917.	2.3	12
39	Exchange with temperature of the electronâ€vibrational mode interaction between thienylene–phenylene copolymer rings. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 964-971.	2.1	11
40	A new designed π conjugated molecule for stable single walled carbon nanotube dispersion in aqueous medium. Journal of Colloid and Interface Science, 2016, 464, 117-125.	9.4	11
41	Low loss optical waveguiding in large single crystals of a thiophene-based oligomer. Physical Chemistry Chemical Physics, 2017, 19, 15980-15987.	2.8	11
42	Computational design of quadrupolar donor-acceptor-donor molecules with near-infrared light-harvesting capabilities. Dyes and Pigments, 2018, 149, 882-892.	3.7	11
43	Energy transport and light propagation mechanisms in organic single crystals. Journal of Chemical Physics, 2020, 153, 144202.	3.0	11
44	Alternated Ï€â€conjugated polymers based on a 1,2â€diiminocyclohexane chiral unit for nitroaromatics sensing. Journal of Polymer Science Part A, 2009, 47, 4141-4149.	2.3	10
45	Photomodulation of DNAâ€Templated Supramolecular Assemblies. Chemistry - A European Journal, 2018, 24, 706-714.	3.3	10
46	Correlations between Structure and Far-Infrared Active Modes in Polythiophenes. Journal of Physical Chemistry B, 2008, 112, 12662-12665.	2.6	9
47	Lattice Dynamics of Oligo(phenylenethienylene)s: A Far-Infrared and Inelastic Neutron Scattering Study. Journal of Physical Chemistry B, 2009, 113, 4197-4202.	2.6	9
48	One- and two-photon absorption and emission properties of an oligo(phenylenethienylene)s series. Physical Chemistry Chemical Physics, 2014, 16, 12826.	2.8	9
49	Selective and High-Yield Electrosynthesis of (Silyl and Silanylene 1-Methylpyrroles) from 1-Methylpyrrole Bromides. Synthetic Communications, 1998, 28, 3403-3414.	2.1	8
50	Designing sterically demanding thiolate coated AuNPs for electrical characterization of BPDT in a NP–molecule–nanoelectrode platform. Molecular Systems Design and Engineering, 2017, 2, 133-139.	3.4	8
51	Polymer light-emitting diodes with a phenyleneethynylene derivative as a novel hole blocking layer for efficiency enhancements. Synthetic Metals, 2006, 156, 690-694.	3.9	7
52	New TBT based conducting polymers functionalized with redox-active tetrazines. Journal of Electroanalytical Chemistry, 2019, 840, 60-66.	3.8	7
53	Effect of molecular structure on bias stress effect in organic thin-film transistors. Applied Surface Science, 2011, 257, 9386-9389.	6.1	6
54	Revealing Order and Disorder in Films and Single Crystals of a Thiophene-Based Oligomer by Optical Spectroscopy. ACS Photonics, 2016, 3, 2315-2323.	6.6	6

#	Article	IF	CITATIONS
55	High-yield electrosynthesis of furylchlorosilanes, silyl and silanylene furans. Journal of Organometallic Chemistry, 1998, 570, 147-154.	1.8	5
56	Oxidative polymerisation of silyl monomers. Applications and limits. Synthetic Metals, 1999, 101, 15-16.	3.9	5
57	Absorption and photoluminescence of a new thienylene–phenylene copolymer. Journal of Non-Crystalline Solids, 2006, 352, 3685-3688.	3.1	5
58	Controlling Bandgap Energy and Multivibronic Modes of a Poly(2,5-thiophene-1,4-dialkoxyphenylene) Derivative by Gamma Photons. Journal of Physical Chemistry A, 2011, 115, 8288-8294.	2.5	5
59	Interfacial exciplex formation in bilayers of conjugated polymers. Journal of Chemical Physics, 2013, 139, 164908.	3.0	5
60	Spontaneous assembly of silylethane-thiol derivatives on Au(111): a chemically robust thiol protecting group as the precursor for the direct formation of aromatic gold thiolate monolayers. Chemical Communications, 2015, 51, 7622-7625.	4.1	5
61	Detection of hydrogen peroxide using dioxazaborocanes: elucidation of the sensing mechanism at the molecular level by NMR and XPS measurements. New Journal of Chemistry, 2020, 44, 4114-4121.	2.8	5
62	Competitive Electrochemical Synthesis of 1-Methoxy-3,6-Bis (Trimethylsilyl) Cyclohexa-1,4-diene, a Ketoprofen Precursor. Synthetic Communications, 1993, 23, 1727-1733.	2.1	4
63	Why do chemical sensors for explosives detection lose their fluorescence under UV–visible exposure?. Polymer Degradation and Stability, 2012, 97, 1355-1365.	5 . 8	4
64	Temperature resolved aggregate states in dialkoxyphenylene-thiophene oligomer. Chemical Physics Letters, 2014, 614, 67-71.	2.6	4
65	Elaboration of low-band-gap π-conjugated systems based on thieno[3,4- <i>b</i>) pyrazines. Pure and Applied Chemistry, 2020, 92, 335-353.	1.9	4
66	Study of [Thienylene-dialkoxy phenylene] Conjugated Materials. Macromolecular Symposia, 2005, 229, 194-196.	0.7	3
67	Conjugation Length Distribution in Poly(<i>p</i> phenylenevinylene) (PPV) Films. Journal of Physical Chemistry A, 2016, 120, 9702-9706.	2.5	3
68	Structural and Electronic Properties of New Materials Based on Thiophene and Phenylene. Acta Physico-chimica Sinica, 2008, 24, 37-40.	0.6	2
69	Far-infrared spectroscopy investigation of sulfur–oxygen interactions in π-conjugated oligomers. Chemical Physics Letters, 2012, 535, 116-119.	2.6	2
70	Study of low band gap DSSCs based on bridging bithiophene and biphenyl: theoretical investigation. Journal of the Iranian Chemical Society, 2016, 13, 37-44.	2.2	2
71	Transition metal silicide surface grafting by multiple functional groups and green optimization by mechanochemistry. Physical Chemistry Chemical Physics, 2019, 21, 25720-25727.	2.8	2
72	Analysis of molecular ligand functionalization process in nano-molecular electronic devices containing densely packed nano-particle functionalization shells. Nanotechnology, 2022, 33, 255706.	2.6	2

#	Article	IF	CITATIONS
73	Ageing of thin films used in explosives detection. Procedia Chemistry, 2009, 1, 244-247.	0.7	1