
Joshua S Chappie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5140293/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Crystal structure of the potato leafroll virus coat protein and implications for viral assembly. Journal of Structural Biology, 2022, 214, 107811.	2.8	4
2	Bacteriophage λ RexA and RexB functions assist the transition from lysogeny to lytic growth. Molecular Microbiology, 2021, 116, 1044-1063.	2.5	8
3	AraCâ€ŧype regulators HilC and RtsA are directly controlled by an intestinal fatty acid to regulate <i>Salmonella</i> invasion. Molecular Microbiology, 2021, 116, 1464-1475.	2.5	8
4	The N-terminal domain of Staphylothermus marinus McrB shares structural homology with PUA-like RNA binding proteins. Journal of Structural Biology, 2020, 211, 107572.	2.8	4
5	Structural asymmetry governs the assembly and GTPase activity of McrBC restriction complexes. Nature Communications, 2020, 11, 5907.	12.8	7
6	Diffusible Signal Factors Act through AraC-Type Transcriptional Regulators as Chemical Cues To Repress Virulence of Enteric Pathogens. Infection and Immunity, 2020, 88, .	2.2	24
7	Cyclin N-Terminal Domain-Containing-1 Coordinates Meiotic Crossover Formation with Cell-Cycle Progression in a Cyclin-Independent Manner. Cell Reports, 2020, 32, 107858.	6.4	20
8	The full-length structure of Thermus scotoductus OLD defines the ATP hydrolysis properties and catalytic mechanism of Class 1 OLD family nucleases. Nucleic Acids Research, 2020, 48, 2762-2776.	14.5	17
9	The structure of the <i>Thermococcus gammatolerans</i> McrB N-terminal domain reveals a new mode of substrate recognition and specificity among McrB homologs. Journal of Biological Chemistry, 2020, 295, 743-756.	3.4	13
10	Structural and functional characterization of the dominant negative Pâ€koop lysine mutation in the dynamin superfamily protein Vps1. Protein Science, 2020, 29, 1416-1428.	7.6	6
11	Phylogenetic Analysis and Structural Modeling of SARS-CoV-2 Spike Protein Reveals an Evolutionary Distinct and Proteolytically Sensitive Activation Loop. Journal of Molecular Biology, 2020, 432, 3309-3325.	4.2	406
12	The structure of the Thermococcus gammatolerans McrB N-terminal domain reveals a new mode of substrate recognition and specificity among McrB homologs. Journal of Biological Chemistry, 2020, 295, 743-756.	3.4	7
13	Structural characterization of Class 2 OLD family nucleases supports a two-metal catalysis mechanism for cleavage. Nucleic Acids Research, 2019, 47, 9448-9463.	14.5	36
14	The structural biology of the dynaminâ€related proteins: New insights into a diverse, multitalented family. Traffic, 2019, 20, 717-740.	2.7	31
15	Endopeptidase Regulation as a Novel Function of the Zur-Dependent Zinc Starvation Response. MBio, 2019, 10, .	4.1	31
16	A structural mechanism for phosphorylation-dependent inactivation of the AP2 complex. ELife, 2019, 8, .	6.0	15
17	Structures of the fungal dynamin-related protein Vps1 reveal a unique, open helical architecture. Journal of Cell Biology, 2018, 217, 3608-3624.	5.2	12
18	The crystal structure of the Helicobacter pylori LlaJI.R1 N-terminal domain provides a model for site-specific DNA binding. Journal of Biological Chemistry, 2018, 293, 11758-11771.	3.4	6

JOSHUA S CHAPPIE

#	Article	IF	CITATIONS
19	A Dynamin Mutant Defines a Superconstricted Prefission State. Cell Reports, 2014, 8, 734-742.	6.4	83
20	Building a fission machine – structural insights into dynamin assembly and activation. Journal of Cell Science, 2013, 126, 2773-84.	2.0	63
21	The Amino Acid Linker between the Endonuclease and Helicase Domains of Adeno-Associated Virus Type 5 Rep Plays a Critical Role in DNA-Dependent Oligomerization. Journal of Virology, 2012, 86, 3337-3346.	3.4	15
22	A Pseudoatomic Model of the Dynamin Polymer Identifies a Hydrolysis-Dependent Powerstroke. Cell, 2011, 147, 209-222.	28.9	189
23	G domain dimerization controls dynamin's assembly-stimulated GTPase activity. Nature, 2010, 465, 435-440.	27.8	264
24	Helical Crystallization of Soluble and Membrane Binding Proteins. Methods in Enzymology, 2010, 481, 45-62.	1.0	9
25	An Intramolecular Signaling Element that Modulates Dynamin Function In Vitro and In Vivo. Molecular Biology of the Cell, 2009, 20, 3561-3571.	2.1	76
26	Similarities and Differences between Frozen-Hydrated, Rigor Acto–S1 Complexes of Insect Flight and Chicken Skeletal Muscles. Journal of Molecular Biology, 2008, 381, 519-528.	4.2	7
27	The dynamin middle domain is critical for tetramerization and higher-order self-assembly. EMBO Journal, 2007, 26, 559-566.	7.8	164
28	The Conserved KMN Network Constitutes the Core Microtubule-Binding Site of the Kinetochore. Cell, 2006, 127, 983-997.	28.9	887
29	The Structure of a Eukaryotic Nicotinic Acid Phosphoribosyltransferase Reveals Structural Heterogeneity among Type II PRTases. Structure, 2005, 13, 1385-1396.	3.3	35
30	Electrostatic Tuning of Ion Conductance in Potassium Channels. Biochemistry, 2003, 42, 9263-9268.	2.5	115