
Matthew W Hahn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5139419/publications.pdf Version: 2024-02-01

ΜΑΤΤΗΓΜ Μ/ ΗΛΗΝ

#	Article	IF	CITATIONS
1	Evolution of genes and genomes on the Drosophila phylogeny. Nature, 2007, 450, 203-218.	27.8	1,886
2	Evolutionary and Biomedical Insights from the Rhesus Macaque Genome. Science, 2007, 316, 222-234.	12.6	1,283
3	The Evolution of Transcriptional Regulation in Eukaryotes. Molecular Biology and Evolution, 2003, 20, 1377-1419.	8.9	1,034
4	Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow. Molecular Ecology, 2014, 23, 3133-3157.	3.9	937
5	Sex Determination: Why So Many Ways of Doing It?. PLoS Biology, 2014, 12, e1001899.	5.6	916
6	Estimating Gene Gain and Loss Rates in the Presence of Error in Genome Assembly and Annotation Using CAFE 3. Molecular Biology and Evolution, 2013, 30, 1987-1997.	8.9	650
7	Genomic Islands of Speciation in Anopheles gambiae. PLoS Biology, 2005, 3, e285.	5.6	637
8	Population Genomics: Whole-Genome Analysis of Polymorphism and Divergence in Drosophila simulans. PLoS Biology, 2007, 5, e310.	5.6	583
9	Comparative Genomics of Centrality and Essentiality in Three Eukaryotic Protein-Interaction Networks. Molecular Biology and Evolution, 2005, 22, 803-806.	8.9	582
10	Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures. Nature, 2007, 450, 219-232.	27.8	573
11	Comparative and demographic analysis of orang-utan genomes. Nature, 2011, 469, 529-533.	27.8	541
12	Extensive introgression in a malaria vector species complex revealed by phylogenomics. Science, 2015, 347, 1258524.	12.6	527
13	Highly evolvable malaria vectors: The genomes of 16 <i>Anopheles</i> mosquitoes. Science, 2015, 347, 1258522.	12.6	492
14	How reticulated are species?. BioEssays, 2016, 38, 140-149.	2.5	449
15	Convergent evolution of the genomes of marine mammals. Nature Genetics, 2015, 47, 272-275.	21.4	392
16	Phylogenomics Reveals Three Sources of Adaptive Variation during a Rapid Radiation. PLoS Biology, 2016, 14, e1002379.	5.6	364
17	New Methods to Calculate Concordance Factors for Phylogenomic Datasets. Molecular Biology and Evolution, 2020, 37, 2727-2733.	8.9	354
18	Distinguishing Among Evolutionary Models for the Maintenance of Gene Duplicates. Journal of Heredity, 2009, 100, 605-617.	2.4	350

#	Article	IF	CITATIONS
19	Genomic Variation in Natural Populations of <i>Drosophila melanogaster</i> . Genetics, 2012, 192, 533-598.	2.9	325
20	Gene Family Evolution across 12 Drosophila Genomes. PLoS Genetics, 2007, 3, e197.	3.5	320
21	Gibbon genome and the fast karyotype evolution of small apes. Nature, 2014, 513, 195-201.	27.8	320
22	The Evolution of Mammalian Gene Families. PLoS ONE, 2006, 1, e85.	2.5	285
23	Comparative analysis of the domestic cat genome reveals genetic signatures underlying feline biology and domestication. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17230-17235.	7.1	281
24	Extensive Error in the Number of Genes Inferred from Draft Genome Assemblies. PLoS Computational Biology, 2014, 10, e1003998.	3.2	262
25	Estimating the tempo and mode of gene family evolution from comparative genomic data. Genome Research, 2005, 15, 1153-1160.	5.5	259
26	Detection and Polarization of Introgression in a Five-Taxon Phylogeny. Systematic Biology, 2015, 64, 651-662.	5.6	244
27	The life and death of gene families. BioEssays, 2009, 31, 29-39.	2.5	242
28	CAFE 5 models variation in evolutionary rates among gene families. Bioinformatics, 2021, 36, 5516-5518.	4.1	218
29	Rates and Genomic Consequences of Spontaneous Mutational Events in <i>Drosophila melanogaster</i> . Genetics, 2013, 194, 937-954.	2.9	210
30	Disentangling the Effects of Demography and Selection in Human History. Molecular Biology and Evolution, 2004, 22, 63-73.	8.9	200
31	TOWARD A SELECTION THEORY OF MOLECULAR EVOLUTION. Evolution; International Journal of Organic Evolution, 2008, 62, 255-265.	2.3	194
32	Testing the Ortholog Conjecture with Comparative Functional Genomic Data from Mammals. PLoS Computational Biology, 2011, 7, e1002073.	3.2	185
33	The Neutral Theory in Light of Natural Selection. Molecular Biology and Evolution, 2018, 35, 1366-1371.	8.9	180
34	Irrational exuberance for resolved species trees. Evolution; International Journal of Organic Evolution, 2016, 70, 7-17.	2.3	177
35	Evolutionary superscaffolding and chromosome anchoring to improve Anopheles genome assemblies. BMC Biology, 2020, 18, 1.	3.8	177
36	Adaptive evolution of young gene duplicates in mammals. Genome Research, 2009, 19, 859-867.	5.5	176

#	Article	IF	CITATIONS
37	Regular rates of popular culture change reflect random copying. Evolution and Human Behavior, 2007, 28, 151-158.	2.2	166
38	Ecological Genomics of <i>Anopheles gambiae</i> Along a Latitudinal Cline: A Population-Resequencing Approach. Genetics, 2012, 190, 1417-1432.	2.9	157
39	Ancient and Recent Positive Selection Transformed Opioid cis-Regulation in Humans. PLoS Biology, 2005, 3, e387.	5.6	155
40	Gene Tree Discordance Causes Apparent Substitution Rate Variation. Systematic Biology, 2016, 65, 711-721.	5.6	153
41	Gene content evolution in the arthropods. Genome Biology, 2020, 21, 15.	8.8	150
42	Revisiting classic clines in Drosophila melanogaster in the age of genomics. Trends in Genetics, 2015, 31, 434-444.	6.7	148
43	Accelerated Rate of Gene Gain and Loss in Primates. Genetics, 2007, 177, 1941-1949.	2.9	146
44	Molecular Evolution in Large Genetic Networks: Does Connectivity Equal Constraint?. Journal of Molecular Evolution, 2004, 58, 203-211.	1.8	138
45	Pervasive Multinucleotide Mutational Events in Eukaryotes. Current Biology, 2011, 21, 1051-1054.	3.9	137
46	Bias in phylogenetic tree reconciliation methods: implications for vertebrate genome evolution. Genome Biology, 2007, 8, R141.	9.6	133
47	The g-value paradox. Evolution & Development, 2002, 4, 73-75.	2.0	129
48	Gene copy-number polymorphism in nature. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 3213-3221.	2.6	125
49	Positive Selection on a Human-Specific Transcription Factor Binding Site Regulating IL4 Expression. Current Biology, 2003, 13, 2118-2123.	3.9	124
50	Multinucleotide mutations cause false inferences of lineage-specific positive selection. Nature Ecology and Evolution, 2018, 2, 1280-1288.	7.8	121
51	Genomic islands <i>of</i> speciation or genomic islands <i>and</i> speciation?. Molecular Ecology, 2010, 19, 848-850.	3.9	117
52	Clonal polymorphism and high heterozygosity in the celibate genome of the Amazon molly. Nature Ecology and Evolution, 2018, 2, 669-679.	7.8	117
53	The comparative genomics and complex population history of <i>Papio</i> baboons. Science Advances, 2019, 5, eaau6947.	10.3	115
54	The genome of the vervet (<i>Chlorocebus aethiops sabaeus</i>). Genome Research, 2015, 25, 1921-1933.	5.5	114

#	Article	IF	CITATIONS
55	Why Concatenation Fails Near the Anomaly Zone. Systematic Biology, 2018, 67, 158-169.	5.6	109
56	Determining the Null Model for Detecting Adaptive Convergence from Genomic Data: A Case Study using Echolocating Mammals. Molecular Biology and Evolution, 2015, 32, 1232-1236.	8.9	102
57	Soft Shoulders Ahead: Spurious Signatures of Soft and Partial Selective Sweeps Result from Linked Hard Sweeps. Genetics, 2015, 200, 267-284.	2.9	98
58	Reticulate evolutionary history and extensive introgression in mosquito species revealed by phylogenetic network analysis. Molecular Ecology, 2016, 25, 2361-2372.	3.9	98
59	Reproductive Longevity Predicts Mutation Rates in Primates. Current Biology, 2018, 28, 3193-3197.e5.	3.9	94
60	Radical remodeling of the Y chromosome in a recent radiation of malaria mosquitoes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2114-23.	7.1	92
61	MORE ACCURATE PHYLOGENIES INFERRED FROM LOW-RECOMBINATION REGIONS IN THE PRESENCE OF INCOMPLETE LINEAGE SORTING. Evolution; International Journal of Organic Evolution, 2013, 67, 2376-2384.	2.3	90
62	Gene Copy-Number Polymorphism Caused by Retrotransposition in Humans. PLoS Genetics, 2013, 9, e1003242.	3.5	88
63	Speciation as a sieve for ancestral polymorphism. Molecular Ecology, 2017, 26, 5362-5368.	3.9	88
64	A Complex Suite of Forces Drives Gene Traffic from Drosophila X Chromosomes. Genome Biology and Evolution, 2009, 1, 176-188.	2.5	87
65	The Effects of Selection Against Spurious Transcription Factor Binding Sites. Molecular Biology and Evolution, 2003, 20, 901-906.	8.9	85
66	Sooty mangabey genome sequence provides insight into AIDS resistance in a natural SIV host. Nature, 2018, 553, 77-81.	27.8	81
67	Phylogenomic approaches to detecting and characterizing introgression. Genetics, 2022, 220, .	2.9	79
68	Powerful methods for detecting introgressed regions from population genomic data. Molecular Ecology, 2016, 25, 2387-2397.	3.9	78
69	Positive Selection on MMP3 Regulation Has Shaped Heart Disease Risk. Current Biology, 2004, 14, 1531-1539.	3.9	76
70	Localization of Candidate Regions Maintaining a Common Polymorphic Inversion (2La) in Anopheles gambiae. PLoS Genetics, 2007, 3, e217.	3.5	75
71	Gene-Tree Reconciliation with MUL-Trees to Resolve Polyploidy Events. Systematic Biology, 2017, 66, 1007-1018.	5.6	73
72	Primate phylogenomics uncovers multiple rapid radiations and ancient interspecific introgression. PLoS Biology, 2020, 18, e3000954.	5.6	73

#	Article	IF	CITATIONS
73	Coding Sequence Divergence Between Two Closely Related Plant Species: Arabidopsis thaliana and Brassica rapa ssp. pekinensis. Journal of Molecular Evolution, 2002, 54, 746-753.	1.8	69
74	Very Few RNA and DNA Sequence Differences in the Human Transcriptome. PLoS ONE, 2011, 6, e25842.	2.5	69
75	Distinguishing Between Selection and Population Expansion in an Experimental Lineage of Bacteriophage T7. Genetics, 2002, 161, 11-20.	2.9	65
76	Locus- and Population-Specific Selection and Differentiation between Incipient Species of Anopheles gambiae. Molecular Biology and Evolution, 2007, 24, 2132-2138.	8.9	60
77	No Excess Gene Movement Is Detected off the Avian or Lepidopteran Z Chromosome. Genome Biology and Evolution, 2011, 3, 1381-1390.	2.5	60
78	Dissecting the basis of novel trait evolution in a radiation with widespread phylogenetic discordance. Molecular Ecology, 2018, 27, 3301-3316.	3.9	59
79	Female-biased gene expression in the malaria mosquito Anopheles gambiae. Current Biology, 2005, 15, R192-R193.	3.9	58
80	Genome-wide analysis of retrogene polymorphisms in <i>Drosophila melanogaster</i> . Genome Research, 2011, 21, 2087-2095.	5.5	58
81	Gene Tree Discordance Can Generate Patterns of Diminishing Convergence over Time. Molecular Biology and Evolution, 2016, 33, 3299-3307.	8.9	58
82	Genus-Wide Characterization of Bumblebee Genomes Provides Insights into Their Evolution and Variation in Ecological and Behavioral Traits. Molecular Biology and Evolution, 2021, 38, 486-501.	8.9	58
83	Similar Efficacies of Selection Shape Mitochondrial and Nuclear Genes in Both <i>Drosophila melanogaster</i> and <i>Homo sapiens</i> . G3: Genes, Genomes, Genetics, 2015, 5, 2165-2176.	1.8	54
84	Genome-Wide Estimates of Transposable Element Insertion and Deletion Rates in Drosophila Melanogaster. Genome Biology and Evolution, 2017, 9, 1329-1340.	2.5	54
85	Retrogenes Reveal the Direction of Sex-Chromosome Evolution in Mosquitoes. Genetics, 2010, 186, 763-766.	2.9	53
86	New Approaches for Inferring Phylogenies in the Presence of Paralogs. Trends in Genetics, 2021, 37, 174-187.	6.7	53
87	AGOUTI: improving genome assembly and annotation using transcriptome data. GigaScience, 2016, 5, 31.	6.4	52
88	A Three-Sample Test for Introgression. Molecular Biology and Evolution, 2019, 36, 2878-2882.	8.9	52
89	Sex Chromosomes Evolved from Independent Ancestral Linkage Groups in Winged Insects. Molecular Biology and Evolution, 2012, 29, 1645-1653.	8.9	51
90	Association mapping desiccation resistance within chromosomal inversions in the African malaria vector <i>Anopheles gambiae</i> . Molecular Ecology, 2019, 28, 1333-1342.	3.9	51

#	Article	IF	CITATIONS
91	The Evolution of the <i>Anopheles</i> 16 Genomes Project. G3: Genes, Genomes, Genetics, 2013, 3, 1191-1194.	1.8	49
92	Quantifying the risk of hemiplasy in phylogenetic inference. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12787-12792.	7.1	49
93	Paternal age in rhesus macaques is positively associated with germline mutation accumulation but not with measures of offspring sociability. Genome Research, 2020, 30, 826-834.	5.5	48
94	Systems genetic analysis of inversion polymorphisms in the malaria mosquito <i>Anopheles gambiae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7005-E7014.	7.1	47
95	The ortholog conjecture revisited: the value of orthologs and paralogs in function prediction. Bioinformatics, 2020, 36, i219-i226.	4.1	47
96	Population Genetic and Phylogenetic Evidence for Positive Selection on Regulatory Mutations at the Factor VII Locus in HumansSequence data from this article have been deposited with the EMBL/GenBank Data Libraries under accession nos. AY493422, AY493423, AY493424, AY493425, AY493426, AY493427, AY493428, AY493428, AY493429, AY493429, AY493428, AY493431, AY493432, AY493433. Genetics, 2004, 167, 867-877.	2.9	46
97	Differential gene expression in incipient species of <i>Anopheles gambiae</i> . Molecular Ecology, 2008, 17, 2491-2504.	3.9	46
98	Detecting natural selection on cis-regulatory DNA. Genetica, 2006, 129, 7-18.	1.1	45
99	A multispecies coalescent model for quantitative traits. ELife, 2018, 7, .	6.0	44
100	Minimal Effect of Ectopic Gene Conversion Among Recent Duplicates in Four Mammalian Genomes. Genetics, 2009, 182, 615-622.	2.9	43
101	The Limited Contribution of Reciprocal Gene Loss to Increased Speciation Rates Following Whole-Genome Duplication. American Naturalist, 2015, 185, 70-86.	2.1	40
102	The Timing and Direction of Introgression Under the Multispecies Network Coalescent. Genetics, 2019, 211, 1059-1073.	2.9	38
103	The Mutationathon highlights the importance of reaching standardization in estimates of pedigree-based germline mutation rates. ELife, 2022, 11, .	6.0	38
104	Divergent transcriptional response to thermal stress by <i>Anopheles gambiae</i> larvae carrying alternative arrangements of inversion 2La. Molecular Ecology, 2011, 20, 2567-2580.	3.9	37
105	Parallel Evolution of Copy-Number Variation across Continents in <i>Drosophila melanogaster</i> . Molecular Biology and Evolution, 2016, 33, 1308-1316.	8.9	37
106	Sequencing, Assembling, and Correcting Draft Genomes Using Recombinant Populations. G3: Genes, Genomes, Genetics, 2014, 4, 669-679.	1.8	36
107	Gene Conversion Among Paralogs Results in Moderate False Detection of Positive Selection Using Likelihood Methods. Journal of Molecular Evolution, 2009, 68, 679-687.	1.8	34
108	No evidence for biased co-transmission of speciation islands in Anopheles gambiae. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 374-384.	4.0	34

#	Article	IF	CITATIONS
109	Molecular mechanisms of postmating prezygotic reproductive isolation uncovered by transcriptome analysis. Molecular Ecology, 2016, 25, 2592-2608.	3.9	33
110	The perils of intralocus recombination for inferences of molecular convergence. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180244.	4.0	33
111	Genome-wide patterns of regulatory divergence revealed by introgression lines. Evolution; International Journal of Organic Evolution, 2016, 70, 696-706.	2.3	32
112	The Human Mutation Rate Is Increasing, Even As It Slows. Molecular Biology and Evolution, 2014, 31, 253-257.	8.9	31
113	Interlocus gene conversion events introduce deleterious mutations into at least 1% of human genes associated with inherited disease. Genome Research, 2012, 22, 429-435.	5.5	30
114	Nonallelic Gene Conversion in the Genus Drosophila. Genetics, 2010, 185, 95-103.	2.9	29
115	Three new genome assemblies support a rapid radiation in Musa acuminata (wild banana). Genome Biology and Evolution, 2018, 10, 3129-3140.	2.5	29
116	Radiation with reticulation marks the origin of a major malaria vector. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31583-31590.	7.1	29
117	Gene expression divergence between malaria vector sibling species <i>Anopheles gambiae</i> and <i>An.Âcoluzzii</i> from rural and urban Yaoundé Cameroon. Molecular Ecology, 2014, 23, 2242-2259.	3.9	28
118	Lower Linkage Disequilibrium at CNVs is due to Both Recurrent Mutation and Transposing Duplications. Molecular Biology and Evolution, 2010, 27, 103-111.	8.9	26
119	Species Tree Inference Methods Intended to Deal with Incomplete Lineage Sorting Are Robust to the Presence of Paralogs. Systematic Biology, 2022, 71, 367-381.	5.6	26
120	Accurate Inference and Estimation in Population Genomics. Molecular Biology and Evolution, 2006, 23, 911-918.	8.9	25
121	Very Low Rate of Gene Conversion in the Yeast Genome. Molecular Biology and Evolution, 2012, 29, 3817-3826.	8.9	25
122	Genomic evidence of gene flow during reinforcement in Texas <i>Phlox</i> . Molecular Ecology, 2017, 26, 2317-2330.	3.9	25
123	Determining the probability of hemiplasy in the presence of incomplete lineage sorting and introgression. ELife, 2020, 9, .	6.0	25
124	De novo Mutations in Domestic Cat are Consistent with an Effect of Reproductive Longevity on Both the Rate and Spectrum of Mutations. Molecular Biology and Evolution, 2022, 39, .	8.9	22
125	Inferring the History of Interchromosomal Gene Transposition in <i>Drosophila</i> Using <i>n</i> -Dimensional Parsimony. Genetics, 2012, 190, 813-825.	2.9	21
126	Noncoding Sequences Near Duplicated Genes Evolve Rapidly. Genome Biology and Evolution, 2010, 2, 518-533.	2.5	20

#	Article	IF	CITATIONS
127	The effects of increasing the number of taxa on inferences of molecular convergence. Genome Biology and Evolution, 2017, 9, evw306.	2.5	20
128	Codon bias and selection on single genomes. Nature, 2005, 433, E5-E6.	27.8	18
129	Evaluating methods to visualize patterns of genetic differentiation on a landscape. Molecular Ecology Resources, 2018, 18, 448-460.	4.8	17
130	Referee: Reference Assembly Quality Scores. Genome Biology and Evolution, 2019, 11, 1483-1486.	2.5	14
131	Does a complex life cycle affect adaptation to environmental change? Genome-informed insights for characterizing selection across complex life cycle. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20212122.	2.6	14
132	Patterns of transposable element variation and clinality in Drosophila. Molecular Ecology, 2019, 28, 1523-1536.	3.9	13
133	All Human-Specific Gene Losses Are Present in the Genome as Pseudogenes. Journal of Computational Biology, 2009, 16, 1419-1427.	1.6	12
134	Origins and Long-Term Patterns of Copy-Number Variation in Rhesus Macaques. Molecular Biology and Evolution, 2021, 38, 1460-1471.	8.9	11
135	Abundant genetic variation in transcript level during early <i>Drosophila</i> development. Evolution & Development, 2008, 10, 683-689.	2.0	10
136	Speciation genes are more likely to have discordant gene trees. Evolution Letters, 2018, 2, 281-296.	3.3	10
137	The Frequency and Topology of Pseudoorthologs. Systematic Biology, 2022, 71, 649-659.	5.6	10
138	The strength of transcription-factor binding modulates co-variation in transcriptional networks. Trends in Genetics, 2010, 26, 51-53.	6.7	9
139	The effects of introgression across thousands of quantitative traits revealed by gene expression in wild tomatoes. PLoS Genetics, 2021, 17, e1009892.	3.5	9
140	Transcriptomic analysis links gene expression to unilateral pollen-pistil reproductive barriers. BMC Plant Biology, 2017, 17, 81.	3.6	8
141	Distinct error rates for reference and nonreference genotypes estimated by pedigree analysis. Genetics, 2021, 217, 1-10.	2.9	8
142	The Potential for a Released Autosomal X-Shredder Becoming a Driving-Y Chromosome and Invasively Suppressing Wild Populations of Malaria Mosquitoes. Frontiers in Bioengineering and Biotechnology, 2021, 9, 752253.	4.1	8
143	A new class of metrics for learning on real-valued and structured data. Data Mining and Knowledge Discovery, 2019, 33, 995-1016.	3.7	7
144	Using all Gene Families Vastly Expands Data Available for Phylogenomic Inference. Molecular Biology and Evolution, 2022, 39, .	8.9	7

#	Article	IF	CITATIONS
145	DETECTING HIGHLY DIFFERENTIATED COPY-NUMBER VARIANTS FROM POOLED POPULATION SEQUENCING. , 2012, , .		6
146	IDENTIFYING PARENT-DAUGHTER RELATIONSHIPS AMONG DUPLICATED GENES. , 2008, , .		5
147	Spread of selfâ€compatibility constrained by an intrapopulation crossing barrier. New Phytologist, 2021, 231, 878-891.	7.3	4
148	Proteomic Evidence for In-Frame and Out-of-Frame Alternatively Spliced Isoforms in Human and Mouse. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2018, 15, 1284-1289.	3.0	3
149	The sequencing and interpretation of the genome obtained from a Serbian individual. PLoS ONE, 2018, 13, e0208901.	2.5	3
150	Inferring the Genetic Basis of Sex Determination from the Genome of a Dioecious Nightshade. Molecular Biology and Evolution, 2021, 38, 2946-2957.	8.9	2
151	Localization of Candidate Regions Maintaining a Common Polymorphic Inversion (2La) in Anopheles gambiae. PLoS Genetics, 2005, preprint, e217.	3.5	1
152	Primate phylogenomics uncovers multiple rapid radiations and ancient interspecific introgression. , 2020, 18, e3000954.		0
153	Primate phylogenomics uncovers multiple rapid radiations and ancient interspecific introgression. , 2020, 18, e3000954.		0
154	Primate phylogenomics uncovers multiple rapid radiations and ancient interspecific introgression. , 2020, 18, e3000954.		0
155	Primate phylogenomics uncovers multiple rapid radiations and ancient interspecific introgression. , 2020, 18, e3000954.		0
156	Primate phylogenomics uncovers multiple rapid radiations and ancient interspecific introgression. , 2020, 18, e3000954.		0
157	Primate phylogenomics uncovers multiple rapid radiations and ancient interspecific introgression. , 2020, 18, e3000954.		0