Janette W Boughman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5139358/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The ecological stage maintains preference differentiation and promotes speciation. Ecology Letters, 2022, 25, 926-938.	6.4	4
2	Sensory environment affects Icelandic threespine stickleback's anti-predator escape behaviour. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20220044.	2.6	2
3	The virus evolves: four public health priorities for reducing the evolutionary potential of SARS-CoV-2. BioScience, 2021, 71, 319-319.	4.9	1
4	Variation in the Sensory Space of Three-spined Stickleback Populations. Integrative and Comparative Biology, 2021, 61, 50-61.	2.0	1
5	Does humic acid alter visually and chemically guided foraging in stickleback fish?. Animal Cognition, 2020, 23, 101-108.	1.8	6
6	Advancing breeding in stickleback (<scp><i>Gasterosteus aculeatus</i></scp>) to produce two reproductive cycles per year. Journal of Fish Biology, 2020, 97, 1576-1581.	1.6	1
7	The ecological stage changes benefits of mate choice and drives preference divergence. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190546.	4.0	6
8	A way forward with eco evo devo: an extended theory of resource polymorphism with postglacial fishes as model systems. Biological Reviews, 2019, 94, 1786-1808.	10.4	88
9	Veiled preferences and cryptic female choice could underlie the origin of novel sexual traits. Biology Letters, 2019, 15, 20180878.	2.3	13
10	When does male competition foster speciation?: a comment on Tinghitella et al Behavioral Ecology, 2018, 29, 801-802.	2.2	1
11	The evolution of sexual imprinting through reinforcement*. Evolution; International Journal of Organic Evolution, 2018, 72, 1336-1349.	2.3	14
12	Brain differences in ecologically differentiated sticklebacks. Environmental Epigenetics, 2018, 64, 243-250.	1.8	12
13	The Role of Sexual Selection in Local Adaptation and Speciation. Annual Review of Ecology, Evolution, and Systematics, 2017, 48, 85-109.	8.3	175
14	Evolution of reproductive isolation in stickleback fish. Evolution; International Journal of Organic Evolution, 2017, 71, 357-372.	2.3	71
15	Synergistic selection between ecological niche and mate preference primes diversification. Evolution; International Journal of Organic Evolution, 2017, 71, 6-22.	2.3	15
16	No evidence for adjustment of maternal investment under alternative mate availability regimes. Journal of Fish Biology, 2016, 88, 508-522.	1.6	2
17	Male competition fitness landscapes predict both forward and reverse speciation. Ecology Letters, 2016, 19, 71-80.	6.4	37
18	Characterization and Evolution of the Spotted Gar Retina. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2016, 326, 403-421.	1.3	19

JANETTE W BOUGHMAN

#	Article	IF	CITATIONS
19	Females sample more males at high nesting densities, but ultimately obtain less attractive mates. BMC Evolutionary Biology, 2015, 15, 200.	3.2	7
20	Predator experience overrides learned aversion to heterospecifics in stickleback species pairs. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20143066.	2.6	8
21	Genomics and the origin of species. Nature Reviews Genetics, 2014, 15, 176-192.	16.3	850
22	Female discrimination against heterospecific mates does not depend on mating habitat. Behavioral Ecology, 2014, 25, 1256-1267.	2.2	8
23	Divergent sexual selection via male competition: ecology is key. Journal of Evolutionary Biology, 2013, 26, 1611-1624.	1.7	38
24	Hybridization and speciation. Journal of Evolutionary Biology, 2013, 26, 229-246.	1.7	1,735
25	The impact of learned mating traits on speciation is not yet clear: response to Kawecki. Trends in Ecology and Evolution, 2013, 28, 69-70.	8.7	4
26	Sequential mate choice and sexual isolation in threespine stickleback species. Journal of Evolutionary Biology, 2013, 26, 130-140.	1.7	21
27	Diversification under sexual selection: the relative roles of mate preference strength and the degree of divergence in mate preferences. Ecology Letters, 2013, 16, 964-974.	6.4	81
28	Ecological speciation: Selection and the origin of species. Environmental Epigenetics, 2013, 59, 1-7.	1.8	2
29	Loss of sexual isolation in a hybridizing stickleback species pair. Environmental Epigenetics, 2013, 59, 591-603.	1.8	16
30	Flexible mate choice when mates are rare and time is short. Ecology and Evolution, 2013, 3, 2820-2831.	1.9	45
31	Female mate preferences for male body size and shape promote sexual isolation in threespine sticklebacks. Ecology and Evolution, 2013, 3, 2183-2196.	1.9	43
32	VI.5. Speciation and Sexual Selection. , 2013, , 520-528.		0
33	The impact of learning on sexual selection and speciation. Trends in Ecology and Evolution, 2012, 27, 511-519.	8.7	307
34	Admixture mapping of male nuptial colour and body shape in a recently formed hybrid population of threespine stickleback. Molecular Ecology, 2012, 21, 5265-5279.	3.9	65
35	Plastic responses to parents and predators lead to divergent shoaling behaviour in sticklebacks. Journal of Evolutionary Biology, 2012, 25, 759-769.	1.7	19
36	Sexual imprinting on ecologically divergent traits leads to sexual isolation in sticklebacks. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 2604-2610.	2.6	91

JANETTE W BOUGHMAN

#	Article	IF	CITATIONS
37	Breakdown in Postmating Isolation and the Collapse of a Species Pair through Hybridization. American Naturalist, 2010, 175, 11-26.	2.1	93
38	Learned conspecific mate preference in a species pair of sticklebacks. Behavioral Ecology, 2009, 20, 1282-1288.	2.2	67
39	Body size differences do not arise from divergent mate preferences in a species pair of threespine stickleback. Biology Letters, 2009, 5, 517-520.	2.3	15
40	Sympatric species of threespine stickleback differ in their performance in a spatial learning task. Behavioral Ecology and Sociobiology, 2008, 62, 1935-1945.	1.4	72
41	Experience influences shoal member preference in a species pair of sticklebacks. Behavioral Ecology, 2008, 19, 667-676.	2.2	19
42	Sticklebacks and Humans Walk Hand in Fin to Lighter Skin. Cell, 2007, 131, 1041-1043.	28.9	3
43	Condition-dependent expression of red colour differs between stickleback species. Journal of Evolutionary Biology, 2007, 20, 1577-1590.	1.7	65
44	Selection on social traits in greater spear-nosed bats, Phyllostomus hastatus. Behavioral Ecology and Sociobiology, 2006, 60, 766-777.	1.4	10
45	Olfactory mate recognition in a sympatric species pair of three-spined sticklebacks. Behavioral Ecology, 2006, 17, 965-970.	2.2	84
46	Speciation in reverse: morphological and genetic evidence of the collapse of a three-spined stickleback (Gasterosteus aculeatus) species pair. Molecular Ecology, 2005, 15, 343-355.	3.9	438
47	Auditory sensitivity and frequency selectivity in greater spear-nosed bats suggest specializations for acoustic communication. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2004, 190, 185-192.	1.6	25
48	Sticklebacks. Current Biology, 2003, 13, R942-R943.	3.9	4
49	How sensory drive can promote speciation. Trends in Ecology and Evolution, 2002, 17, 571-577.	8.7	474
50	Divergent sexual selection enhances reproductive isolation in sticklebacks. Nature, 2001, 411, 944-948.	27.8	640
51	Natural Selection and Parallel Speciation in Sympatric Sticklebacks. Science, 2000, 287, 306-308.	12.6	647
52	Social calls coordinate foraging in greater spear-nosed bats. Animal Behaviour, 1998, 55, 337-350.	1.9	238
53	Greater spear-nosed bats discriminate group mates by vocalizations. Animal Behaviour, 1998, 55, 1717-1732.	1.9	194
54	Greater spear-nosed bats give group-distinctive calls. Behavioral Ecology and Sociobiology, 1997, 40, 61-70.	1.4	119

#	Article	IF	CITATIONS
55	Effects of genetics and light environment on colour expression in threespine sticklebacks. Biological Journal of the Linnean Society, 0, 94, 663-673.	1.6	51