
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/513832/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanisms of reinforcement of PVA-Based nanocomposites by hBN nanosheets. Composites Science and Technology, 2022, 218, 109131.	7.8	10
2	Silane-functionalized graphene nanoplatelets for silicone rubber nanocomposites. Journal of Materials Science, 2022, 57, 2683-2696.	3.7	11
3	Deformation of and Interfacial Stress Transfer in Ti ₃ C ₂ MXene–Polymer Composites. ACS Applied Materials & Interfaces, 2022, 14, 10681-10690.	8.0	19
4	Graphene Nanoplatelets as a Replacement for Carbon Black in Rubber Compounds. Polymers, 2022, 14, 1204.	4.5	10
5	Controlling and Monitoring Crack Propagation in Monolayer Graphene Single Crystals. Advanced Functional Materials, 2022, 32, .	14.9	4
6	High-performance fluoroelastomer-graphene nanocomposites for advanced sealing applications. Composites Science and Technology, 2021, 202, 108592.	7.8	18
7	Deformation and tearing of graphene-reinforced elastomer nanocomposites. Composites Communications, 2021, 25, 100764.	6.3	5
8	Interlayer and interfacial stress transfer in hBN nanosheets. 2D Materials, 2021, 8, 035058.	4.4	13
9	MoS2 Nanosheet-Coated Carbon Fibers as Strain Sensors in Epoxy Composites. ACS Applied Nano Materials, 2021, 4, 9181-9189.	5.0	3
10	Fundamental Insights into Graphene Strain Sensing. Nano Letters, 2021, 21, 833-839.	9.1	13
11	Suspended graphene arrays for gas sensing applications. 2D Materials, 2021, 8, 025006.	4.4	15
12	Spinning conditions affect structure and properties of Nephila spider silk. MRS Bulletin, 2021, 46, 915-924.	3.5	10
13	Graphene and related materials in hierarchical fiber composites: Production techniques and key industrial benefits. Composites Science and Technology, 2020, 185, 107848.	7.8	36
14	PMMA-grafted graphene nanoplatelets to reinforce the mechanical and thermal properties of PMMA composites. Carbon, 2020, 157, 750-760.	10.3	56
15	Mechanisms of mechanical reinforcement by graphene and carbon nanotubes in polymer nanocomposites. Nanoscale, 2020, 12, 2228-2267.	5.6	222
16	Reinforcement of Polymer-Based Nanocomposites by Thermally Conductive and Electrically Insulating Boron Nitride Nanotubes. ACS Applied Nano Materials, 2020, 3, 364-374.	5.0	18
17	Multifunctional Biocomposites Based on Polyhydroxyalkanoate and Graphene/Carbon Nanofiber Hybrids for Electrical and Thermal Applications. ACS Applied Polymer Materials, 2020, 2, 3525-3534.	4.4	44
18	Graphene–Polyurethane Coatings for Deformable Conductors and Electromagnetic Interference Shielding. Advanced Electronic Materials, 2020, 6, 2000429.	5.1	25

#	Article	IF	CITATIONS
19	Self-assembly of a layered two-dimensional molecularly woven fabric. Nature, 2020, 588, 429-435.	27.8	74
20	Mechanisms of Liquid-Phase Exfoliation for the Production of Graphene. ACS Nano, 2020, 14, 10976-10985.	14.6	157
21	Electronic devices based on solution-processed two-dimensional materials. , 2020, , 351-384.		6
22	Anisotropic swelling of elastomers filled with aligned 2D materials. 2D Materials, 2020, 7, 025031.	4.4	8
23	Realising biaxial reinforcement <i>via</i> orientation-induced anisotropic swelling in graphene-based elastomers. Nanoscale, 2020, 12, 3377-3386.	5.6	7
24	Strain engineering in monolayer WS ₂ and WS ₂ nanocomposites. 2D Materials, 2020, 7, 045022.	4.4	40
25	Graphene-Based Materials as Strain Sensors in Glass Fiber/Epoxy Model Composites. ACS Applied Materials & Interfaces, 2019, 11, 31338-31345.	8.0	14
26	The strength of mechanically-exfoliated monolayer graphene deformed on a rigid polymer substrate. Nanoscale, 2019, 11, 14339-14353.	5.6	18
27	Interfacial stress transfer in strain engineered wrinkled and folded graphene. 2D Materials, 2019, 6, 045026.	4.4	32
28	Graphene/Polyelectrolyte Layer-by-Layer Coatings for Electromagnetic Interference Shielding. ACS Applied Nano Materials, 2019, 2, 5272-5281.	5.0	40
29	A Simple Method for Anchoring Silver and Copper Nanoparticles on Single Wall Carbon Nanotubes. Nanomaterials, 2019, 9, 1416.	4.1	10
30	Modelling mechanical percolation in graphene-reinforced elastomer nanocomposites. Composites Part B: Engineering, 2019, 178, 107506.	12.0	27
31	Surface functionality analysis by Boehm titration of graphene nanoplatelets functionalized <i>via</i> a solvent-free cycloaddition reaction. Nanoscale Advances, 2019, 1, 1432-1441.	4.6	30
32	Hybrid hollow spheres of carbon@Co _x Ni _{1â^'x} MoO ₄ as advanced electrodes for high-performance asymmetric supercapacitors. Nanoscale, 2019, 11, 3281-3291.	5.6	79
33	Copper/graphene composites: a review. Journal of Materials Science, 2019, 54, 12236-12289.	3.7	193
34	Negative Gauge Factor Piezoresistive Composites Based on Polymers Filled with MoS ₂ Nanosheets. ACS Nano, 2019, 13, 6845-6855.	14.6	52
35	Hybrid poly(ether ether ketone) composites reinforced with a combination of carbon fibres and graphene nanoplatelets. Composites Science and Technology, 2019, 175, 60-68.	7.8	52
36	Chitin-derived porous carbon loaded with Co, N and S with enhanced performance towards electrocatalytic oxygen reduction, oxygen evolution, and hydrogen evolution reactions. Electrochimica Acta, 2019, 304, 350-359.	5.2	22

#	Article	IF	CITATIONS
37	Benchmarking of graphene-based materials: real commercial products versus ideal graphene. 2D Materials, 2019, 6, 025006.	4.4	68
38	The taxonomy of graphite nanoplatelets and the influence of nanocomposite processing. Carbon, 2019, 142, 99-106.	10.3	16
39	Micromechanics of reinforcement of a graphene-based thermoplastic elastomer nanocomposite. Composites Part A: Applied Science and Manufacturing, 2018, 110, 84-92.	7.6	53
40	Investigating nanostructures in carbon fibres using Raman spectroscopy. Carbon, 2018, 130, 178-184.	10.3	91
41	Enhanced thermal and fire retardancy properties of polypropylene reinforced with a hybrid graphene/glass-fibre filler. Composites Science and Technology, 2018, 156, 95-102.	7.8	59
42	Electrical percolation in graphene–polymer composites. 2D Materials, 2018, 5, 032003.	4.4	266
43	The mechanics of reinforcement of polymers by graphene nanoplatelets. Composites Science and Technology, 2018, 154, 110-116.	7.8	221
44	Long-range oriented graphene-like nanosheets with corrugated structure. Chemical Communications, 2018, 54, 13543-13546.	4.1	3
45	The chemical functionalization of graphene nanoplatelets through solvent-free reaction. RSC Advances, 2018, 8, 33564-33573.	3.6	15
46	Composites with carbon nanotubes and graphene: An outlook. Science, 2018, 362, 547-553.	12.6	662
47	Realizing the theoretical stiffness of graphene in composites through confinement between carbon fibers. Composites Part A: Applied Science and Manufacturing, 2018, 113, 311-317.	7.6	22
48	The Effect of Network Formation on the Mechanical Properties of 1D:2D Nano:Nano Composites. Chemistry of Materials, 2018, 30, 5245-5255.	6.7	33
49	Water Dispersible Few-Layer Graphene Stabilized by a Novel Pyrene Derivative at Micromolar Concentration. Nanomaterials, 2018, 8, 675.	4.1	9
50	Nanocomposites of graphene nanoplatelets in natural rubber: microstructure and mechanisms of reinforcement. Journal of Materials Science, 2017, 52, 9558-9572.	3.7	41
51	Strain-induced phonon shifts in tungsten disulfide nanoplatelets and nanotubes. 2D Materials, 2017, 4, 015007.	4.4	85
52	Two-Step Electrochemical Intercalation and Oxidation of Graphite for the Mass Production of Graphene Oxide. Journal of the American Chemical Society, 2017, 139, 17446-17456.	13.7	211
53	Mechanical properties of graphene and graphene-based nanocomposites. Progress in Materials Science, 2017, 90, 75-127.	32.8	1,682
54	Microstructure and mechanical behaviour of aluminium matrix composites reinforced with graphene oxide and carbon nanotubes. Journal of Materials Science, 2017, 52, 13466-13477.	3.7	48

#	Article	IF	CITATIONS
55	The mechanisms of reinforcement of polypropylene by graphene nanoplatelets. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2017, 216, 2-9.	3.5	81
56	Deformation Mechanisms of Carbon Fibres and Carbon Fibre Composites. , 2017, , 341-357.		0
57	Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites. Science, 2016, 354, 1257-1260.	12.6	676
58	Mechanical Stability of Flexible Graphene-Based Displays. ACS Applied Materials & Interfaces, 2016, 8, 22605-22614.	8.0	56
59	Hybrid multifunctional graphene/glass-fibre polypropylene composites. Composites Science and Technology, 2016, 137, 44-51.	7.8	93
60	The role of interlayer adhesion in graphene oxide upon its reinforcement of nanocomposites. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150283.	3.4	23
61	Tensile failure phenomena in carbon fibres. Carbon, 2016, 107, 474-481.	10.3	36
62	Effect of the <scp>C/O</scp> ratio in graphene oxide materials on the reinforcement of epoxyâ€based nanocomposites. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 281-291.	2.1	47
63	Effect of the orientation of graphene-based nanoplatelets upon the Young's modulus of nanocomposites. Composites Science and Technology, 2016, 123, 125-133.	7.8	137
64	Carbon Nanotubes and Nanotube-Based Composites: Deformation Micromechanics. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2016, , 51-74.	0.6	0
65	The microstructure of a graphene-reinforced tennis racquet. Journal of Materials Science, 2016, 51, 3861-3867.	3.7	24
66	Carbon Fibre Composites: Deformation Micromechanics Analysed using Raman Spectroscopy. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2016, , 29-50.	0.6	1
67	Interfacial and internal stress transfer in carbon nanotube based nanocomposites. Journal of Materials Science, 2016, 51, 344-352.	3.7	28
68	Electrochemical exfoliation of graphite in quaternary ammonium-based deep eutectic solvents: a route for the mass production of graphane. Nanoscale, 2015, 7, 11386-11392.	5.6	52
69	The effect of flake diameter on the reinforcement of few-layer graphene–PMMA composites. Composites Science and Technology, 2015, 111, 17-22.	7.8	58
70	Deformation of Wrinkled Graphene. ACS Nano, 2015, 9, 3917-3925.	14.6	143
71	Quantitative determination of the spatial orientation of graphene by polarized Raman spectroscopy. Carbon, 2015, 88, 215-224.	10.3	80
72	Graphene/elastomer nanocomposites. Carbon, 2015, 95, 460-484.	10.3	308

#	Article	IF	CITATIONS
73	A numerical study of ply orientation on ballistic impact resistance of multi-ply fabric panels. Composites Part B: Engineering, 2015, 68, 259-265.	12.0	67
74	Raman Spectra and Mechanical Properties of Graphene/Polypropylene Nanocomposites. International Journal of Chemical Engineering and Applications (IJCEA), 2015, 6, 1-5.	0.3	24
75	Multimodal microscopy using â€`half and half' contact mode and ultrasonic force microscopy. Nanotechnology, 2014, 25, 335708.	2.6	4
76	Wideâ€Area Strain Sensors based upon Grapheneâ€Polymer Composite Coatings Probed by Raman Spectroscopy. Advanced Functional Materials, 2014, 24, 2865-2874.	14.9	122
77	Catalytic graphitization of electrospun cellulose nanofibres using silica nanoparticles. Reactive and Functional Polymers, 2014, 85, 235-238.	4.1	7
78	Hybrid carbon fibre–carbon nanotube composite interfaces. Composites Science and Technology, 2014, 95, 114-120.	7.8	46
79	Factors controlling the strength of carbon fibres in tension. Composites Part A: Applied Science and Manufacturing, 2014, 57, 88-94.	7.6	67
80	Few layer graphene–polypropylene nanocomposites: the role of flake diameter. Faraday Discussions, 2014, 173, 379-390.	3.2	39
81	Controlling and mapping interfacial stress transfer in fragmented hybrid carbon fibre–carbon nanotube composites. Composites Science and Technology, 2014, 100, 121-127.	7.8	22
82	Coefficient of thermal expansion of carbon nanotubes measured by Raman spectroscopy. Applied Physics Letters, 2014, 104, .	3.3	97
83	Unique Identification of Single-Walled Carbon Nanotubes in Electrospun Fibers. Journal of Physical Chemistry C, 2014, 118, 24025-24033.	3.1	4
84	The rheological behaviour of concentrated dispersions of graphene oxide. Journal of Materials Science, 2014, 49, 6311-6320.	3.7	91
85	An investigation into the relationship between processing, structure and properties for high-modulus PBO fibres: part 3: analysis of fibre microstructure using transmission electron microscopy. Journal of Materials Science, 2014, 49, 6467-6474.	3.7	13
86	Dynamic microstructural evolution of graphite under displacing irradiation. Carbon, 2014, 68, 273-284.	10.3	33
87	Raman Spectroscopy: Graphene and Steel Interaction. , 2014, , 1-6.		0
88	Reversible Loss of Bernal Stacking during the Deformation of Few-Layer Graphene in Nanocomposites. ACS Nano, 2013, 7, 7287-7294.	14.6	68
89	The role of functional groups on graphene oxide in epoxy nanocomposites. Polymer, 2013, 54, 5821-5829.	3.8	163
90	Deoxygenation of Graphene Oxide: Reduction or Cleaning?. Chemistry of Materials, 2013, 25, 3580-3588.	6.7	198

6

#	Article	IF	CITATIONS
91	Control of the functionality of graphene oxide for its application inÂepoxy nanocomposites. Polymer, 2013, 54, 6437-6446.	3.8	252
92	Supercapacitance from Cellulose and Carbon Nanotube Nanocomposite Fibers. ACS Applied Materials & Interfaces, 2013, 5, 9983-9990.	8.0	183
93	Carbon nanofibres produced from electrospun cellulose nanofibres. Carbon, 2013, 58, 66-75.	10.3	147
94	Graphene oxide and base-washed graphene oxide as reinforcements in PMMA nanocomposites. Composites Science and Technology, 2013, 88, 158-164.	7.8	71
95	The effect of nanostructure upon the deformation micromechanics of carbon fibres. Carbon, 2013, 52, 372-378.	10.3	57
96	The effect of nanostructure upon the compressive strength of carbon fibres. Journal of Materials Science, 2013, 48, 2104-2110.	3.7	25
97	Identifying the fluorescence of graphene oxide. Journal of Materials Chemistry C, 2013, 1, 338-342.	5.5	112
98	Two-Dimensional Nanocrystals: Structure, Properties and Applications. Arabian Journal for Science and Engineering, 2013, 38, 1289-1304.	1.1	6
99	Salt-assisted direct exfoliation of graphite into high-quality, large-size, few-layer graphene sheets. Nanoscale, 2013, 5, 7202.	5.6	88
100	Interfacial Stress Transfer in Graphene Oxide Nanocomposites. ACS Applied Materials & Interfaces, 2013, 5, 456-463.	8.0	144
101	Investigation of the sp3 structure of carbon fibres using UV-Raman spectroscopy. Tanso, 2013, 2013, 243-247.	0.1	4
102	Carbon in Polymer. , 2013, , 695-728.		1
103	Optimizing the Reinforcement of Polymer-Based Nanocomposites by Graphene. ACS Nano, 2012, 6, 2086-2095.	14.6	255
104	The mechanics of graphene nanocomposites: A review. Composites Science and Technology, 2012, 72, 1459-1476.	7.8	1,076
105	Effective Young's Modulus of Bacterial and Microfibrillated Cellulose Fibrils in Fibrous Networks. Biomacromolecules, 2012, 13, 1340-1349.	5.4	189
106	Rapidly switchable water-sensitive shape-memory cellulose/elastomer nano-composites. Soft Matter, 2012, 8, 2509.	2.7	192
107	Production of carbon fibres from a pyrolysed and graphitised liquid crystalline cellulose fibre precursor. Journal of Materials Science, 2012, 47, 5402-5410.	3.7	62
108	Strain Mapping in a Graphene Monolayer Nanocomposite. ACS Nano, 2011, 5, 3079-3084.	14.6	142

#	Article	IF	CITATIONS
109	The Effective Young's Modulus of Carbon Nanotubes in Composites. ACS Applied Materials & Interfaces, 2011, 3, 433-440.	8.0	91
110	Toughening of Epoxy Matrices with Reduced Single-Walled Carbon Nanotubes. ACS Applied Materials & Interfaces, 2011, 3, 2309-2317.	8.0	77
111	Silverâ€decorated carbon nanotube networks as SERS substrates. Journal of Raman Spectroscopy, 2011, 42, 1255-1262.	2.5	21
112	The Effect of Nanotube Content and Orientation on the Mechanical Properties of Polymer-Nanotube Composite Fibers: Separating Intrinsic Reinforcement from Orientational Effects. Advanced Functional Materials, 2011, 21, 364-371.	14.9	70
113	The Real Graphene Oxide Revealed: Stripping the Oxidative Debris from the Grapheneâ€like Sheets. Angewandte Chemie - International Edition, 2011, 50, 3173-3177.	13.8	569
114	Structure of and stress transfer in fibres spun from carbon nanotubes produced by chemical vapour deposition. Carbon, 2011, 49, 4149-4158.	10.3	60
115	Simultaneous global and local strain sensing in SWCNT–epoxy composites by Raman and impedance spectroscopy. Composites Science and Technology, 2011, 71, 160-166.	7.8	68
116	Comparing single-walled carbon nanotubes and samarium oxide as strain sensors for model glass-fibre/epoxy composites. Composites Science and Technology, 2010, 70, 88-93.	7.8	30
117	Assessment of interface damage during the deformation of carbon nanotube composites. Journal of Materials Science, 2010, 45, 1425-1431.	3.7	27
118	The influence of the lateral filament texture on the compressive properties of PpPTA aramid filaments. Journal of Materials Science, 2010, 45, 2708-2714.	3.7	2
119	Response to "Comment on the Effect of Stress Transfer Within Doubleâ€Walled Carbon Nanotubes upon Their Ability to Reinforce Compositesâ€: Advanced Materials, 2010, 22, 1180-1181.	21.0	3
120	Interfacial Stress Transfer in a Graphene Monolayer Nanocomposite. Advanced Materials, 2010, 22, 2694-2697.	21.0	551
121	Characterization of the adhesion of single-walled carbon nanotubes in poly(p-phenylene) Tj ETQq1 1 0.784314 rg	gB <u>T</u> /Overl	ock 10 Tf 5 <mark>0</mark>
122	Micromechanical analysis of the kinkâ€band performance at the interface of a thermoplastic composite under tensile deformation. Polymer Composites, 2010, 31, 1817-1821.	4.6	8
123	Formation mechanism of peapod-derived double-walled carbon nanotubes. Physical Review B, 2010, 82, .	3.2	29
124	Strong Dependence of Mechanical Properties on Fiber Diameter for Polymerâ^'Nanotube Composite Fibers: Differentiating Defect from Orientation Effects. ACS Nano, 2010, 4, 6989-6997.	14.6	73
125	The Effect of Stress Transfer Within Doubleâ€Walled Carbon Nanotubes Upon Their Ability to Reinforce Composites. Advanced Materials, 2009, 21, 3591-3595.	21.0	71
126	SWNT composite coatings as a strain sensor on glass fibres in model epoxy composites. Composites Science and Technology, 2009, 69, 1547-1552.	7.8	36

#	Article	IF	CITATIONS
127	Imaging microstructure and stress fields within a cross-ply composite laminate. Composites Science and Technology, 2009, 69, 567-574.	7.8	1
128	Deformation micromechanics of a model cellulose/glass fibre hybrid composite. Composites Science and Technology, 2009, 69, 2218-2224.	7.8	24
129	Graphene Oxide: Structural Analysis and Application as a Highly Transparent Support for Electron Microscopy. ACS Nano, 2009, 3, 2547-2556.	14.6	629
130	Meso-scale strain mapping in UD woven composites. Composites Part A: Applied Science and Manufacturing, 2009, 40, 1838-1845.	7.6	20
131	Deformation micromechanics of model glass fibre composites. Composites Science and Technology, 2008, 68, 848-853.	7.8	9
132	Deformation micromechanics of spider silk. Journal of Materials Science, 2008, 43, 3728-3732.	3.7	23
133	Analysis of the structure and deformation of a woven composite lamina using X-ray microdiffraction. Journal of Materials Science, 2008, 43, 6724-6733.	3.7	3
134	Debundling, Isolation, and Identification of Carbon Nanotubes in Electrospun Nanofibers. Small, 2008, 4, 930-933.	10.0	18
135	A strength based criterion for the prediction of stable fibre crack-bridging. Composites Science and Technology, 2008, 68, 1282-1296.	7.8	9
136	Molecular and Crystal Deformation in Poly(aryl ether ether ketone) Fibers. Macromolecules, 2008, 41, 7519-7524.	4.8	18
137	Deformation of isolated single-wall carbon nanotubes in electrospun polymer nanofibres. Nanotechnology, 2007, 18, 235707.	2.6	64
138	Investigation of interfacial stress transfer in a PBO/polypropylene microdroplet composite using synchrotron microfocus X-ray diffraction. Composite Interfaces, 2007, 14, 351-359.	2.3	1
139	Deformation Micromechanics of a Thermoplastic—Thermoset Fiber—Matrix Interface using the Single Fiber Composite Test. Journal of Composite Materials, 2007, 41, 1087-1099.	2.4	1
140	Experimental Validation of Micro-strains Predicted by Meso-scale Models for Textile Composites. , 2007, , .		0
141	Effect of excitation wavelength on the Raman scattering from optical phonons in silicon carbide monofilaments. Journal of Applied Physics, 2007, 102, 023512.	2.5	18
142	Probing the internal geometry of a woven composite during deformation using an x-ray microdiffraction imaging technique. Applied Physics Letters, 2007, 91, .	3.3	8
143	Influence of Domain Orientation on the Mechanical Properties of Regenerated Cellulose Fibers. Biomacromolecules, 2007, 8, 624-630.	5.4	27
144	Effect of residual stresses upon the Raman radial breathing modes of nanotubes in epoxy composites. Composites Science and Technology, 2007, 67, 840-843.	7.8	21

#	Article	IF	CITATIONS
145	Unique identification of single-walled carbon nanotubes in composites. Composites Science and Technology, 2007, 67, 2135-2149.	7.8	28
146	Controlled interfacial adhesion of Twaron® aramid fibres in composites by the finish formulation. Composites Science and Technology, 2007, 67, 2027-2035.	7.8	46
147	Deformation mechanisms in polymer fibres and nanocomposites. Polymer, 2007, 48, 2-18.	3.8	95
148	Single-Walled Carbon Nanotube Networks Decorated with Silver Nanoparticles:  A Novel Graded SERS Substrate. Journal of Physical Chemistry C, 2007, 111, 16167-16173.	3.1	100
149	Characterization of carbon coatings on SiC monofilaments using Raman spectroscopy. Journal of Materials Science, 2007, 42, 5135-5141.	3.7	6
150	Molecular Orientation Distributions in a Biaxially oriented Poly(l-lactic Acid) Film Determined by Polarized Raman Spectroscopy. Biomacromolecules, 2006, 7, 2575-2582.	5.4	15
151	Molecular Orientation Distributions in Uniaxially Oriented Poly(l-lactic acid) Films Determined by Polarized Raman Spectroscopy. Macromolecules, 2006, 39, 3312-3321.	4.8	36
152	Analysis of interfacial micromechanics in microdroplet model composites using synchrotron microfocus X-ray diffraction. Composites Science and Technology, 2006, 66, 2197-2205.	7.8	19
153	Crystallographic texturing in single poly(p-phenylene benzobisoxazole) fibres investigated using synchrotron radiation. Polymer, 2005, 46, 1935-1942.	3.8	22
154	The Manchester Conference Centre, Manchester, UK, 14–16 July 2004. Journal of Materials Science, 2005, 40, 5339-5340.	3.7	0
155	Interfacial micromechanics of technora fibre/epoxy composites. Journal of Materials Science, 2005, 40, 5381-5386.	3.7	6
156	Molecular Orientation Distributions in the Crystalline and Amorphous Regions of Uniaxially Oriented Isotactic Polypropylene Films Determined by Polarized Raman Spectroscopy. Journal of Macromolecular Science - Physics, 2005, 44, 967-991.	1.0	15
157	Modeling Crystal and Molecular Deformation in Regenerated Cellulose Fibers. Biomacromolecules, 2005, 6, 507-513.	5.4	111
158	Micromechanical phenomena during hygrothermal ageing of model composites investigated by Raman spectroscopy. Part I: Twaron fibres with different surface treatments. Composites Part A: Applied Science and Manufacturing, 2005, 36, 1011-1019.	7.6	7
159	Micromechanical phenomena during hygrothermal ageing of model composites investigated by Raman spectroscopy. Part II: comparison of the behaviour of PBO and M5 fibres compared with Twaron. Composites Part A: Applied Science and Manufacturing, 2005, 36, 1020-1026.	7.6	9
160	Chemically Engineered Carbon Nanotube-Polymer Composite Coatings for use as Remote Strain-Sensors. Materials Research Society Symposia Proceedings, 2004, 858, 265.	0.1	1
161	Determination of the axial and radial fibre stress distributions for the Broutman test. Composites Science and Technology, 2004, 64, 181-189.	7.8	10
162	Gravimetric determination of the diffusion characteristics of polymers using small specimens. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 2122-2128.	2.1	6

#	Article	IF	CITATIONS
163	Smart Nanostructured Polymeric Coatings for Use as Remote optical Strain Sensors. Advanced Engineering Materials, 2004, 6, 729-733.	3.5	6
164	Crystal lattice deformation in single poly(p-phenylene benzobisoxazole) fibres. Polymer, 2004, 45, 7693-7704.	3.8	46
165	Failure phenomena in fibre-reinforced composites. Part 6: a finite element study of stress concentrations in unidirectional carbon fibre-reinforced epoxy composites. Composites Science and Technology, 2004, 64, 645-656.	7.8	50
166	Composite micromechanics of hemp fibres and epoxy resin microdroplets. Composites Science and Technology, 2004, 64, 767-772.	7.8	126
167	A Raman spectroscopic investigation of heating effects and the deformation behaviour of epoxy/SWNT composites. Composites Science and Technology, 2004, 64, 2291-2295.	7.8	64
168	Raman spectroscopic study of the effect of strain on the radial breathing modes of carbon nanotubes in epoxy/SWNT composites. Composites Science and Technology, 2004, 64, 2297-2302.	7.8	38
169	Analysis of Stress Transfer in Two-Phase Polymer Systems Using Synchrotron Microfocus X-ray Diffraction. Macromolecules, 2004, 37, 9503-9509.	4.8	22
170	Collapse of Single-Wall Carbon Nanotubes is Diameter Dependent. Physical Review Letters, 2004, 92, 095501.	7.8	328
171	Deformation micromechanics of natural cellulose fibre networks and composites. Composites Science and Technology, 2003, 63, 1225-1230.	7.8	64
172	Measurement of micro stress fields in epoxy matrix around a fibre using phase-stepping automated photoelasticity. Composites Science and Technology, 2003, 63, 1783-1787.	7.8	24
173	Characterisation of the microstructure and deformation of high modulus cellulose fibres. Polymer, 2003, 44, 5901-5908.	3.8	50
174	Analysis of Structure/Property Relationships in Silkworm (Bombyx mori) and Spider Dragline (Nephila) Tj ETQqO (0 0 ₅ .gBT /C	Overlock 10 Ti 148
175	Raman-Active Nanostructured Materials for Use as Novel Stress-Sensitive Polymeric Coatings. Materials Research Society Symposia Proceedings, 2003, 791, 1.	0.1	3
176	Deformation Behavior of the Raman Radial Breathing Modes of Single-Wall Carbon Nanotubes in Composites. Materials Research Society Symposia Proceedings, 2003, 791, 359.	0.1	0
177	An investigation into the relationship between processing, structure, and properties for high-modulus PBO fibers. II. Hysteresis of stress-induced Raman band shifts and peak broadening, and skin-core structure. Journal of Macromolecular Science - Physics, 2002, 41, 61-76.	1.0	22
178	Determination of residual stresses in SiC monofilament reinforced metal-matrix composites using Raman spectroscopy. Composites Part A: Applied Science and Manufacturing, 2002, 33, 1409-1416.	7.6	26
179	Investigation of elastic property relationships for flake and spheroidal cast irons using Raman spectroscopy. Acta Materialia, 2002, 50, 4037-4046.	7.9	19
180	Effect of temperature on the graphitization process of a semianthracite. Fuel Processing Technology, 2002, 79, 245-250.	7.2	38

#	Article	IF	CITATIONS
181	Deformation studies of single rigid-rod polymer-based fibres. Part 1. Determination of crystal modulus. Polymer, 2002, 43, 5219-5226.	3.8	21
182	Raman spectroscopy study of high-modulus carbon fibres: effect of plasma-treatment on the interfacial properties of single-fibre–epoxy composites. Carbon, 2002, 40, 857-875.	10.3	84
183	Raman spectroscopy study of HM carbon fibres: effect of plasma treatment on the interfacial properties of single fibre/epoxy composites. Carbon, 2002, 40, 845-855.	10.3	190
184	Three techniques of interfacial bond strength estimation from direct observation of crack initiation and propagation in polymer–fibre systems. Composites Part A: Applied Science and Manufacturing, 2001, 32, 435-443.	7.6	81
185	Characterization and micromechanical testing of the interphase of aramid-reinforced epoxy composites. Composites Part A: Applied Science and Manufacturing, 2001, 32, 331-342.	7.6	60
186	Fragmentation analysis of glass fibres in model composites through the use of Raman spectroscopy. Composites Part A: Applied Science and Manufacturing, 2001, 32, 253-269.	7.6	29
187	Interfacial failure in poly(p-phenylene benzobisoxazole) (PBO)/epoxy single fibre pull-out specimens. Composites Part A: Applied Science and Manufacturing, 2001, 32, 445-455.	7.6	37
188	Investigation into the deformation of carbon nanotubes and their composites through the use of Raman spectroscopy. Composites Part A: Applied Science and Manufacturing, 2001, 32, 401-411.	7.6	422
189	Effects of plasma oxidation on the surface and interfacial properties of ultra-high modulus carbon fibres. Composites Part A: Applied Science and Manufacturing, 2001, 32, 361-371.	7.6	131
190	Deformation of PBO/epoxy plain weave fabric laminae followed using Raman spectroscopy. Composites Part A: Applied Science and Manufacturing, 2001, 32, 499-509.	7.6	22
191	Deformation Mechanisms in Natural Polymer Fibers and Composites. Materials Research Society Symposia Proceedings, 2001, 711, 1.	0.1	0
192	Microstructural analysis of silicon carbide monofilaments. Journal of Microscopy, 2001, 201, 179-188.	1.8	14
193	Editorial:Polymer Fibres 2000 The Manchester Conference Centre, Manchester, UK, 5-7 July 2000. Journal of Materials Science, 2001, 36, 3069-3069.	3.7	2
194	A microstructural study of silicon carbide fibres through the use of Raman microscopy. Journal of Materials Science, 2001, 36, 55-66.	3.7	60
195	Deformation studies of thermotropic aromatic copolyesters using NIR Raman spectroscopy. Polymer, 2001, 42, 7857-7863.	3.8	9
196	Other high modulus-high tenacity (HM-HT) fibres from linear polymers. , 2001, , 93-155.		9
197	Molecular deformation in spider dragline silk subjected to stress. Polymer, 2000, 41, 1223-1227.	3.8	66
198	Experimental studies on the interfacial shear-transfer mechanism in discontinuous glass-fibre composites. Composites Science and Technology, 2000, 60, 361-365.	7.8	22

#	Article	IF	CITATIONS
199	Failure phenomena in two-dimensional multi-fibre microcomposites. Part 4: a Raman spectroscopic study on the influence of the matrix yield stress on stress concentrations. Composites Part A: Applied Science and Manufacturing, 2000, 31, 165-171.	7.6	34
200	Molecular deformation processes in aromatic high modulus polymer fibres. Polymer, 1999, 40, 857-870.	3.8	104
201	Analysis of spider silk in native and supercontracted states using Raman spectroscopy. Polymer, 1999, 40, 2493-2500.	3.8	143
202	Tensile and compressive deformation of polypyridobisimidazole (PIPD)-based `M5' rigid-rod polymer fibres. Polymer, 1999, 40, 3421-3431.	3.8	55
203	Thermal residual stresses and their toughening effect in Al2O3 platelet reinforced glass. Acta Materialia, 1999, 47, 3233-3240.	7.9	51
204	The effect of solvents on spider silk studied by mechanical testing and single-fibre Raman spectroscopy. International Journal of Biological Macromolecules, 1999, 24, 295-300.	7.5	82
205	Evaluation of interface fracture energy for single-fibre composites. Composites Science and Technology, 1998, 58, 1907-1916.	7.8	42
206	Preparation and use of diacetylene-containing polyesters for studying deformation micromechanics in model polyester-polyolefin blends. Macromolecular Symposia, 1997, 118, 395-400.	0.7	2
207	Interfacial failure in ceramic fibre/glass composites. Composites Part A: Applied Science and Manufacturing, 1996, 27, 737-741.	7.6	16
208	Deformation micromechanics in high-volume-fraction aramid/epoxy composites. Composites Part A: Applied Science and Manufacturing, 1996, 27, 889-894.	7.6	7
209	A study of transcrystalline polypropylene/ single-aramid-fibre pull-out behaviour using Raman spectroscopy. Composites Part A: Applied Science and Manufacturing, 1996, 27, 833-838.	7.6	27
210	Interfacial micromechanics in thermoplastic and thermosetting matrix carbon fibre composites. Composites Part A: Applied Science and Manufacturing, 1996, 27, 973-980.	7.6	39
211	Analysis of the Single-Fiber Pullout Test Using Raman Spectroscopy: Part III, Pullout of Nicalon Fibers from a Pyrex Matrix. Journal of the American Ceramic Society, 1996, 79, 1868-1874.	3.8	15
212	Effect of fibre microstructure upon the modulus of PAN- and pitch-based carbon fibres. Carbon, 1995, 33, 97-107.	10.3	209
213	Analysis of the single-fibre pull-out test by means of Raman spectroscopy: Part II. Micromechanics of deformation for an aramid/epoxy system. Composites Science and Technology, 1995, 53, 411-421.	7.8	75
214	Measurement of thermal strains during compressive fragmentation in single-fibre composites by Raman spectroscopy. Composites Science and Technology, 1995, 55, 223-229.	7.8	17
215	Interfacial behaviour in high temperature cured carbon fibre/epoxy resin model composite. Composites, 1995, 26, 541-550.	0.7	63
216	Determination of residual strains in ceramic-fibre reinforced composites using fluorescence spectroscopy. Acta Metallurgica Et Materialia, 1995, 43, 2407-2416.	1.8	22

#	Article	IF	CITATIONS
217	Strain measurement and deformation analysis in a diacetylene-containing urethane copolymer using Raman spectroscopy. Polymer, 1994, 35, 80-85.	3.8	13
218	Deformation micromechanics in high-performance polymer fibres and composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1994, 184, 197-205.	5.6	18
219	Analysis of the fragmentation test for carbon-fibre/epoxy model composites by means of Raman spectroscopy. Composites Science and Technology, 1994, 52, 505-517.	7.8	84
220	Analysis of the single-fibre pull-out test by the use of Raman spectroscopy. Part I: pull-out of aramid fibres from an epoxy resin. Composites Science and Technology, 1994, 52, 387-396.	7.8	37
221	Chain stretching in a poly(ethylene terephthalate) fibre. Polymer, 1994, 35, 3844-3847.	3.8	27
222	Simultaneous SAXS/WAXS and d.s.c. analysis of the melting and recrystallization behaviour of quenched polypropylene. Polymer, 1994, 35, 1352-1358.	3.8	104
223	Model ceramic fibre-reinforced glass composites: residual thermal stresses. Composites, 1994, 25, 488-493.	0.7	37
224	Deformation micromechanics in aramid/epoxy composites. Composites, 1994, 25, 745-751.	0.7	20
225	Deformation micromechanics in high-modulus fibres and composites. Composites Science and Technology, 1993, 48, 255-261.	7.8	41
226	Studies of rubber-toughened poly(methyl methacrylate): 1. Preparation and thermal properties of blends of poly(methyl methacrylate) with multiple-layer toughening particles. Polymer, 1993, 34, 61-69.	3.8	58
227	Structure-property relationships in novel polydiacetylene-containing oligoester: Polyolefin blends. Polymer Bulletin, 1993, 30, 347-352.	3.3	7
228	The relationship between structure and properties in titanium dioxide filled polypropylene. Polymer Bulletin, 1993, 30, 361-368.	3.3	20
229	The formation, structure and properties of urethane-diacetylene copolymers as optical strain-sensitive surface coatings. Progress in Organic Coatings, 1992, 20, 425-446.	3.9	8
230	Dependence of fibre strain on orientation angle for off-axis fibres in composites. Journal of Materials Science Letters, 1992, 11, 1344-1346.	0.5	25
231	Relationship between structure and mechanical properties in high-modulus poly (2,5(6)-benzoxazole) (ABPBO) fibres. Polymer, 1992, 33, 975-982.	3.8	21
232	Formation and properties of urethane-diacetylene segmented block copolymers. Polymer, 1991, 32, 1713-1725.	3.8	24
233	Deformation mechanisms in biaxially drawn polyethylene. Journal of Polymer Science, Part B: Polymer Physics, 1991, 29, 825-835.	2.1	22
234	The opto-mechanical behaviour of diacetylene-containing segmented block copolymers. Polymer Bulletin, 1991, 27, 353-359.	3.3	9

#	Article	IF	CITATIONS
235	Introduction to Polymers. , 1991, , .		470
236	Tensile properties of biaxially drawn polyethylene. Polymer, 1990, 31, 231-236.	3.8	31
237	Fibre deformation and residual thermal stresses in carbon fibre reinforced PEEK. Composites Science and Technology, 1989, 34, 243-258.	7.8	51
238	Application of raman microscopy to the analysis of high modulus polymer fibres and composites. British Polymer Journal, 1989, 21, 17-21.	0.7	38
239	Raman spectroscopy of stressed high modulus poly(p-phenylene benzobisthiazole) fibres. Polymer, 1987, 28, 1833-1840.	3.8	99
240	Direct imaging of molecules in polydiacetylene single crystals. Polymer, 1986, 27, 202-210.	3.8	24
241	Strong polymers. Physics in Technology, 1984, 15, 219-220.	0.2	0
242	The solid-state polymerization and physical properties of bis(ethyl urethane) of 2,4-hexadiyne-1,6-diol: 3. Mechanical properties. Polymer, 1983, 24, 1023-1030.	3.8	47
243	The mechanical properties of epoxy resins. Journal of Materials Science, 1980, 15, 1814-1822.	3.7	113
244	The mechanical properties of epoxy resins. Journal of Materials Science, 1980, 15, 1823-1831.	3.7	134
245	Crack propagation in and fractography of epoxy resins. Journal of Materials Science, 1979, 14, 1609-1618.	3.7	72
246	Structure and morphology of polydiacetylene single crystals. Faraday Discussions of the Chemical Society, 1979, 68, 509.	2.2	12
247	Relationship between mechanical properties of and crack progogation in epoxy resin adhesives. Polymer, 1978, 19, 574-582.	3.8	134
248	Crack velocity and the fracture of bone. Journal of Biomechanics, 1978, 11, 473-479.	2.1	71
249	Stability of crack propagation in epoxy resins. Polymer, 1977, 18, 1075-1080.	3.8	128
250	The fracture stress of poly(methylmethacrylate). Materials Science and Engineering, 1977, 30, 181-185.	0.1	4
251	Crack propagation and arrest in epoxy resins. Journal of Materials Science, 1976, 11, 776-779.	3.7	40
252	Time-dependent failure of poly(methyl methacrylate). Polymer, 1976, 17, 717-722.	3.8	32

#	Article	IF	CITATIONS
253	Deformation mechanisms in polytetrafluoroethylene. Polymer, 1975, 16, 450-458.	3.8	9
254	Failure of brittle polymers by slow crack growth. Journal of Materials Science, 1975, 10, 1334-1342.	3.7	97
255	Introduction to Polymers. , 0, , .		324